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Preface

We are very glad to welcome you at Athens for the 7th Mathematics in Sports
International conference. It is our pleasure to host the conference this year after the
successful previous ones in Manchseter, Groningen, Salford, Leuven, Loughborough
and Padova. Since the first MathsSports conference, a lot of research has been
made on topics related to Mathematics and Sports and the interest has increased
considerably. MathsSports conference is a gathering of Academics and practitioners
covering a wide range of sports and methodologies and we hope that this year the
meeting will cover even wider variety of sports. We have attempted to arrange a
wide range of talks during the 3 days of the conference.

A complete list of all the abstracts of the papers to be presented in the conference
can be found in this book. A detailed index of all authors can be found at the end
to facilitate easy search.

We hope that you will enjoy the meeting.

Dimitris Karlis
Toannis Ntzoufras
on behalf of the LOC and SC.
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The impact of a team numerical advantage on match play in Australian Rules football

Jeremy. P. Alexander '*., Bartholomew Spencer'., Alice J. Sweeting '-3., Jocelyn. K. Mara 2., Sam Robertson '-*
YInstitute for Health and Sport (IHES), Victoria University,
2Research Institute for Sport and Exercise, University of Canberra
SWestern Bulldogs Football Club

! Corresponding author: jeremyalexander60@hmail.com

ABSTRACT

The primary aim of this study was to provide a proof of concept that determines the relationship
between a team numerical advantage and match play in a continuous manner. The secondary aim was
to quantify how players occupy different sub-areas of play, while accounting for match phase and
position of the ball in Australian Rules football. Data from Australian football athletes (years 23.9 +
4.3; cm 188.0 £7.9; kg 86.0 = 9.4), were collected via 10 Hz global positioning system (GPS) during
match simulation. The total number of players, team numerical advantage, and Approximate Entropy
(ApEn) were analysed during match phase (offensive, defensive, and contested) and field position
(defensive 50, defensive midfield, forward midfield, and forward 50). Results revealed that a team
numerical advantage was associated with advantageous match play outcomes. Specifically, the
likelihood of gaining possession of the ball increased when teams obtained a numerical advantage.
The total number of players increased based on where the ball was positioned, especially if located in
the D50. Teams were largely outnumbered when the ball was in their F50 but maintained a numerical
advantage when defending in the D50. Variability in ApEn values was greater in team numerical
advantage and total players during the middle segments of the ground compared to the F50 and D50.
A method that continuously represents how players occupy sub-areas of play may provide coaches
and sport science practitioners with a more precise account of how tactical team behaviour influences
ensuing match play.

Keywords: Performance analysis, invasion sports, game style, tactical behaviour

1. INTRODUCTION

The advent of player tracking technologies has supported a more detailed approach to the match
analysis of invasion sports (Rein and Memmert 2016). Interactions between teammates and opponents
can now be captured in a continuous manner that more accurately reflects the constantly changing
nature of match play (Travassos, Davids et al. 2013). Analysis of this information can provide an
assessment of the collective organisation of players across a field of play (Clemente, Couceiro et al.
2013), which has been used to describe team tactical behaviour and performance outcomes (Vilar,
Aragjo et al. 2013, Silva, Travassos et al. 2014).

Recently, studies in football have attempted to assess the tactical behaviour of teams by
examining how players occupy different sub-areas on a playing field at different timescales (Vilar,
Aragjo et al. 2013, Silva, Travassos et al. 2014, Clemente, Couceiro et al. 2015). Teams may regulate
player positioning to increase offensive effectiveness or instill disorder in opposition defensive
structures (Vilar, Aragjo et al. 2013). This may be achieved by generating a numerical advantage or
dominance at different sub-areas on a field of play by outnumbering the opposing team (Vilar, Araujo
et al. 2013, Silva, Travassos et al. 2014). Researchers in football have proposed that match success is
associated with a team’s ability to generate a numerical advantage during offensive sequences of play
(Vilar, Aratjo et al. 2013) and to preserve defensive stability by allocating a greater number of players
closer to their goal when compared to the opposition (Vilar, Aratijo et al. 2013, Clemente, Couceiro
et al. 2015).

However, studies that reduce performance to a single aspect of match play may not fully
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appreciate the complex, multifaceted, and unpredictable nature of invasion sports (Duarte, Araujo et
al. 2012). Performance can be influenced by various contextual variables, such as, match phase, ball
location, and quality of opposition (Lago 2009, Duarte, Araujo et al. 2012, Alexander, Spencer et al.
2019). Notwithstanding, studies to date that have investigated tactical team behaviour by measuring
how players occupy different sub-areas on a playing field in football have inferred performance by
assessing a team’s capacity to generate a numerical advantage over a specific area (Vilar, Aratjo et
al. 2013). As such, a limited understanding exists between a team’s numerical advantage and the
impact on match play in a continuous manner. In addition, contextual variables such as ball position
and match phase are yet to be reported when assessing how players occupy different sub-areas on a
playing field (Vilar, Araujo et al. 2013, Clemente, Couceiro et al. 2015). Investigations into how
players occupy different sub-areas of play in Australian Football also remain largely absent. Australian
Rules football (AF) is a sport where teams compete on an oval shaped field (length = ~160 m, width
= ~130 m) with 22 players in total, with 18 on the field and 4 on an interchange (Gray and Jenkins
2010). A goal is scored when a player kicks the ball through the two large goalposts and equates to 6
points (Woods 2016). If a player misses the large goalposts but the ball passes through the small
goalposts on either side, a single point is registered (Woods 2016).

Thus, a specific method that can determine a team’s numerical advantage in a continuous
format could be useful in determining the immediate impact on ensuing match play. Research
analysing how players occupy different sub-areas on a playing field that accounts for ball position and
match phase also remains absent. Therefore, the primary aim of this study was to provide a proof of
concept that determines the relationship between a team numerical advantage and match play in a
continuous manner. The secondary aim was to determine how ball position and match phase influence
how players occupy different sub-areas of play in AF.

2. METHODS

Data were collected from one training session with 30 male professional AF players (years 23.9 +4.3;
cm 188.0 + 7.9; kg 86.0 + 9.4) recruited from a single team in the Australian Football League (AFL)
competition. Participants took part in a match simulation drill as part of preseason training. All
participants received information about the requirements of the study via verbal and written
communication, and provided their written consent to participate. The University Ethics Committee
approved the study.

Participants were separated into two teams of 15 each at the coach’s discretion to ensure a
relatively even competition and were labeled Home team and Away team for analysis purposes. The
match simulation took place on an oval shaped ground using dimensions 163.7 m x 129.8 m (length x
width) with two 20-min halves and a 10-min break between periods. Data for all participants were
collected using 10 Hz GPS devices (Catapult Optimeye S5, Catapult Innovations, Melbourne,
Australia). The devices were housed in a sewn pocket in the jersey that is located on the upper back.
The number of GPS satellites was greater than 8 per second, which ensured adequate signal quality
(Corbett, Sweeting et al. 2017).

Spatiotemporal data were exported in raw 10 Hz format. Each file contained a global time
stamp and calibrated location (X- and y- location). Match phase was determined via which team had
possession of the ball (offensive, defensive or contest). The offensive phase was recorded when a team
first gained possession of the ball and maintained it for at least a second and ended when the opposing
team gained possession of the ball for at least a second or there was a stoppage in play. For example,
the team scored or the ball went out of bounds (Yue, Broich et al. 2008). Using the same conditions,
the defensive phase was recorded when the opposing team had possession of the ball (Yue, Broich et
al. 2008). If neither team had possession of the ball, for example, when the officiating umpire returned
the ball to play, the phase was considered to be in contest until a team gained possession of the ball
for at least one second. All periods where the ball was out of play, for example, when there was a
break between periods of play, celebration after goals, were excluded from the investigation.
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Field position was separated into four zones (defensive 50; D50, defensive mid; DMID,
forward mid; FMID, forward 50; F50) by the two 50 m arcs and the center of the ground (see Figure
1), which is conventional for AF research and statistical providers (Jackson 2016). Match event data
notated the action of the player who had possession of the ball and was recorded to the nearest second.
This information provided an assessment of the relationship between a team numerical advantage and
match play. Specifically, if a team numerical advantage was associated with gaining possession of the
ball. Total scoring opportunities were also recorded. Teams have the capacity to gain possession of
the ball through three different methods including; turnover (TO), which is possession gained from
the opposition, a clearance (CL), which is possession gained from a contested situation, and via a kick
in (KI), which is when a team gains possession if the opponents scores a behind (Woods 2016).
Previous investigations have assessed the validity and reliability of similar match events (Robertson,
Gupta et al. 2016). Positional data was synchronised with match event data using the respective global
timestamps. This was established using the initial point when the two widest players on the field
converged from a stationary position prior to start of each quarter.

Match Events

Time

50:00:05

Player

Lachie Hunter

Action

Mark:

Phase

Offence

Outcome

Player Positioning

DMID

FMID

Home

8

3

Away

11

2

Numerical
Advantage

-3

1

Home Team Attacking Direction —

DMID

FMID

Match Score

@ Home 39

O Away 51

Score Source

Score Breakdown (Goals.Behinds)

Total Match Events

D50

DMID

FMID

F50

Total

D50

DMID

FMID

F50

Total

TO

1

2

1.2

]

4.2

5

4

8

0

17

Home

o

-

o

[+

1

3

8

5

0

16

K1

11

Total

6.3

TO

0.1

3.1

10

24

Away

cL

1.1

3:1

4.2

14

K1

1

Total

8.3

Figure 1: Match events, total player positioning, and team numerical advantage of both teams at the
50-minute mark of the match.

TO, Turnover; CL, Clearance, KI; Kick In; F50, Forward 50; FMID, Forward Midfield; DMID,
Defensive Midfield; D50, Defensive 50;

Data Analysis

The total number of players inside the four field positions for the Home team and the Away team was
assessed for each point in time. This was used to also determine the team numerical advantage and
disadvantage for each team (Ns) following the rule: Ns = N& - N&'. The total number of players and
numerical advantage for each match phase and field position were visualised via frequency
histograms. Match play outcomes were assessed via analysing the relationship between the total
amount of turnovers and clearances and the respective team numerical advantage. Analysis was
processed using the computational package Python version 3.2 with Spyder, which is part of the
Anaconda software suite (www.python.org).
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Statistical Analyses

The variability of total players within the four field positions and the team numerical advantage or
disadvantage was calculated using the Approximate Entropy (ApEn) (Pincus, Gladstone et al. 1991).
Provided with a given time series of N points (X1, X2, ..., Xx), ApEn (M, r, N) can be used to measure
the logarithmic probability that lengths of patterns with m points that are close, continue to be close
within a tolerance factor r for the subsequent assessments (Pincus, Gladstone et al. 1991). Put simply,
a sequence of data points is more regular if the following data points expand in a similar manner. To
calculate ApEn (m, r, N), the parameters m, the length of compared runs, and r, the tolerance factor,
need to be consistent for all assessments to ensure reliable analysis (Pincus and Goldberger 1994).

ApEn (m,7,N) = ¢™(r) — ™ (1)

ApEn values vary between 0 and 2, with values closer to 2 indicating time series with less regular or
more variable patterns. Values closer to 0 imply a more regular or less variable time series (Fonseca,
Milho et al. 2013). These calculations were completed using the computational package Python
version 3.2 with Spyder, which is part of the Anaconda software suite (www.python.org).

3. RESULTS

Distribution of the total number of players and team numerical advantage during each match phase
and field position for the Home team and the Away team are displayed in Figure 2 and Figure 3
respectively. Variability in the total number of players and team numerical advantage as expressed by
ApEn values during each match phase and field position for the Home team and the Away team are
presented in Figure 4 and Figure 5 respectively. The relationship between match play and a team’s
numerical advantage is displayed in Figure 6. The Away team won the match 51 — 39.

The total number of players increased when the ball was located in either the F50 or D50 when
compared to the DMID and FMID. This finding was more pronounced during defence when the ball
was in the D50. The Away team was more effective at preserving more players in the D50 during
defence when compared to the Home team. Both teams maintained a team numerical advantage when
the ball was in the D50 and faced a numerical disadvantage when the ball was in their F50 during all
match phases. Contrastingly, both teams endured a numerical disadvantage during the DMID during
offence and defence but obtained a numerical advantage during FMID during offence.
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ApEn values in total players and team numerical were greater during both the FMID and
DMID during all phases of play. ApEn values were reduced during contest compared to offence and
defence in both the total number of the total number of players and team numerical advantage.

0.6 -
—@— Home Team Offence
~@— Away Team Offence
—@— Home Team Defence
0.5 - —@— Away Team Defence
) Home Team Contest
~@— Away Team Contest
0.4 -
[
o 03-
<C
0.2 -
0.1 -
0.0 -

Dl50 DIVIIID FN;1D FSIO
Field Position
Figure 4: ApEn values in total players in each field position for each phase of match play

—@— Home Team Offence
—@— Away Team Offence
0.7 - ~4@»- Home Team Defence
—@— Away Team Defence
Home Team Contest
~— Away Team Contest

ApEn
(=]
A

DéO DI‘JIID FN;ID FSIO
Field Position
Figure 5: ApEn values in team numerical advantage in each field position for each phase of match

play

A total of 43 turnovers were observed throughout the match with the Home team generating
20, while the Away team gathered 23. The Home team obtained 15 clearances, while the Away team
gathered 14. Both teams obtained a team numerical advantage when generating a turnover, although
the Away team recorded a greater advantage with an average of 1.35 additional players compared to
the Home team who had an average 0.75 players extra players. Both the Home team and Away team
had a numerical advantage when gaining possession of the ball during clearances of 0.4 and 0.43 extra
players respectively.
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Figure 6: Distribution of team numerical advantage during clearances and turnovers for the Home
team and Away team

4. DISCUSSION

This proof of concept study is the first in invasion sports to establish the association between team
numerical advantage and match play in a continuous manner. This investigation also provides an
enhanced understanding of tactical team behaviour by determining how ball position and match phase
influence how players occupy different sub-areas of play in AF.

This study revealed that an increased team numerical advantage was associated with
advantageous match play outcomes. Specifically, a team that obtained a numerical advantage
displayed an increased likelihood of gaining possession of the ball from turnovers and during contested
situations. Other findings included that the total number of players increased based on where the ball
was positioned. Increasing the total amount of players within a certain area may constrain opposition
movement (Alexander, Spencer et al. 2019). This is supported by research that indicates that
increasing the number of defensive players surrounding an attacking team taking a shot at goal is
associated with a concomitant decrease in successful scoring attempts (Ensum, Pollard et al. 2004,
Wright, Atkins et al. 2011). Teams were largely outnumbered when the ball was in their F50 but
maintained a numerical advantage when defending in the D50. This is similar to findings in football,
which prescribe that teams generally employ conservative team behaviour by maintaining a numerical
advantage in their defensive half (Vilar, Aratjo et al. 2013, Clemente, Couceiro et al. 2015).
Variability in total players and team numerical advantage measured through ApEn was greater during
the middle segments of the ground compared to the F50 and D50. Similarly, other research in football
found greater variation in central sectors of the ground (Vilar, Aratjo et al. 2013, Clemente, Couceiro
et al. 2015). This may be explained by the increased interaction of players in these regions (Clemente,
Couceiro et al. 2015). For instance, at any point in time, players in these regions must be willing to
create attacking opportunities for their teammates during offensive phases of play and prepared to
maintain defensive support when the opposition gains possession of the ball.

Continuous interactions between teammates and opponents transpire that revolve around
promoting offensive opportunities and preserving defensive stability (Vilar, Aratjo et al. 2013). As
such, players are required to alter their movement behaviour during a match due to the emerging nature
of match play (Duarte, Araujo et al. 2012). Nonetheless, how teams manage player positioning during
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various contextual variables is fundamentally linked to tactical team behaviour. Specifically, teams
may strategically position players across a field of play in an attempt to gain a competitive advantage
in certain circumstances. For instance, findings from this study indicate that teams who obtained a
numerical advantage during contested ball situations had an increased likelihood of gaining possession
of the ball. If opposing teams are more successful in gaining a greater amount of possession in these
situations, teams may look to allocate more players to limit this impact. However, this may create a
numerical imbalance elsewhere on the field that has the potential to influence other aspects of match
play. For example, if a player is taken from the forward half of the field to assist in contested situations,
the opposition may have a numerical advantage in their defensive half, which may provide the
opportunity to create more turnovers in this area of the field. If both teams were to employ a numerical
advantage in their defensive half with an aim to increase defensive stability, resulting match play could
observe a potential increase in turnovers but a decrease in scoring. This ‘positional trade-off” is a
constant evolution that coaches, players and sport science practitioners are challenged with when
determining their team’s tactical behaviour and assessing that of the opposition.

Some limitations relating to sample size and amount of teams included in this study should be
recognised. The present study analysed player positioning of one club during a single pre-season
match simulation. Thus, additional research should include multiple clubs throughout several matches
to construct a more accurate representation of how players occupy sub-areas of play and if any
variations exist between various contextual variables. Future investigations may also provide a
statistical significance between a team numerical advantage and match play in real time in AF. Future
work may also incorporate a more fluid approach to the concept of team spatial dominance.
Specifically, dominance should be aligned with how much space a player can theoretically cover,
rather to attribute greater dominance to a team that obtains an extra player within a large sub-area of
play that may not have a direct influence of match play.

5. CONCLUSIONS

This study investigated the relationship between a team numerical advantage and match play in a
continuous manner in AF, along with providing a greater understanding of how players occupy
different sub-areas during various contextual variables. Teams that obtained a numerical advantage
displayed an increased likelihood of gaining possession of the ball. A method that continuously
represents how players occupy sub-areas of play may provide coaches and sport science practitioners
with a more precise account of how a team numerical advantage influences ensuing match play.
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Abstract

When two opponents in a sports game have not rested an equal amount after their
most recent game, the more rested team has an unfair advantage over the less rested team.
Tournament organizers typically do not pay attention to this fairness criterion when they
determine the timings of the games. We provide a general linear integer programming
formulation for a given round robin tournament schedule that finds the periods of the
games minimizing the total rest difference among the teams. Then, we compare how
different European national first division football leagues perform in terms of the rest
differences.

1 Introduction

League scheduling is one of the popular applications of operations research in sports. In most
relevant research, the focus is on determining the games in the rounds of the competition.
Several fairness criteria may be considered in this timetable construction. So-called break
and carryover minimizations are widely used. A break occurs when a team has to play two
consecutive home or away games. A carryover effect, on the other hand, occurs when a weaker
team has to play against two strong opponents in a row. Yet another well known criterion is the
minimization of the travel distances when teams have to play several consecutive away games
without returning home which is of concern in leagues that cover a large geographic area.

Once an acceptable timetable, i.e.the games in each round, is constructed, it is announced
ahead of the competition season. Since each round may actually consist of several days, tour-
nament organizers determine the days of the individual games of each round as the season
progresses. Often, league schedules are criticized in popular media when two opposing teams
have not rested the same amount of time after their most recent game; especially losing teams
become more critical about this when they had less number of days to rest. A rest differ-
ence between opposing teams is not desired. Thus, a fair schedule should have as little rest
difference as possible. Fairness criteria regarding the team rest durations between the rounds
can only be considered at the “day” level of detail and they have not received much attention
by researchers. In this study, we concentrate on the problem of determining the day (period)
of each competition given a tournament schedule so that total rest difference among teams is
minimized. The organization of this paper is as follows. After reviewing relevant literature in
Section 2, we give an integer linear formulation for minimizing the sum of rest differences of
teams from each game in Section 3. Our computational experiments and their results are given
in Section 4 followed by a conclusion.
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2 Previous Work

A round robin tournament is a common format for organizing sports events. In a round robin
tournament, every team plays every other team a fixed number of times. [3] provide integer
programming models for round robin tournaments with several externally given and also fair-
ness constraints such as forbidden matches, observing regional capacities, having few breaks,
respecting team’s preferences for matchdays, and balancing opponents’ strengths. For example,
when teams are partitioned into several strength groups, it may not be desirable to have teams
to play opponents from the same strength group consecutively. It may also be preferable to have
each team to play an opponent of each strength group at most once within a time window. [2]
discusses combinatorial properties of strength groups in round robin tournaments. [9] provide
a survey on round robin scheduling whereas [6] summarize competition formats and schedules
used in 25 European soccer competitions for the season 2008-2009. They also compare these
leagues based on several design criteria. While much work regarding league scheduling is the-
oretical, there are also some reported applications of scheduling theory for finding the official
schedules of leagues. Some recent articles include [10] on the Ecuadorian football league, [5]
reporting their experience with the Belgian football league, [12] with the German and [4] with
the Argentina basketball leagues.

[1] were first to investigate how to construct a league schedule that considers rest imbalances
of opposing teams in games. In particular, they look into devising a round robin tournament
that minimizes the number of rest mismatches. A rest mismatch is defined as the occurrence of
a difference between the rest durations of two opposing teams in a game. Observe that, a rest
mismatch does not consider the magnitude of the difference in the rest durations of opposing
teams. Both rest differences and rest mismatches can work against a team which did not have a
chance to rest as much as its opponent. Team managers frequently complain about having had
less rest than their opponents in popular media. [8] studies a single round robin tournament
with only a single venue to play the games. In each round, all teams travel to this single
venue and play two games each. Since large waiting times between the games of a team are not
preferred, [8] constructs schedules that minimize the number of long waiting times and the total
waiting time simultaneously for any odd number of teams. [11] investigates asychronous round
robin tournaments where all games are played at different consecutive times with respect to
three different fairness criteria: guaranteed rest time, games-played difference index, and rest
difference index. Rest difference index is equal to the maximum difference in rest durations of
two opponents in a schedule whereas we focus on minimizing the sum of rest differences in a
given schedule.

It is also worth mentioning that there is not much reported research on determining the
game days for a given schedule. [4] use a phased approach in their basketball league scheduling
in Argentina and determine the days of games after fixing the order of games. They mention
the inclusion of fairness restrictions such as rest day balance between games across all teams as
future research.

3 Total Rest Difference Model

Imagine a double round robin tournament with n teams where n is an even number. There are
2-(n—1) rounds in the tournament with n/2 games in each round. All games in each round are
to be played in p consecutive periods with a predetermined number of games in each period.
Note that, the number of games in the periods of the same rounds from the first and second half
of the tournament can be different even when the tournament is mirrored, i.e. round by round
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games in the second half of the tournament are played in the same order as in the first half
with only venues changing. Therefore, we consider double round robin tournaments instead of
only single round robin tournaments.

3.1 Integer Linear Model
Next, we give the definitions of sets, parameters and decision variables used in the integer
programming (IP) formulation of the considered problem followed by the mathematical model.

3.1.1 Sets

P : Periods, k =1,...,p. As an example, in a weekly tournament, periods may correspond to
days in the week, and the number of periods will be equal to 7.

R : Rounds, r=1,...,2-(n—1).

T : Teams, 1 =1,...,n.

3.1.2 Parameters

Ar : The number of periods between the first periods of round r and r — 1.
nGames, : The number of games in period k of round r where nGames, ; > 0.

play; j» = 1 if teams ¢ and j play against each other in round r; 0 otherwise.

3.1.3 Decision Variables

pi,r © The number of periods team 7 rested less than its competitor in round 7.
Z;rk = 1if team ¢ has its game in period k of round r; 0 otherwise.

z : Sum of rest differences of teams.

3.1.4 IP Model

min =YY 0

subject to:
d wmisx=1 VieT,vreR (2)
k
playi jr - Tire = play jr-Tjrp Vi,j € T,Vr € RVk € P (3)
me’k =2-nGames, Vr € R,Vke P (4)

playij,r - (Z k- ik — (Z ko1 — AT) +pi,r)
k k
= playi,j,’l‘ . <Z k- Tjrk — (Z k- Tjr—1,k — )\7> +pj,7'>
k k

Vi,j e T,Vre R\ {1} (5)
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zirkr €4{0,1} VieT,Vre RVkeP (6)

pir >0 VieT,VreR (7

The objective function minimizes the sum of rest differences. Constraint 2 states that each
team must play a game in only one period during each round. Constraint 3 makes sure that
if two teams play against each other then they are assigned to the same period. Constraint 4
sets the number of games in a period to the predetermined number of games for that period.
Observe that since each game involves two teams of which related x variables are being summed
over on the left-hand side, the number of games in the period is multiplied by 2. Constraint 5
determines the rest difference between opponent teams in games. The multiplication by play; ;.
parameters delimits constraints in Constraint 5 to only the ones regarding the actual games in
the given schedule of a round. The left-hand side calculates the duration (number of periods)
that passes from the game of ¢ in round r — 1 to é’s game in round r. A similar calculation is
conducted for j, the opponent, on the right-hand side. Ideally, the left- and right-hand sides of
all games should be equal to each other. If this is not the case then respective p variable for
the team that has less rest is set to the positive difference, and hence shows how many periods
less that team has rested in round r. Observe that the p variable for the team that has more
rest will be set to zero because the objective function minimizes the sum of all p variables.
Constraint 6 and Constraint 7 set the types of decision variables.

4 Computational Experiments

Computer runs were executed on an Intel i5-4570 CPU 3.2 GHz computer with a RAM of 8Gb.
Exact solutions to the reported problem instances were obtained with the General Algebraic
Modeling System (GAMS). GAMS is a high-level modeling system for mathematical program-
ming and optimization. GAMS first compiles mathematical models formulated by the user at
a high level, and then feeds them to a high-performance solver such as [7] as done in this study.

For large size problems, the full rest difference problem can be a hard problem to solve for
with commercial solvers. A single round robin tournament example with 40 teams for which
the number of games were equally distributed to four periods with five games on each period
ran out of memory after about seven hours without being able to show the optimality of the
found solution. In the above-mentioned problems the schedules were generated using the circle
method.

We investigate how the top division professional football leagues in Europe were doing with
regard to rest differences. Table 1 compares several leagues for the 2017-18 season. Besides rest
difference comparisons, the table also includes the actual and optimal rest mismatch values of
the seasons. To obtain the optimal rest mismatch values we added a set of binary variables
to the model that were set to 1 whenever the p variable of a team was positive, and then
minimized over the sum of these new rest mismatch indicator variables instead of over the sum
of p variables. The league instances were solved in a matter of seconds for the rest difference
criterion but the problem with the rest mismatch objective proved to be a harder problem to
solve for those smaller instances as well sometimes taking about half an hour to solve for the
full problem. The decomposed problem was very quick to solve.

The percentages shown under the column for the rest differences (mismatches) indicate how
far away the actual schedule’s value is from the optimal whereas the percentages under the
column for the maximum possible values show how much the worst possible value has been
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Table 1: Comparison of different football leagues for the 2017-18 season

Country Canonical | Rest dif- | Opt Max pos- | Rest mis- | Opt Max pos-
(Teams) ferences sible matches sible
Belgium No (16) 162 104 232 139 80 217
(56%) (30%) (74%) (36%)
England No (20) 234 126 306 177 80 227
(86%) (24%) (121%) (22%)
France No (20) 230 106 294 202 83 288
(117%) (22%) (143%) (30%)
Germany No (18) 188 110 224 158 85 214
(71%) (16%) (86%) (26%)
Ttaly No (20) 172 78 202 160 66 192
(121%) (15%) (142%) (17%)
Netherlands | No (18) 190 98 298 167 80 274
(94%) (36%) (109%) (39%)
Portugal Yes (18) 308 174 410 225 118 293
(77%) (25%) (91%) (23%)
Russia Yes (16) 200 130 288 156 93 224
(54%) (31%) (68%) (30%)
Spain Yes (20) 314 192 484 244 133 364
(64%) (35%) (83%) (33%)
Turkey Yes (18) 280 184 394 210 125 297
(52%) (29%) (68%) (29%)

improved by the actual schedule. To understand how far off the actual rest difference numbers
were from the worst case scenario, the maximum possible rest differences are also reported in
the Table. For finding the worst case scenarios, a decomposed integer linear model was solved as
a maximization problem. The worst case solutions were found using the decomposed approach
because solving the full model was difficult. For the sake of brevity, the mathematical models
of the maximization problems were not included here.

While we do not know the details of how many of these leagues decide about their schedules,
the Belgian Jupiler League has long been using sophisticated optimization in its scheduling that
is well documented (see for example [5]). Furthermore, they do not use a canonical schedule
as in the Turkish league. In Belgium, the regular season -a not mirrored double round robin
tournament with 16 teams- is followed by the playoff rounds to win the championship. During
the regular season in 2017-18 the sum of rest differences were 162 with 139 rest mismatches.
The optimal values were 104 and 80 respectively. While the tournament schedule has about
30% improvement from the maximum possible rest difference, there seems to be room for
improvement should the organizers decide to pay attention to this criterion as well. The same
can be said for all of the compared leagues. Note that the number of days used in each round
and games played on each day of each round differ in each league. These differences also impact
the totals for rest differences and rest mismatches in the leagues.
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5 Conclusion

When opposing teams in matches have had rest durations of different lengths after their games
in the previous round, the team with less rest is disadvantaged physically which makes the
competition unfair. Thus, it is important to minimize such differences. In many leagues,
the specific dates for playing the games in each round are determined after the schedule is
announced. While officials have many other concerns such as security, broadcast ratings and
shared stadiums when the dates of the games are determined, the authors believe that considered
criteria should also include minimizing or equalizing the resting differences of opposing teams.
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Abstract
In this work, we propose the use of discrete counterparts of the Weibull distribution
along with a copula function for modeling football results, as an alternative to existing
bivariate Poisson regression models and extensions thereof. We expect that the choice of
the marginal distribution and dependence structure, which try to capture known features
of the data, can be beneficial in terms of fitting of the developed models; to check this
conjecture, an application to the Italian Serie A championship is provided.

1 Introduction

Football is by far the most popular participant and spectator sport in the world. In many
countries, especially in Europe, television and internet companies compete strongly to win the
rights to broadcast games. Huge sums of money are involved, from players wages to transfer fees
and sports betting. The simplicity of football’s objectives and rules along with the uncertainty
of games are probably responsible for such an inexhaustible attractiveness. The latter feature
has captured the attentions of statisticians, who have proposed a multitude of stochastic models
for analyzing (and predicting) several events associated with a football game: the first half or
final result (expressed as number of goals scored by the two teams or simply as win-draw-loss),
the number of shots-for and shots-against, the time to the first goal, the number of yellow or
red cards, etc.

In this work, we propose the use of discrete counterparts of the Weibull distribution for
modeling football results, as an alternative to existing bivariate Poisson regression models and
modifications/extensions thereof, such as diagonally inflated or generalized Poisson models.

The simple bivariate Poisson model, with independent components, was the first used in
football data analysis for modeling the outcome of a game (number of goals scored by the two
competing teams) due to its ease of use and interpretation. Later, more complex models allowing
for non-null correlation were explored, since real data often show a slight but non-negligible
positive correlation between the numbers of goals scored by the two teams; or allowing for
overdispersion and excess in draws, which usually characterize football outcomes.

The discrete Weibull distributions derived as analogues of the homonym continuous distri-
bution seem to be more flexible than Poisson, since adjusting their two parameters can model
a variety of different features. The numbers of goals scored by the two teams can be regarded
as a joint observation from a bivariate random vector with discrete Weibull margins, linked
through a copula function that accommodates dependence. The parameters of the distribution
are assumed to depend on covariates such as the attack and defense abilities of the two teams
and the “home effect”. Several discrete Weibull regression models are proposed, by varying the
type of discretization, the copula function, the choice of covariates, and are then applied to the
Italian Serie A championship.

Even if the interpretation of parameters is less immediate than in Poisson models, yet
they represent a suitable alternative, as the application demonstrates, and can be employed
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as a statistical tool for better understanding the performance of teams in order to improve
predictions, from a betting perspective, or to deploy corrective actions, from a managerial
point of view.

The next Section briefly recaps the basic ideas underlying bivariate count regression models
usually employed when analysing football results. In Section 3 we will draw our attention on
alternative marginal distributions derived as discrete counterparts from the continuous Weibull
distribution; in Section 4, we will focus on the choice of the copula function; in Section 5, we
will discuss an application to the Italian Serie A championship.

2 Modelling the Numbers of Goal in a Football Game
through a Count Regression

Focusing on the final result of a football game, many bivariate models have been discussed in
statistical literature. Most of them are an extension of the simple bivariate Poisson model with
independent components. These proposals, taking the cue from the bivariate Poisson model
by Holgate [10] with correlated components, take into account the specific features these data
usually exhibit, namely non-negligible correlation, overdispersion and bivariate zero-inflation,
and propose count regression models where the two count variables are regressed towards co-
variates such as team attack and defence potential, home effect, etc. [16, 15, 6, 7, 11, 12, 1, 13].
More recently, some contributions suggested the use of alternative discrete probability distri-
butions, related to the continuous Weibull random variable [5, 3], and dependence structures,
by naturally considering copula functions.

In very general terms, the stochastic model can be structured as follows. Let Yj; be the
number of goals scored by the home team in game 7, and Y3; the number of goals scored by
the away team in game i; p1(y;61;) and pa(y;62;) are the discrete probability distributions
modelling Y3; and Ys;, belonging to the same parametric family, with 61; and 0s; being the
distribution parameters (scalars or, more generally, vectors). These latter, or a transformation
thereof, are expressed as a linear model, for example

g5 (01:) = ﬂ’1j$1jm g5 (025i) = :3l2j$2ji

with j =1,...,p, where p is the dimension of the parameter vectors 8; and 2; z1;; and x;; are
the two corresponding vectors of covariates, not necessarily the same; B1; and B2; the vector
of regression parameters; i = 1,...,n, being n the sample size. For example, if we consider the
Poisson distribution with parameter A, being p = 1, the model can be written as

Y1 ~ Pois(A1;), log(Aii) = Bz
Ya; ~ Pois(Ag;), log(Aai) = B5xa;

In order to accommodate possible association between the two count variables, we resort to
copulas. The cumulative distribution functions of the two count variables Y7; and Ys;, say Fi;
and Fy;, are linked through a parametric bivariate copula function C'(uy,uso;6):

F(y1i,y2i) = C(F1i(y1i), Fai(y2:); 0),
so that the joint probability mass function is derived as

P(Y1; = y14, Yoi = ¥2i) = F (Y13, v21) — F(y1i — L, y2:) — F(yis, y2s — 1) + F(yii — 1,920 — 1).
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3 Marginal Distribution: Discrete Analogue of the Con-
tinuous Weibull Distribution

At least three probability distributions have been derived so far as a discrete counterpart of the
continuous Weibull model.

A first discrete Weibull distribution was introduced by [18] and is usually referred to as ‘type
I discrete Weibull distribution’, in order to distinguish it from two other models proposed later
by [23] (type II discrete Weibull) and [21] (type III discrete Weibull). A continuous Weibull
random variable (rv) T has probability density function given by

it B) = ABP e ¢ >0, (1)
with A\, 8 > 0, and cumulative distribution function (cdf)
Fy(t;\ ) =1-e M. (2)

If we consider the rv Y = |T'|, where |T'| denotes the largest integer equal to or smaller than
T, it can be easily shown that its probability mass function (pmf), defined on the non-negative
integers only, is given by

Y B 8 y+1)8
p(y;q,8) = Fy(y+1) = Fy(y) = e —e 07 = gv" —g0™D7 y e N={0,1,2,...}, (3)

with ¢ = e™?, and then 0 < ¢ < 1. The corresponding cdf is
Fyq.8)=1—q¢""" yeN. (4)

This distribution retains the expression of the cumulative distribution function of the continuous
Weibull model — just compare Eq.(2) to Eq.(4). The first parameter ¢ has a nice interpretation:
since P(X = 0) = 1 — ¢, it represents the probability of a positive value. As to the second
parameter (3, it does not possess an equally immediate meaning. However, if we define the
hazard rate function of Y as r(y) = p(y)/P(Y > y), it has been shown [18] that r(y) is a
constant function if § = 1 (in this case, (3) reduces to the geometric pmf), an increasing
function if 8 > 1, a decreasing function if 5 < 1.

Figure 1 displays the pmf of the type I discrete Weibull rv for several value combinations
of ¢ and . From here the role of 3, for a fixed value of g, clearly emerges: larger values of 3
lead to less dispersed distributions, with most of the probability mass concentrated on the first
integer values; smaller values of 3 lead to more dispersed distributions. The expected value
of the type I discrete Weibull rv cannot be generally computed in a closed form; it is equal
to the infinite sum E(Y) = Z;i1 @¥”, which leads to a closed-form expression if and only if
B=1EY)=gq/(1—q). Itis clear E(Y), fixed ¢, is a decreasing function of 8. Its value can be
approximated recalling the result in [14], involving the expected value E(T') of the corresponding
continuous distribution, which ensures that the value E(Y") falls between E(T) — 1 and E(T).

The first parameter of the type I discrete Weibull model can be related to explanatory
variables z; through a complementary log-log link function: log(—log(g;)) = &’z;. Additionally,
even the second parameter [ can be related to explanatory variables z;, not necessarily the
same as for ¢, through the following natural link function (remember that 8 takes only positive
values): log(8;) =v'z;.

Contrary to the Poisson rv, which cannot adequately model count data whose variance
differs from the mean, which is a circumstance often occurring in practice, the type I discrete
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Figure 1: Graphs of the probability mass function of the type I discrete Weibull distribution
for some combinations of its parameters g and (3

Weibull rv can model both under-dispersed and over-dispersed data [8]. This distribution can
also handle count data presenting an excess of zeros, arising in many physical situations (see
again [8]); just remember that the probability of 0 is controlled by the ¢ parameter only.

In regard to point and interval estimation of the parameters of the type I discrete Weibull
distribution, one can refer to [2] and references therein, where several inferential procedures
are considered and discussed and applicability issues are raised. The type I discrete Weibull
model is implemented in the R environment [24] through the packages DiscreteWeibull [4]
and DWreg [25].

As for the type II discrete Weibull rv, its distribution is derived by imposing that its hazard
function has the same expression as the hazard function of the continuous Weibull rv. The
resulting discrete distribution may have a finite or infinite support according to the value taken
by the second parameter 3 of the continuous distribution. Such an odd feature depends on
the fact that the hazard rate for a discrete model is bounded between 0 and 1, whereas this
restriction is not needed for the hazard rate of a continuous distribution. For more details, we
address the reader to the original paper [21].

As for the type III discrete Weibull rv, its pmf can be expressed as

P(Y = yic, ) = e Tim 4" [1 — e—cwtD’] g e N, (5)

letting by convention Zgzl j# =0ify = 0; with ¢ > 0 and 3 > —1. Note that P(Y =
0) = 1 — e~“. Despite its unequivocal name, the type III discrete Weibull rv is not similar in
functional form to any of the functions describing a continuous Weibull distribution, although
the negative exponential terms in (5) reminds us of an analogous term in (1).

These latter two discrete models have not attracted much attention so far, due to the complex
expression of their pmf, which makes parameter estimation not straightforward. However, their
use in a count regression model can be still feasible, although some care has to be devoted to
the choice of the link functions for their parameters.

4 Dependence Structure: the Clayton Copula
Lack of independence/incorrelation between the number of goals scored by the two teams in a

football match was first claimed by [6]; in [17] the use of copulas for modeling two correlated
count distributions related to football games was suggested perhaps for the first time. As
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Figure 2: Graphs of the probability mass function of the type III discrete Weibull distribution
for some combinations of its parameters ¢ and

anticipated in Section 2, we assume that the random variables modeling the number of goals
scored by home and away teams, Y7; and Ys;, are no longer statistically independent, given the
covariates; we model their dependence structure through a specific copula family.

Copulas represent a very flexible tool for modeling dependence among rvs. A bivariate

copula is a joint cumulative distribution function in [0, 1]? with standard uniform margins Uy
and UQZ

C(ul,u2) = P(U1 S uy, U2 S Ug). (6)
Sklar’s theorem [22] states that if F is a joint distribution function with margins Fy and Fb,
then there exists a copula C : [0,1]2 — [0, 1] such that, for all 21,25 in R = [—o0, +00],

F(l‘l,IQ) = C(Fl(l‘l), Fd(ig))

If the margins are continuous, then C' is unique, otherwise C is uniquely determined on
Ran(F;) x Ran(F,), with Ran(F};) denoting the range of F;. Conversely, if C' is a copula
and F, Fy are univariate cdfs, then the function F' defined in (6) is a joint distribution function
with margins F}, F5. If the margins are continuous, the unique copula C'is given by

Clur,uz) = F(Fy H(u), Fy H(ug)),

where F{l denotes the generalized inverse of the marginal cdf F}, i.e., F;l(t) =inf{x e R: F;(z) > t}.
We recall that for any copula C' the following constraint holds for any (uq,us) € [0, 1]%:

max(0,u; +us — 1) < C(ug,ue) < min(uq, us); (7)

the left and right members of the inequality are called Fréchet lower bound and Fréchet upper
bound, respectively [9]. M (uj,us) = min(uy,uz) is itself a copula, named “comonotonicity
copula”, as well as W (u1, ug) = max(0, u3 +uz—1), the bivariate “countermonotonicity copula”.

From among the multitude of parametric bivariate copulas, we pick Clayton’s copula, be-

longing to the so-called Archimedean family. The expression of the one-parameter Clayton
copula is

C(ur, uz) = max {(u;9 fuy? —1)"V, o} . e (~1,+00)\ {0}. 8)
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The Clayton copula is interesting as it can model various kinds of dependence, ranging from
comonotonicity in the limit as § — +oo, independence if § — 0, and countermonotonicity if
0 — —1.

The values of the 6 parameter can be better interpreted resorting to the expression of
Kendall’s correlation p, for the Clayton copula (valid however for continuous margins only;
see [19]):

0
246

Moreover, the Clayton copula is also able to capture lower tail dependence. For a bivari-
ate absolutely continuous rv (X7, X3), with marginal cdfs F; and Fy, and generalized inverse
functions Ff~ and F5, respectively, the coefficient of lower tail dependence is defined as

pr

A = lim P(Xo < Fy ') Xy < Fyl(uw) = lim C(u,u)/u,
u—0+ u—0+

and for the Clayton copula with # > 0, we have that
A =2"17>0.

Other well-known one-parameter bivariate copulas, such as the Gauss, the Plackett, and the
Frank, do not meet this feature, being all asymptotically lower and upper tail independent. In
Figure 3, the bivariate density plot of the Clayton copula is displayed for 8 = 2, along with the
scatter plot of a bivariate random sample generated from the same copula (size n = 5,000).
Thus, the Clayton copula may be a suitable candidate for modelling dependence between the
numbers of goals scored in football games in a football championship, usually presenting a
frequency of 0 — 0 draws higher than that which is caught by standard stochastic models.

[20] considered the Clayton-copula model with negative binomial marginals for modelling
simultaneous spike-counts of neural populations, whereas, for computational reason, they are
typically modeled by a Gaussian distribution. In [17], the Clayton copula is cited as a possible
dependence structure for modelling the numbers of shots-for and shots-against a team in a
football game.

5 Empirical Analysis: Italian Serie A Championship

We focus on the main Italian football championship, called “Serie A”, a professional league
competition for football clubs located at the top of the Italian football league system. Since
2004-05, there have been 20 clubs playing in Serie A and as in most of the European countries
a true round-robin format is used. During the season, each club plays each of the other teams
twice; once at home and once away, eventually totaling 38 games. In the first half of the season,
called the “andata”, each team plays once against each league opponent, for a total of 19 games.
In the second half, called the “ritorno”, the teams play in the same exact order that they did
in the first half of the season, the only difference being that home and away situations are
switched. Since the 1994-95 season, teams earn three points for a win, one point for a draw
and no points for a loss.

Here we are interested in analysing and modeling the final result for all the 380 games
played throughout the season. For game i, 1 < i < 380, we denote with y;; the number of goals
scored by the home team, h;, and with ys; the number of goals scored by the away team, a;.
Based on these data, one can estimate all the parameters involved in the regression model of
Section 2, by using the maximum likelihood method, and for each game construct a theoretical
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Figure 3: Clayton copula with parameter § = 2: contour density plot (on the left) and scatter
plot of a random sample of size 5,000 (on the right)

joint probability table providing the probability of any possible outcome. As an overall result,
by aggregating all the single theoretical outcomes, one can reconstruct the theoretical final
scoreboard and compare it with its real counterpart.

We will start from a basic copula-based model, where the margins are assumed to follow
the type I discrete Weibull distribution (3) and the dependence structure is induced by the
Clayton copula (8). The two g parameters of the Weibull distribution are related to covariates
as follows (see [3]):

log[—log(q1;)] = p'? + home@ + attgqi) i defgi)
log[—log(qz:)] = u@ + attl? + defy?

where ,u(‘n is a constant term, home'? is the “home effect”, attgcq) and def,(cq) are the “attack”
and “defence” parameters associated to ¢ for team k. Note that apart from the constant term,
the covariates for ¢ are all dummy variables. The parameter 8 for the marginal distributions
and the parameter 6 of Clayton copula are assumed to be constant. Estimates for all parameters
can be numerically obtained by maximizing the joint log-likelihood function. For the Italian
Serie A championship, season 2015/16, the parameter estimates of the model above and their
significance are reported in Table 1. Note the value of the estimate of 8 (1.866 > 1), which
highlights how the distribution of scored goals is quite concentrated on the first integers; and
the value of the estimate of 6 (0.142), denoting a very slight correlation between the numbers
of scored and conceded goals.

Additional models can be constructed by considering the other two discrete Weibull distri-
bution, alternative copula functions, and different sets of covariates for the distribution param-
eters.
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team att(?) def(®
Atalanta 0.230 0.089
Bologna 0.322. 0.087
Carpi 0.314. —0.250
Chievo 0.121 0.056
Empoli 0.184 0.030
Fiorentina —0.334x% 0.217
Frosinone 0.287. —0.622%x%
Genoa 0.122 —0.058
Inter 0.072 0.243
Juventus —0.55T %% 0.975%xx
Lazio —0.138 —0.094
Milan 0.000 0.097
Napoli —0.712x%x% 0.400x
Palermo 0.334x% —0.378x%
Roma —0.714%%% 0.153
Sampdoria —0.022 —0.285.
Sassuolo —0.020 0.226
Torino —0.117 —0.134
Udinese 0.283. —0.387x
other parameters

M(Q) —1.037xxx

home'? —0.385%:kx

I5] 1.8665%%x

0 0.142.

Table 1: Parameter estimates for the model applied to Italian Serie A championship 2015/2016.
Attack and defense parameters satisfy the sum-to-zero constraint; so, for the last team in
alphabetical order, Verona, we have att(?) = 0.346 and defl? = —0.364.

Significance codes for p-values: 0 “***7 0.001 “**” 0.01 “*” 0.05 . 0.1 “” 1
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Abstract

League scheduling is a field of operations research that has attracted scientists for
many years. Break minimization and carryover effect minimization are considered to be
two important criteria of fairness in league scheduling. There have been recent studies
that integrate both criteria in a computationally hard problem. Some of these studies
try to minimize the carryover effect in tournaments so that the number of breaks does
not exceed a specific level, while some others apply schedule-then-break approach which
first schedule the teams ignoring home-away requirements, then determine the home-away
pattern for each team. In this work, we develop a solution method for this integrated
problem which produces comparable results with that of a recent study. We show that
our method drastically improves carryover effects value at the expense of an occasional
increase in the number of breaks.

1 Introduction

League scheduling with respect to various fairness criteria is one of the popular research areas of
sports scheduling literature. [7] is an annotated bibliography which provides a broad discussion
of most popular fairness criteria considered in sports scheduling such as minimizing breaks,
carryover effects, and travel distances or balancing time periods and venues. The minimization
of breaks and the minimization of carryover effects are two of these criteria, especially focused
on while timetabling the round robin tournaments.

If a team plays two home or away matches in two successive rounds, the alternating home-
away pattern for the team is said to be broken and the team has a "break”. Break minimization
problem tries to minimize the total number of breaks in a round robin tournament. An example
of a single round robin tournament with 12 teams (ranging from A to L) is given in Table 1.
The first team of each match represents the Home team. Table 2, on the other hand, shows
the home-away pattern (HAP) of each team. A highlighted “H” or “A” value designates the
occurrence of a break. The last column shows how many breaks each team experiences through
the season. The total number of breaks in this instance happens to be 34.

[2] shows that a single round round robin tournament must have at least n — 2 breaks,
where {1...n} is the set of teams and n is even. [2] also proves that this lower bound can be
attained with a schedule (the so-called canonical schedule), in which the games of each round
R;,ie{l...n—1} is given by

Ri={n, i} U{li+k,i—kl;k=1,2,...,n/2 -1} (1)

where the numbers ¢ + k and ¢ — k are expressed as i + k mod (n—1) and i — k& mod (n —1),
respectively. Then, he identifies a HAP for each team that enables the canonical schedule to
have n — 2 breaks with the following rule:
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Rounds

RL R2 R3 R4 R5 R6 R7 R8 R9 R10 R11|#Break
A H A H A H A H A H A A 1
Rounds B| A H H A A H A H A H A 2
R1 R2 R3 R4 RS R6 R7 R8 RS R10 R11l C| A A H H A A H A H A H 3
D-C K-C B-D I-L K-H H-I D-l G-J FH D-I CE D| H A A A H A H H A H H 4
K-L I-A H-1 J-B I-1 B-C K-G L-C KB F-K I-K E H A H A A H H A H H A 3
E FJ BF FL GA AC EF AF BA CG GL JA E/F|H A H A H A A H HH A| 3
g E-B LD C- CF L-B L-A I-B DK LJ BH G-B 2G| A H A H A H A H A H H 1
-G G-H AK HD FG JK E-L F-I AD EA D-F H| A A H H A H A H A A H 3
AH JE EG KE DE GD CH H-E EI J-C  H-L [} H H A H H A H A A A H 4
I|lA H A H A H A A A H H 3
K|H H A H H A H A H A A 3
Table 1: Games of a round robin tournament LlAa H A A H H A HHEAA A 1

Table 2: Break occurrences

(a) For each game [n,i], team 4 plays at home if i is even, and away if ¢ is odd.
(b) For each game [i + k,i — k], team i + k plays at home if k is even, and away if k is odd.

Carryover effect, first introduced by [11], is the effect of a team on its opponent, which is
transferred to the next game of that opponent. For instance, if Team k plays against Teams %
and j in two consecutive rounds, Team k’s performance against Team j may be affected from the
game between Teams k and ¢ in the previous round. In this instance, Team 4 (causing team) is
said to have a carryover effect on Team j (receiving team) through Team k (transferring team).
The number of such carryovers Team j receives from Team ¢ in a tournament is defined as
cij. The carryover effect minimization problem aims to distribute these carryover effects among
the team pairs as evenly as possible. In a balanced tournament, all ¢;; values (where ¢ # j)
should be equal to one. In any tournament, the degree of how balanced carryover effects are
distributed among team pairs can be measured by the carryover effects (coe) value, which is

given by >, j c?j. In a balanced round robin tournament with n teams, coe value is equal to

n? — n. For the tournament schedule of Table 1, we can specify the opponent of each team in

each round as given in Table 3. For example, one can easily verify that, three times during
the tournament, Team I plays with Team B’s opponent in the following round (i.e. Cp; = 3).
Table 4 gives the c¢;; value for each team pair. The carryover effects value can be computed as
4 €y = 308

There are not many studies concerned in minimizing the total break and carryover effects
value simultaneously. This paper considers the ”Integrated Break and Carryover Minimization
Problem”, which aims to find a round robin schedule with at most one break per team and a
reasonably small coe value.

The organization of this paper is as follows. After reviewing relevant literature in Section
2, we describe a solution method for solving the integrated problem of break and carryover
minimization in Section 3. Our computational experiments and results are given in Section 4.

2 Previous Work

Minimizing break and minimizing carryover effects value are two criteria addressed separately
in plenty of sports scheduling studies. [2] formulates a method for finding schedules with n — 2
breaks when n is even and no break when n is odd. Given a feasible tournament schedule without
home-away assignment, [3] conjectures that the problem of finding a HAP for each team that
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Rounds
Rl R2Z R3 R4 R5 R6 R7 R8 R9 R10 R11l Teams

A/H I kK 6 €t L F B D E A B C D E F G H I J K L|Kg
S R R i e R e Al0 1 2 o0 2 3 1 0 2 0 1 0 24
B[1 0o 0o 1 0 2 0o 2 3 1 0 2|24
£ sDn ik L R OA GBD GH O FLR6 ID ok cl2 2 0o 0 1 0 1 0 1 1 0 428
bj¢c L B H E G J K A I F plo 1 0 0o 1 2 1 0 0 3 4 o 32
E B | 6 kK D FE A H I A € E|l2 0 1 3 0 2 1 2 0 1 0 o024
Ele|la B © © i E A £ H K D BlF[1 2 2 2 2 0 0 0 2 0 0 1|2
Ble|1 H E A F D K J C L 8 g8lel1 o 1 1 3 0 0 1 0 3 1 1|24
Glag @ 1T 5% % 7 8ot ®og 0§ Hlo 2 o o 2 o0 1 0 2 1 3 1|24
1l2 11 00 2 0 2 0 0 2 2|2
e s e 0o MR Ok R IR K slo 1 1 1 1 0 3 3 0 o 1 1|24
JIE E H OB F K OIDIG B E A k[1 o o 4 o 0o 3 1 2 1 o of 32
K E E A E OH O£ M6 B OB E I L|2z 2 4 0 0 1 1 1 0 1 0 o]z

L K D F | B A E C ] G H

Table 4: Carryover effects
Table 3: Opponent of each team in each round

minimizes the number of breaks is NP-hard. [9] proposes a polynomial-time algorithm which
finds a home-away assignment for a given feasible tournament schedule if a solution with n — 2
breaks exists for the schedule, else returns ‘infeasible’.

[11] introduces the concept of carryover effect in round robin tournaments and identifies the
problem of minimizing the carryover effects value. It is shown that when the number of teams
is a power of two, a balanced schedule can always be achieved. The paper also conjectures that
balanced schedules do not exist for other numbers of teams, proposes a method for unbalanced
cases, and reports coe values for the team numbers 6, 10, 12, 14, 18, and 20. [1] improves coe
values previously found by [11] for several team numbers by introducing the algebraic concept
of starters in the group Z,,_1. The study finds balanced schedules for n = 20 and 22 as well and
thus disproves the conjecture of [11]. The procedure proposed by [1] gives the best solutions
known to date, except for n = 12, which is obtained by another study [4].

However, despite this abundant amount of literature on each individual problem, studies
focusing on solving both problems simultaneously are scarce. [12] proposes a two-phase method
in which the first phase schedules the teams without any HAP and then the second phase assigns
a feasible HAP for each team. In this approach, the first phase only focuses on some particular
requirements (such as fixing the rounds of some games a priori or setting an upper bound for
the carryover effects value) that do not involve HAPs. The second phase reduces to the break
minimization problem for a given tournament schedule. Even though, they do not attempt to
minimize carryover effects value in the first phase, they claim their approach can be extended to
implement the carryover restrictions. To the best of our knowledege, the only study so far that
attempts to solve the “Integrated Break and Carryover Minimization Problem” is [5], which
first formulates an IP model, next discusses why the problem is computationally expensive,
and finally provides a heuristic approach to solve the problem with at most one break for each
team. They also discuss how the carryover effects can be further reduced at the expense of
larger number of breaks per team.

3 Solution Method

It is possible to obtain good results for reducing coe value of a tournament by random per-
mutations of weeks of the canonical schedule [10]. Encouraged by the success of such a simple
approach, we are curious on how such an algorithm would work on the integrated problem of
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break and carryover minimization. We apply a similar round swapping procedure for single
round robin tournaments. The first step of the procedure is to construct a canonical schedule
with Equation 1 and apply the rule of home-away assignment for each game. For instance, for
n = 12, the games of the first three rounds in the canonical schedule would be as given in Table
5. The first team in each game shows the home team.

Round Games
1 12-1 | 11-2 | 3-10 | 94 | 5-8 | 7-6
2 2-12 | 1-3 | 4-11 | 10-5 | 6-9 | 87
3 12-3 | 24 | 5-1 | 11-6 | 7-10 | 9-8

Table 5: First three rounds of a canonical schedule for n = 12

The canonical schedule is known to have maximum carryover effects value [8] and minimum
number of breaks [2]. Therefore, any schedule obtained by changing the order of rounds in the
canonical schedule (without disturbing the home-away assignments) is likely to have a smaller
coe value and larger number of breaks as against the canonical schedule. We run a round
swapping algorithm which randomizes the order of rounds to construct schedules isomorphic [6]
to the canonical schedule, and calculates the coe and total break values for each of them. After
generating a number of isomorphic random schedules, the schedules with the best coe and the
best break values are identified. The results for single round robin tournaments with several
number of teams are shown in Table 6. The third (fourth) row denotes the coe value (the
number of breaks) of the best schedule among one million schedules and the number of breaks
(the coe value) corresponding to this schedule. The Pareto frontier for one million schedules of
n = 18 is also provided in Figure 1. Even though coe values we found are relatively better than
the values reported in [5], the break values are far worse. This is mainly because randomizing
the rounds without disturbing the home-away assignments drastically increases the number
of breaks. In order to overcome this issue, we have decided to utilize the round swapping
algorithm only for identifying the schedule with the smallest coe value. Next, we have solved a
break minimization problem for this particular schedule.

# of teams (n) 10 12 14 16 18

Coe Break | Coe Break | Coe Break | Coe Break | Coe Break
Best coe 136 26 | 192 60 | 254 68 | 330 118 | 406 126
Best break 468 8 | 392 16 | 634 22 | 660 40 | 884 44

Table 6: Best coe and best break values

The break minimization problem we need to solve for a given schedule can be defined as
follows. Assume T and R are the sets of teams and rounds, respectively. Let z;;, be the
parameter denoting the games of each round in a schedule. x; ;1 equals to 1 if team 4 plays
against team j in round r, and O otherwise. h;, is a decision variable, which is equal to 1
if team ¢ plays at home in round r, and O otherwise. b;, is the other binary variable which
shows whether there is an occurrence of break for team 4 in round r. The integer programming
formulation of the problem is:

min  z = Z Z bir (2)

€T reR
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subject to:
hig+hjr >, Vi,jeT|i#jVreR (3)
2—hip+hjr>a, Yi,jeT|i#j,VreRr (4)
Rip +hips1 <1+bippn VieT,VreR (5)
2—hiyr—hiry1 <1+bj,pq1 VieT,VreR (6)
hirbir€4{0,1} VieT,VreR (7)

The objective function minimizes the sum of breaks. Constraint 3 (Constraint 4) states
that if there is a game between team i and team j in round r, at least one team should play at
home (away). Constraint 5 (Constraint 6) determines the occurrence of a break in round r + 1
if team ¢ plays at home (away) in the successive rounds r and r + 1. Constraint 7 sets the types
of decision variables.

1000
S00
800
700

600

coe value

500

400

40 50 60 70 80 90 100 110 120 130
# of breaks

Figure 1: The Pareto frontier for n = 18

4 Computational Experiments

Round swapping procedure is coded in VBA and executed on an Intel Core Xeon, 2.4 GHz
computer with a RAM of 12Gb and 8 processors. We run the code until one million random
schedules are generated, which takes less than half an hour in each experiment. Break mini-
mization problems are solved in the same computing system using GAMS with GUROBI solver.
Each problem takes less than 5 minutes to be solved to optimality.

Table 7 reports the best known results to date for the problem of coe value minimization.
The second row shows the lower bound of the problem for each number of teams n. The third
row gives the best coe value (and the first study attaining it) without considering the number
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of breaks. For n = 16, the coe value is equal to the lower bound since a balanced schedule
can be found. For the remaining n values, the optimality has not been proven yet. The last
three rows provide the best coe values achieved so far given that the number of breaks for each
team is less than or equal to one, two and three respectively. The values in parenthesis give the
number of breaks in the corresponding schedule. These values indicate a significant increase in
coe compared to the values of the third row since the number of breaks is restricted as well in
these instances.

# of teams (n) 10 12 14 16 18
n-(n—1) 90 132 182 240 306

any # of breaks | 108 [1] 160 [4] 234 [1] 240 [11] 340 [1]

b < 1 192 (8) [5] | 318 (10) [5] | 446 (12) [5] | 626 (14) [5] | 944 (16) [7]
b <2 144 (12) [5] | 212 (18) [5] | 344 (26) [5] | 472 (30) [5] | 646 (30) [3]
b <3 144 (12) [5] | 212 (16) [5] | 302 (24) [5] | 396 (34) [5] | 556 (40) [5]

Table 7: Best coe value for each number of teams

In Table 8, we summarize the experimental results of our solution method for several n
values. The last three rows provide the solution of the break minimization problem with a
“break per team” restriction (the number of breaks per team < 2,3, or co respectively) for
the schedule with the best coe value. When our results are compared with the results found
by [5], it can be noted that our method gains a significant improvement in coe value at the
expense of a slight increase in the number of breaks. For example, with the restriction of
b; < 3, we improve the coe value by 6%,9%,16%, 17%, and 27% for n = 10,12, 14,16, and
18 respectively. Meanwhile, the number of breaks has increased by 0%, 13%, 8%, 0%, and 15%
respectively. This comparison indicates that the level of improvement in coe value becomes
better with the increasing number of teams while the derogation in the number of breaks has
an irregular pattern. For reference purposes, in Table 9 of Appendix A we provide a template
for the single round robin tournament with 18 teams where the number of breaks per team is
not restricted.

# of teams (n) 10 12 14 16 18

Coe | Break | Coe | Break | Coe | Break | Coe | Break | Coe | Break
b; <2 12 18 infsbl infsbl infsbl
b; <3 136 12 | 192 18 | 254 26 | 330 34 | 406 46
b; unbounded 12 18 26 32 42

Table 8: Computational results
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Schedule Template for 18 Teams

Table 9 provides a schedule template for the single round robin tournament with 18 teams. The
first team is the one who plays at home. The coe value is 406 and the number of breaks is 42
(2 teams with no break, 2 teams with one break, 6 teams with two breaks, 6 teams with three
breaks, 2 teams with five breaks). The occurrence of a break for a team is highlighted in bold.
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Round Games
1 11-1 | 10-12 | 13-9 8-14 15-7 | 6-16 17-5 4-18 2-3
2 1-10 | 9-11 12-8 7-13 14-6 | 5-15 16-4 3-17 18-2
3 6-1 7-5 4-8 9-3 10-2 | 11-18 | 17-12 | 13-16 | 15-14
4 1-9 8-10 7-11 12-6 5-13 14-4 3-15 16-2 | 18-17
5 1-7 6-8 9-5 4-10 11-3 | 2-12 | 13-18 | 17-14 | 15-16
6 12-1 | 13-11 | 10-14 | 9-15 16-8 | 7-17 18-6 5-2 3-4
7 1-13 | 14-12 | 11-15 | 10-16 | 17-9 | 8-18 2-7 6-3 4-5
8 1-17 | 1816 | 15-2 3-14 13-4 | 12-5 11-6 7-10 9-8
9 16-1 | 17-15 | 14-18 | 2-13 | 3-12 | 4-11 5-10 6-9 8-7
10 1-5 6-4 7-3 8-2 9-18 | 10-17 | 11-16 | 12-15 | 13-14
11 14-1 | 15-13 | 16-12 | 17-11 | 1810 | 2-9 3-8 4-7 5-6
12 1-4 5-3 6-2 7-18 817 | 9-16 | 15-10 | 11-14 | 12-13
13 18-1 | 17-2 3-16 4-15 14-5 13-6 7-12 11-8 10-9
14 1-3 2-4 5-18 6-17 16-7 | 15-8 9-14 | 10-13 | 12-11
15 1-15 | 14-16 | 13-17 | 18-12 | 11-2 | 3-10 4-9 8-5 7-6
16 8-1 9-7 10-6 5-11 12-4 3-13 2-14 15-18 | 17-16
17 1-2 18-3 4-17 16-5 6-15 | 7-14 13-8 9-12 | 11-10

Table 9: Schedule template for n = 18
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Cs ist Dabei selbst die historische Wabhrheit eine ebensache, ein erfundenes Beispiel onnte
auch dienen; nur haben historvische immer 0en Yorzug, prattischer ju sein und den Gedanken,
elchen sie evldutern, dem praktischen Ceben selbst naber ju fithren.!

(Carl von Clausewitz: Vom Kriege)

Abstract

The paper discusses the incentive incompatibility of tournaments with multiple
group stages. This design divides the competitors into round-robin groups in the
preliminary and main rounds. The higher ranked teams from the preliminary round
qualify to the next stage such that matches are not repeated in the main round if two
qualified teams have already faced each other. It is proved that these tournament
systems, widely used in handball and other sports, violate strategy-proofness since
the contestants prefer to carry over better results to the main round. Some historical
examples are presented where a team was ex ante disinterested in winning by a high
margin. We suggest two incentive compatible mechanisms and compare them with
the original format via simulations. Carrying over half of the points scored in the
preliminary round turns out to be a promising policy.
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L «Mistorical correctness is a secondary consideration; a case invented might also serve the purpose
as well, only historical ones are always to be preferred, because they bring the idea which they illustrate
nearer to practical life.” (Source: Carl von Clausewitz: On War, Book 2, Chapter 6 — On Examples,
translated by Colonel James John Graham, London, N. Triibner, 1873. http://clausewitz.com/
readings/0OnWar1873/T0C.htm)
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1 Introduction

It is known at least since Arrow’s pioneering work (Arrow, 1950) that the real world is full
of decision paradoxes. This is true even though Arrow’s impossibility theorem neglects
the fact that voters are strategic actors. According to the famous Gibbard-Satterthwaite
theorem (Gibbard, 1973; Satterthwaite, 1975), all fair voting rules are susceptible to
tactical voting in the case of at least three alternatives: there always exists a voter who
can achieve a better outcome by being insincere.

This result may suggest that strategy-proofness is difficult to achieve in practice.
Nonetheless, there are several cases when incentive compatible designs exist, but a widely
used procedure is manipulable. For example, Tasnadi (2008) demonstrated that the
Hungarian mixed-member electoral system, applied between 1990 and 2010, suffers from
the population paradox as the governing coalition may lose seats either by getting more
votes or by the opposition obtaining fewer votes. Similarly, the invariant method (Pinski
and Narin, 1976) — characterised by Palacios-Huerta and Volij (2004), and used to quality-
rank academic journals — is subject to manipulation because a journal can boost its
performance by making additional citations to other journals (Koczy and Strobel, 2009).

Strategy-proofness is an especially relevant issue in sports where all contestants are
familiar with the high-stake decisions involved, and they can obviously behave as stra-
tegic actors. Consequently, any tournament design should provide the players with the
appropriate incentives to perform (Szymanski, 2003).

Scientific analysis of sports ranking rules from the perspective of incentive compatibility
has started recently, although sporting applications of operations research proliferate in
the academic world (Wright, 2009, 2014). Kendall and Lenten (2017) provides probably
the first comprehensive review of sports regulations resulting in unexpected consequences.
On the basis of the examples presented, three possible situations can be identified in which
a team might prefer losing a game to winning it: (1) when a team might gain advantages
in the next season; (2) when a lower ranked team can still qualify and it might face a
preferred competitor in a later stage; (3) when a team is strictly better off by losing in
certain situations due to ill-constructed rules.

The classical example for the first situation arises from the reverse order applied in the
traditional set-up of player drafts, which aims to increase competitive balance over time:
if a team is still certainly eliminated from the play-off, it creates a perverse incentive to
tank in the later games (Fornwagner, 2018; Lenten et al., 2018).

The second situation occurred in Badminton at the 2012 Summer Olympics — Women’s
doubles (Kendall and Lenten, 2017, Section 3.3.1), and has inspired some game-theoretical
works addressing the strategic manipulation problem (Pauly, 2014; Vong, 2017).

However, in the first case, the rules are deliberately designed to support underdogs,
and in the second case, the team gains only in expected terms. Here, the remaining third
situation will be discussed, when tournament rules are constructed such that a team is
guaranteed to benefit from performing weaker. Probably the first academic work studying
this issue is Dagaev and Sonin (2017), where the authors prove that tournament systems,
consisting of multiple round-robin and knockout tournaments with noncumulative prizes,
are often incentive incompatible.

While several football tournaments — such as qualifications for FIFA Worlds Cups
(Dagaev and Sonin, 2013; Csaté, 2017a), UEFA club competitions (Dagaev and Sonin,
2017; Csato, 2018f), and UEFA European Championships (Csat6, 2018¢,g) — have been
shown to be vulnerable to manipulation, it is far from trivial to identify a misaligned rule
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in practice since there is a low probability of failure because a scandal usually involves
such an enormous cost that the particular design is almost certain to be never used again.

Perhaps the most famous case is a football match, Barbados vs Grenada (1994 Carib-
bean Cup qualification), when a sudden-death goal scored in extra time counted as double,
creating an incentive to concede a goal at the end of the match in order to gain additional
time for a necessary two-goal win (Kendall and Lenten, 2017, Section 3.9.4). The Bar-
badians exploited this perverse rule by scoring an own goal in the 87th minute (Dagaev
and Sonin, 2017, Note 1). Nonetheless, this match had not affected any third team, so
one can agree with the decision of FIFA not to penalise Barbados as the players were
striving for the best outcome conditional upon the prevailing rules. Despite that, the
strange regulation has not been applied since then.

We have reviewed two other football matches experiencing similar problems. In the
first, a Dutch team, SC Heerenveen was better off by losing than by playing a draw (Csato,
2019b). In the second, both teams were interested in achieving a draw in order to grab
the only chance to qualify (Csaté, 2018d).

A similar situation was prevented by a particular FIBA (International Basketball
Federation) rule saying that ‘if a player deliberately scores in the team’s own basket, it is a
violation and the basket does not count’: in the men’s tournament of the 2014 Asian Games
Basketball Competition, a Philippine player shot at his own basket against Kazakhstan in
order to force overtime and thus increase the margin of victory (Carpio, 2014).

The paper will highlight that tournaments with multiple group stages, in which some
match results from the preliminary round are carried over to the main round, suffer from
incentive incompatibility. First, we present a handball math where a team had an incentive
not to win by a high margin. Second, it is proved that this particular tournament design
violates strategy-proofness in its current form. Finally, we give a mechanism to guarantee
incentive compatibility: to carry over a monotonic transformation of all preliminary round
results to the main round, regardless that some matches were played against teams already
eliminated from the tournament. It is also shown via simulations that carrying over half of
the points scored in the preliminary round does not affect essentially the selective ability
and the competitive balance of the tournament, while it provides strategy-proofness and
reduces the influence of seeding the teams into pots.

The rest of the paper proceeds as follows. Section 2 brings an example from handball,
which may be even more serious than the football match Barbados vs Grenada as a
seemingly unfair behaviour of a team led to the elimination of a third team. Section 3
contains the theoretical model and proves that a tournament with multiple group stages
usually violates strategy-proofness. Section 4 lists some recent tournaments applying this
design. In Section 5, we provide two incentive compatible mechanisms for organising
these tournaments and explore their characteristics with respect to selective ability and
competitive balance via simulations. Finally, Section 5 summarises our main findings.

2 A real-world example of manipulation

The European Men’s Handball Championship is the official biannual competition for
the senior men’s national handball teams of Europe since 1994, organised by the EHF
(European Handball Federation), the umbrella organization for European handball.” The

2 This section is mainly based on the official homepage of the 11th Men’s European Handball
Championship (EHF Euro 2014). We will cite only those documents which concern the ranking of teams.
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11th European Men’s Handball Championship (EHF Euro 2014) was held in Denmark
between 12 and 26 January 2014. Sixteen national teams participated in the tournament.
In the preliminary round, they were divided into four groups (A-D) to play in a round-robin
format. The top three teams in each group qualified to the main round. Teams from
Groups A and B of the preliminary round composed the first main round group X, while
teams from Groups C and D of the preliminary round composed the second main round
group Y. The main round groups were also organised in a round-robin format, but all
matches (consequently, results and points), played in the preliminary round between
the teams that were in the same main round group, were kept and remained valid for
the ranking of the main round. Figure A.1 in the Appendix gives an overview of this
tournament design.

In the groups of the preliminary and main rounds, two points were awarded for a win,
one point for a draw and zero points for a defeat. Teams were ranked by adding up their
number of points. If two or more teams had an equal number of points, the following
tie-breaking criteria were used after the completion of all group matches (EHF, 2014a,
Articles 9.12 and 9.24):

a) Higher number of points obtained in the group matches played amongst the teams
m question;

b) Superior goal difference from the group matches played amongst the teams in
question,

c¢) Higher number of goals scored in the group matches played amongst the teams in
question;

d) Superior goal difference from all group matches (achieved by subtraction);
e) Higher number of goals scored in all group matches.

A strange situation emerged in Group C of the preliminary round, which requires
further investigation. On 16 January 2014, each team in the group had one more game to
play. Table 1 shows the known results and the preliminary standing of the group.

Consider the possible scenarios from the perspective of Poland. This team is certainly
eliminated if it does not win against Russia. Poland carries over 0 points, 46 goals for and
48 goals against to the main round if it wins against Russia and Serbia plays at least a
draw against France. On the other hand, if Poland wins by x goals against Russia and
Serbia loses, there will be three teams with 2 points, which obtained 2 points in the group
matches played among them. Consequently, the further tie-breaking criteria should be
applied: Poland, Russia, and Serbia will have head-to-head goal differences of xt — 1, 2 — x
and —1, respectively. As x — 1 > —1, Poland will qualify.

Serbia is eliminated as the fourth team if 1 < z < 2. Russia and Serbia have the same
head-to-head goal difference if © = 3, hence higher number of goals scored against the
three teams with 2 points breaks the tie. It is 45 for Serbia and at least 27 for Russia, thus
Russia qualifies if it scores at least 19 goals against Poland (if Poland vs Russia is 21-18,
then the third place will depend on the result of Serbia vs France). If x > 4, then Serbia
has a better head-to-head goal difference than Russia, so Serbia qualifies and Russia is
eliminated.

To summarise, if Poland wins, it carries over its result against Russia (2 points) or
Serbia (0 points) to the main round, thus Poland has every incentive to qualify together

36



MathSport International 2019 Conference Proceedings

Table 1: 11th European Men’s Handball Championship (EHF Euro 2014) — Group C

(a) Match results

Date First team Second team Result
13 January 2014, 18:00 Serbia Poland 20-19
13 January 2014, 20:15 France Russia 35-28
15 January 2014, 18:00 Russia Serbia 27-25
15 January 2014, 20:15 Poland France 27-28
17 January 2014, 18:00 Poland Russia to be played
17 January 2014, 20:15 Serbia France to be played

(b) Standing after two matchdays

Pos = Position; W = Won; D = Drawn; L = Lost; GF = Goals for; GA = Goals against; GD = Goal
difference; Pts = Points. All teams have played 2 matches.

Pos Team W D L GF GA GD Pts
1 France 2 0 0 63 55 8 4
2 Serbia 1 0 1 45 46 -1 2
3 Russia 1 0 1 55 60 -5 2
4 Poland 0 0 2 46 48 -2 0

with Russia. Hence, it is unfavourable for Poland to win by more than three goals against
Russia as this scenario yields no gain in the main round but may lead to a loss of 2 points
if Serbia is defeated by France. Russia is clearly better off by a smaller defeat.

In fact, Poland vs Russia was 24-22 and Serbia vs France was 28-31, so France, Poland,
and Russia qualified to the main round with 4, 2 and 0 points, respectively. Naturally, it
is not a proof that the Polish team deliberately manipulated, but the circumstances are at
least suspicious. For example, the result of Poland vs Russia was 10-14 after 30 minutes
(half-time), while the match stood at 21-16 in the 48th, 22-17 in the 50th, and 23-18 in
the 52nd minute (EHF, 2014Db).?

The potentially unfair behaviour of Poland resulted in the elimination of a third,
innocent team, Serbia, which makes the example especially worrying. Furthermore, the
situation could not have been improved by playing the last group matches simultaneously
because Poland’s dominant strategy was independent of the result of the game played
later. It seems to be a persuading argument against the rules of 11th European Men’s
Handball Championship (EHF Euro 2014).

3 The model

In this section, we build a model of a tournament consisting of round-robin preliminary
and main rounds, where matches played in the preliminary round against teams qualified
to the same main round group are carried over. It will be revealed that these systems
are incentive incompatible, that is, they are vulnerable to a manipulation such as the one
presented in Section 2. Our notations follow Csaté (2018¢) in certain details since the

3 A video of the match Poland vs Russia is available at https://www.youtube.com/watch?v=
dQvEAzyBgGo.
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qualification system discussed there is also based on round-robin groups.

Definition 3.1. Round-robin tournament: Let X be a nonempty finite set of at least two
teams, z,y € X be two teams and v : X X X — {(v1;v2) : v1,v9 € N} U {*} be a function
such that v(x,y) = « if and only if © = y, where N denotes the set of nonnegative integers.
The pair (X, v) is called a round-robin tournament.

Function v describes game results with the number of goals scored by the first and
second team, respectively.

Definition 3.1 allows for a home-and-away round-robin tournament, any two teams
may play each other once at home and once at away. The first team is the one playing at
home.

Definition 3.2. Single round-robin tournament: Round-robin tournament (X, v) is single
if vi(z,y) = va(y, ) for all z,y € X.

In a single round-robin tournament, any two teams play each other only once (often at
a neutral site), so the order of the teams has no significance.

Definition 3.3. Incomplete round-robin tournament: Let X be a nonempty finite set of
at least two teams, x,y € X be two teams and v : X X X — {(v1;v2) : v1,v2 € N} U {x}
be a function such that v(x,y) = x if z = y and v(z,y) = * implies v(y,x) = * if x # y.
The pair (X, v) is called an incomplete round-robin tournament.

In an incomplete round-robin tournament, some matches between the teams may remain
to be played. Any round-robin tournament is an incomplete round-robin tournament, too.

Definition 3.4. Ranking in incomplete round-robin tournaments: Let X be the set of
incomplete round-robin tournaments with a set of teams X. A ranking method R maps
any function v of X’ into a strict order R(v) on the set X.

Let (X, v) be an incomplete round-robin tournament, R(v) be its ranking and z,y € X,
x # y be two different teams. z is said to be ranked higher (lower) than y if and only if
T =R Y (T <R Y)-

Let z,y € X, x # y be two different teams and v(z,y) = (vi(z,y); va(x,y)). It is said
that team x wins over team y if vy (x,y) > vo(z,y) (home) or vy (y, z) < v2(y, x), team x
loses to team y if vy (z,y) < va(x,y) or v1(y,z) > vs(y, z) and teams = draws with team y
if vi(x,y) = va(x,y).

In some professional team sports (basketball, ice hockey, volleyball, etc.) draws are
prohibited. Since we want to keep the model as general as possible, it is assumed that
no matches result in a draw. Introducing this constraint will cause no problem because
we are searching for situations that are vulnerable to manipulation, which becomes more
difficult on a smaller domain.

Assumption 1. No matches result in a draw: vi(x,y) # * implies vy (x,y) # vo(x,y) for
any incomplete round-robin tournament (X,v) and teams x,y € X.

The ranking is usually based on the number of points scored.

Definition 3.5. Number of points: Let (X, v) be an incomplete round-robin tournament
and x € X be a team. Denote by N¥(z) the number of wins and by N/(z) the number
of losses of team x in (X, v), respectively. The number of points of team z is s,(z) =
aN¥(x) + BN!(x) such that o > .
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In other words, a win means « points and a loss gives 5 points.
Number of points does not necessarily induce a strict order on the set of teams, hence
some tie-breaking rules are required.

Definition 3.6. Goal difference: Let (X,v) be an incomplete round-robin tournament
and z € X be a team. The goal difference of team x is

gdo(x) = > (n(zy) —wlzy)+ X (ny2)—uly,2).

yeEX v(x,y)#* yeX,v(z,y)#x

Goal difference is the difference between the number of goals scored for team x and
the number of goals conceded by team =x.

Definition 3.7. Head-to-head results: Let (X, v) be a round-robin tournament and = € X
be a team. Denote by L C X \ {2} a set of teams.
The head-to-head number of points of team z with respect to L in (X, v) is

sy(@) = a({y €L v(r,y) >y} +{y €L vulyr) <wuly2)}])+

+B8([{y € L:vi(z,y) <wvalz,y)} |+ [{y € L:vi(y,x) > va(y, )} )

The head-to-head goal difference of team x with respect to L in (X, v) is

gdy(z) =" (ni(z,y) —valz,y)) + Y (va2(y, ) — va(y, 7)) .

yeL yeL

In accordance with EHF (2014a, Articles 9.12 and 9.24), head-to-head results are
calculated only in complete round-robin tournaments, after all group matches were played.

Definition 3.8. Monotonicity of group ranking: Let X be the set of incomplete round-
robin tournaments with a set of teams X, and R be a ranking method. R is said to be
monotonic if for any function v and for any different teams x,y € X:

L sy(x) > su(y) = T =R ¥;

2. sy(x) = s,(y), furthermore, gd,(x) > gd,(y) and if (X,v) is a round-robin
tournament, then s’ (x) > sk(y), or sk(z) = sk(y) and gdL(z) > gd%(y) where
z € L if and only if s,(x) = 5,(y) = 5,(2) = & > pg() -

Monotonicity implies that (a) a team should be ranked higher if it has a greater number
of points (criterion 1); and (b) a team should be ranked higher compared to another with
the same number of points, an inferior goal difference and worse head-to-head results
against all teams with the same number of points (criterion 2). Monotonicity still does not
lead to a strict ranking. The complexity of Definition 3.8 is necessary in order to cover the
two different tie-breaking concepts, goal difference, and head-to-head results. For example,
in association football, FIFA usually uses the former, while UEFA applies the latter.

Definition 3.9. Preliminary round: The preliminary round G consists of k groups of

round-robin tournaments (X', v'), (X2 v?), ..., (X* v*) such that X' N X" = () for any
i h.
Definition 3.10. Main round: The main round M consists of £ groups of incomplete
round-robin tournaments (Y, w'), (Y2, w?), ..., (Y% w’) such that Y/ NY" = () for any
Jj#h.
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Definition 3.11. Qualification rule: Let G be the preliminary round and M be the main
round. The qualification rule is a mapping Q : X' x X2 x -+ x XF - Y x Y2 x .- x Y.

Team x € X' is said to be qualified to the main round if z € Uj_, Y7,

Definition 3.12. Tournament with multiple group stages: A tournament with multiple
group stages is a triple (G, M, Q) consisting of the preliminary round G, the main round
M, and the qualification rule Q.

Definition 3.13. Regularity of the qualification rule: Let (G, M, Q) be a tournament
with multiple group stages. Qualification rule Q is regular if:

a) US_ Y7 C UL XY

b) there exists a common monotonic ranking R in each group of the preliminary
round G such that z,y € X*, 1 < i < k and z =R Y, Y € Uﬁ-zle imply
x e Ui Y7,

¢) x,y € X' NYJ implies w(x,y) = v(z,y);
d) v€ X', ye X" i#hand z,y € Y7 imply w(x,y) = *;
e) there exists a common monotonic ranking R in each group of the main round M.

The idea behind a regular qualification rule is straightforward. Some top teams of the
preliminary round groups qualify to the main round (conditions @) and b)), where they are
divided into new groups such that matches already played against other qualified teams
are carried over to the main round (conditions ¢) and d)). Furthermore, rankings in the
preliminary and main round groups are required to be monotonic (conditions b) and ¢)).

Perhaps these ideas have inspired the decision-makers of EHF.

Definition 3.14. Manipulation: Consider a tournament with multiple group stages

(G, M, Q) and a set of preliminary round results V = {vl,v2, T ,vk}. A team

x € X' can manipulate (G, M, Q) if there exists V' = {vl, UL T ,vk} with 0% (z,y) >
vh(z,y) and vi(y, z) > v{(y, z) for all y € X*, furthermore, = € Uj_, Y7 according to both
Q(V) and Q(V) such that s,(z) < s55(z), or s,(x) = sg(x) and gdy,(z) < gdg(z).

Manipulation means that team z can increase its number of points, or at least improve
its goal difference with preserving its number of points in the main round by conceding
more goals in a match of the preliminary round.

Definition 3.15. Strategy-proofness: A tournament with multiple group stages
(G, M, Q) is called strategy-proof if there exists no set of group results V' = {Ul, vk
under which a team can manipulate it.

The main contributions concern the strategy-proofness of tournaments with multiple
group stages and a regular qualification rule. Note that manipulation certainly worsens a
team’s goal difference (and sometimes its number of points, too) in its preliminary round
group as the ranking rule applied here is monotonic, but — provided that the team still
qualifies — it may pay off in the main round when some matches of the preliminary round
are discarded.
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Theorem 3.1. Let (G, M, Q) be a tournament with multiple group stages such that Q is
a reqular qualification rule and the following conditions hold:

e there exists x,y € X'NY7 for some1 <i<kand1l<j</;
o for at least one 1 < i < k, there exists u,v € X* with u € Y7 implying v ¢ Y.

Then the tournament with multiple group stages (G, M, Q) does not satisfy strategy-
proofness.

According to the conditions of Theorem 3.1, the result of at least one match played in
the preliminary round (between the teams x and y) is carried over to main round, and the
result of at least one such match (between the teams u and v) is ignored.

Proof. An example is presented where a team can manipulate a tournament with multiple
group stages that satisfies all criteria of Theorem 3.1.

Table 2: Group 1 of Example 3.1

GF = Goals for; GA = Goals against; GD = Goal difference; Pts = Points.

The last but one row contains the group winner’s benchmark results that are carried over to the main
round.

The last row contains the group winner’s alternative results that are carried over to the main round after
it manipulates.

Position Team a b c GF GA GD Pts
1 a * 0-1 4-0 4 1 3 a+
2 b 1-0 * 0-2 1 2 -1 a+p
3 c 0-4 2-0 * 2 4 =2 a+ g
1 a n 0-1 n 0 1 1 3
1* a* X % 2-0* o 0* 2 a*

Example 3.1. Let X' = {a,b, ¢} be a single round-robin group.

Consider the regular qualification rule @ with ¢ = 1 group in the main round and
x € Y if and only if {z € X'z =g z} # (). Q says that the group winner and the
runner-up qualify for the main round.

A possible set of results in Group 1 is shown in Table 2. Team a is the group-winner
since it has the best (head-to-head) goal difference (see criterion 2 of a monotonic group
ranking method), and it is considered with s, (a) = § points in the main round, after
discarding its match against team ¢, the last in Group 1 due to criterion 2 of a monotonic
group ranking method (see the last but one row of Table 2).

However, examine what happens if v'(a,c) = (2;0), thus v'(c,a) = (0;2). Then
teams a, b, and ¢ remain with a 4+ 3 points, but they have head-to-head goal differences
of +1, —1 and 0, respectively, therefore a is the first and c is the second according to
criterion 2 of a monotonic group ranking method. Consequently, team « is considered
with sz(a) = o > = s,(a) points in the main round (see the last row of Table 2).

To conclude, team a has an opportunity to manipulate this simple tournament with
multiple group stages under the set of group results V', so it violates strategy-proofness.

Example 3.1 contains only three teams, which is minimal under the conditions of
Theorem 3.1. It is clear that the number of groups and the number of teams in them can
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be increased without changing the essence of the counterexample. Groups can be double
round-robin tournaments instead of single ones, too. O

Theorem 3.1 also remains valid if draws are allowed in a tournament with multiple
group stages.
Remark 3.1. The 11th European Men’s Handball Championship (EHF Euro 2014), dis-
cussed in Section 2, fits into the model presented above. The number of groups in the
preliminary round is £ = 4, the number of groups in the main round is £ = 2, and the
qualification rule is regular (EHF, 2014a):

a) YIC X'UX?and Y2 C X3U X1

b) Ranking in the preliminary round groups is monotonic as it is based on the
number of points with tie-breaking through head-to-head results, and the first
three teams qualify for the main round;

¢) Matches played during the preliminary round against opponents which qualified
to the main round are kept and remain valid for the ranking of the main round;

d) Matches of the main round are played in groups with each team facing three
opponents which did not participate in its preliminary round group;

e) Ranking in the main round groups is monotonic as it is based on the number of
points with tie-breaking through head-to-head results.

Proposition 3.1. The 11th European Men’s Handball Championship (EHF Euro 2014)
is not strategy-proof.

Proof. The scenario presented in Section 2 shows that team Poland = x € X® can manip-
ulate since there exist sets of group results V = {v',v% 0% v*} and V = {v', 02, 0%, v}
such that v® = 03, v3(z,y) = vi(z,y) = 22 except for vj(z,y) = 26 > 24 = v}(x,y),
where team Russia = y € X? and Poland qualifies according to Q(V) and Q(V), but
sw(r) =0<2=s5(x).

Theorem 3.1 can also be applied due to Remark 3.1. O

Now we state a positive result, a ‘pair’ of Theorem 3.1.

Theorem 3.2. Let (G, M, Q) be a tournament with multiple group stages such that Q is
a reqular qualification rule and at least one of the following conditions hold:

e there does not exist v,y € X' NY7 forany 1 <i<kand1<j<{;
o u,v € X" andu €Y’ impliesv € Y7 forall1 <i<k.
Then the tournament with multiple group stages (G, M, Q) is strategy-proof.

Proof. 1f all preliminary round results obtained against other qualified teams are ignored
(first condition), or carried over to the main round (second condition), then it makes no
sense to perform weaker in the preliminary round due to the monotonicity of rankings in
all groups. O
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Theorem 3.2 essentially says that teams qualifying from the same preliminary round
group should be drawn into different main round groups (it is guaranteed if only one team
qualifies from each preliminary round group), or all teams from a given preliminary round
group should qualify for the same main round group.

It is also clear from the match discussed in Section 2 that head-to-head results cannot
be used to break a tie in the main round between two teams from the same preliminary
round group, otherwise there exists some incentives to influence the set of qualified teams.

Our main result is somewhat related to — but entirely independent of — the finding of
Vong (2017) that in general multi-stage tournaments, the necessary and sufficient condition
of strategy-proofness is to allow only the top-ranked player to qualify from each group.
The difference is that in the model of Vong (2017), teams deliberately lose matches in
order to meet preferred opponents in the next round, so they only gain in expected value.
Contrarily, we have discussed the possibility that a team can be strictly better off by a
weaker performance.

4 Tournaments with multiple group stages

The European Men’s Handball Championship between 1994 and 2000 consisted of a group
stage followed by a knockout stage, hence they were incentive compatible. Since 2002, its
format is the same as outlined in Section 2 and presented in Figure A.1 in the Appendix:
a preliminary round with four groups of four teams each such that the first three teams
qualify for the main round with two groups of six teams each, and they carry over the
matches played against the two teams in their preliminary round group. The winners and
runners-up of the main round groups qualify to the semifinals.

During the 10th Men’s European Handball Championship (EHF Euro 2012), a situation
analogous to the one presented in Section 2 emerged. Slovenia played its last match in
Group D against Iceland when Croatia had 4 points after it won against Iceland and
Slovenia, Norway had 2 points because of its win against Slovenia by 28-27, and Iceland
had also 2 points due to its win against Norway by 34-32. Consequently, Slovenia should
have won against Iceland for qualification to the main round, but it would be better not
to win by more than 3 goals in order to carry over its result against Iceland. The actual
results were Iceland vs Slovenia 32-34, and Croatia vs Norway 26-22, so the manipulation
of Slovenia turned out to be successful (with Iceland vs Slovenia 31-34 or 32-35, Iceland
still would have qualified, but 30-34, 31-35, or 32-36 would be unfavourable for Slovenia).

The Women’s European Handball Championship is the official competition for senior
women’s national handball teams of Europe. It takes place in the same years as Men’s
European Handball Championship and is organised according to same design, so it was
also strategy-proof until 2000, but it is incentive incompatible from 2002.

The Women’s EHF Champions League is an annual official competition for women’s
handball clubs of Europe since the season of 1993/94. It is the most competitive and
prestigious tournament for the top clubs of the continent’s leading national leagues. The
tournament is organised with multiple group stages since 2013/14. The preliminary round
consists of four groups of four teams each, playing each other twice in home and away
matches such that the best three teams qualify. In the main round, two groups of six
teams are formed, and teams play twice, in home and away matches against those three
teams they have not already faced. The top four teams from each group advance to the
quarter-finals.
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The World Men’s Handball Championship, organised by the IHF (International Hand-
ball Federation), takes place in every second year since 1993. From 1995, the number
of competing teams has increased to twenty-four, and four different tournament formats
have been used (Csatd, 2019a). Among them, three designs violate incentive compatibility
because of Theorem 3.1.

Since 1995, the World Women’s Handball Championship is played in the same years as
the men’s tournament, and it is designed in the same format with the exception of 1995,
2003, and 2011.

Table 3: Handball tournaments with multiple group stages

Notes: S = single round-robin (in groups); D = double round-robin (in groups); Gr. = Number of groups
in the preliminary and main round, respectively, which are denoted by k and ¢ in the theoretical model of
Section 3; Teams = Number of teams in each group of the preliminary and main round, respectively; Q =
Number of teams qualified from each group of the preliminary and main round, respectively
Abbreviations: EHF Euro Men (Women) = European Men’s (Women’s) Handball Championship; EHF
Women’s CL = Women’s EHF Champions League; IHF World Men (Women) = IHF World Men'’s
(Women’s) Handball Championship

Preliminary round Main round
Tournament Year(s) Type Gr.(k) Teams Q Gr.(f) Teams Q
EHF Euro Men 2002— S 4 4 3 2 6 2
EHF Euro Women  2002— S 4 4 3 2 6 2
EHF Women’s CL.  2013/14— D 4 4 3 2 6 4
IHF World Men 2003 S 4 6 4 4 4 1
IHF World Men 2005, 2009-2011, 2019- S 4 6 3 2 6 2
IHF World Men 2007 S 6 4 2 2 6 4
IHF World Women  2003-2005, 2009 S 4 6 3 2 6 2
IHF World Women 2007 S 6 4 2 2 6 4

Table 3 summarises the incentive incompatible handball tournaments discussed above.
They all contain two multiple group stages, and the number of qualified teams in the
main round (see the last column) is the number of teams which have a chance to win the
tournament.

Tournaments with multiple group stages are also used in other sports, for instance, in
basketball (EuroBasket 2013), cricket (2007 Cricket World Cup) (Scarf et al., 2009), and
volleyball (2014 FIVB Volleyball Men’s World Championship). There was a match played
by Australia and West Indies in the 1999 Cricket World Cup, in which Australia probably
attempted a manipulation similar to the one presented in Section 2 (Kendall and Lenten,
2017, Section 3.7.2). However, this plan — if there was one — did not work out entirely.

The 1999-2000 UEFA Champions League, as well as the following three seasons of this
tournament, also included two group stages: from the first group stage of eight groups
with four teams each, eight winners and eight runners-up were drawn into four groups
of four teams each, containing two group winners and two runners-up such that teams
from the same country or from the same first round group could not be drawn together.
Consequently, no results were carried over to the second group stage, guaranteeing the
incentive compatibility of the design according to Theorem 3.2.
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5 Two ways of overcoming incentive incompatibility

It is clear from our theoretical results, presented in Section 3, that there is no straight-
forward way to guarantee the strategy-proofness of tournaments with multiple group
stages, in contrast to tournament systems consisting of multiple round-robin and knockout
tournaments (Dagaev and Sonin, 2017), or group-based qualifiers with a repechage (Csato,
2018c).

Theorem 3.2 shows that incentive compatibility is met if either all points scored in
the preliminary round are considered in the main round (directly or after an arbitrary
monotonic transformation), or all of them are discarded, which is against the essence of
these tournaments. Consequently, if the administrators want to organise a strategy-proof
tournament with multiple group stages, the only solution is to carry over all preliminary
round results to the main round, perhaps after a monotonic transformation, regardless
that some matches were played against teams already eliminated from the tournament.

However, it seems that if all results are carried through, then the subsequent stage loses
a bit of excitement because there will be greater variation in points at the commencement
of that stage, and teams entering bottom will find it much harder to catch up to the teams
entering the stage on top.

This effect can be mitigated by carrying over only half of the points from the preliminary
round. The idea comes from the Belgian First Division A, the top league competition
for association football clubs in Belgium, where the sixteen competitors play a double
round-robin tournament in the regular season, followed by a championship play-off for the
first six teams such that the points obtained during the regular season are halved.

For tie-breaking purposes, we suggest retaining the number of goals scored and conceded
in the preliminary round. Theoretically, they can be ignored, too, but it seems to be unfair
when there was a match played in the preliminary round against a team from the same
main round group. In the case of Belgian First Division A, goal difference is not among
the tie-breaking criteria in the championship playoffs.

Therefore, two strategy-proof versions of each tournament design with multiple group
stages can be defined. In the following, the consequences of these modifications will be
explored as a kind of cost-benefit analysis via simulations.

Our starting point is a comparison of tournament formats for the World Men’s Handball
Championships (Csato, 2019a). Section 4 has revealed that this tournament has applied
recently three formats containing multiple group stages (see Table 3). We investigate two
of them since the third suffers from various problems and seems to be inefficient (Csato,
2019a). They are the following:

e Format G66: This design, presented in Figure A.2, has been used first in the 2005

World Men’s Handball Championship and has been applied in 2009 and 2011.
The 2019 championship is also organised in this format (IHF, 2018).
The preliminary round (see Figure A.2a) consists of four groups of six teams
each such that the top three teams qualify for the main round. The main round
consists of two groups of six teams, each created from two preliminary round
groups. The top two teams of every main round group advance to the semifinals
in the knockout stage (see Figure A.2b).

e Format (G46: This design, presented in Figure A.3, has been used in the 2007
World Men’s Handball Championship, hosted by Germany.
Teams are drawn into six groups of four teams each in the preliminary round
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(see Figure A.3a) such that the top two teams proceed to the main round. The
main round consists of two groups, each created from three preliminary round
groups. Four teams of every main round group advance to the quarterfinals in
the knockout stage (see Figure A.3b).

While the knockout stage of both tournament formats is immediately determined by
the preceding group stage, the competing teams should be drawn into groups before the
start of the tournament, so the seeding policy may affect the outcome, too (Guyon, 2015;
Dagaev and Rudyak, 2016; Guyon, 2018a; Laliena and Lépez, 2018).

Hence — similarly to Csaté (2019a) — two variants of each tournament design, called
seeded and unseeded, are considered. In the seeded version, the preliminary round groups
are drawn such that in the case of groups with &k teams (k = 4 for G46 and k = 6 for G66),
the strongest k teams are placed in Pot 1, the next strongest k teams in Pot 2, and so
on. The unseeded version uses fully random seeding. Consequently, some strong teams,
allocated in a harsh group will have more difficulties in qualifying than certain weaker
teams, allocated in an easier group.

Table 4: Tournament designs

Notation Format Seeding policy Description

G66/S G66 seeded original incentive incompatible
G66/R G66 unseeded original incentive incompatible
G660/S G66 seeded all points are carried over
G660/R G66 unseeded all points are carried over
G66x/S G66 seeded half of all points are carried over
G66x/R G66 unseeded half of all points are carried over
G46/S G46 seeded original incentive incompatible
G46/R G46 unseeded original incentive incompatible
G460/S G46 seeded all points are carried over
G460/R G46 unseeded all points are carried over
G46%/S G46 seeded half of all points are carried over
G46%/R G46 unseeded half of all points are carried over

Table 4 shows the twelve tournament designs to be analysed.
The tournament metrics applied are as follows:

e the average pre-tournament ranking of the winner, the second-, the third- and
the fourth-placed teams;

e the expected quality of the final (the sum of the finalists’ pre-tournament ranking);

e the expected competitive balance of the final (the difference between the finalists’
pre-tournament ranking).

The simulation procedure is detailed in Csat6 (2019a). According to the arguments
presented there, all simulations have been implemented with one million runs.

Figure 1 shows the average pre-tournament ranking of the first four teams. If all points
are carried over from the preliminary round, then the result of the tournament becomes
more predetermined as the expected ranking slightly decreases. Preserving only half of
these points significantly mitigates the loss of excitement, except in the unseeded variant of
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Figure 1: Expected pre-tournament ranking of the first four teams
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format G46. On the other hand, the average rank of the winner is even higher in the case
of seeded (G46 according to this solution than under the original incentive incompatible
design. Furthermore, carrying over half of all points minimises the effect of the seeding
policy, which seems to be desirable because it is a factor not influenced by the competitors.
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Figure 2: Characteristics of the tournament final
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Figure 2 reinforces these findings by focusing on the final of the tournament: if the
half of all points scored in the preliminary round are carried over instead of only the
results against the teams qualified to the main round, then the final may become a bit
more boring but usually involves stronger teams. It also decreases the influence of seeding,
especially in the format G66.

Following Scarf et al. (2009), we have also made a robustness check by calculating the
metrics for more and less competitive tournaments than the baseline version, in the same
way as Csatd (2019a). All of our qualitative results are insensitive to the distribution of
teams’ strength.

The comparison of Figures 1.a and 1.b, as well as Figures 2.a and 2.b, reveals that
the choice of the tournament format is more important than the effect of how points are
carried over to the main round (see the scales on the vertical axis). Since there is no
consensus in the former, at least for the Men’s (Women’s) World Handball Championships,
it makes not much sense to risk the possible problems caused by the original incentive
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incompatible designs.

Thus the price of guaranteeing incentive compatibility seems to be negligible — at least
compared to other features of the design like the particular tournament format or the
seeding policy —, and we suggest to carry over half of the points scored in the preliminary
round. Applying this solution has another, unexpected advantage by minimizing the effects
of the preliminary seeding of the teams into pots.

6 Conclusions

Optimal design of sports ranking rules is an important topic of economics and operations
research. We have revealed that administrators should not miss analysing strategy-
proofness: a simple shortcoming in the design of a tournament can lead to perverse
incentives in a sporting contest that is supposed to be genuine, and as such is sold to
the public as having full integrity. While the actual probability of manipulation can be
relatively small, and the audience does not necessarily recognise the problem, it makes no
sense to risk a potential scandal which has enormous financial and reputational costs. Our
simulation model has also proved that the price of guaranteeing incentive compatibility
can be marginal, and the use of a fair mechanism does not affect essentially the selective
ability and the competitive balance of a tournament with multiple group stages.

It is somewhat surprising that we have not found any controversy about the particular
match presented in Section 2. We think it is because of its non-trivial detection as
compared to the football and basketball matches discussed in Section 1, it was enough
to make some mistakes in defence or attack, without the need to score own goals. One
can understand that EHF remained silent on this issue, and the audience obviously did
not study the tie-breaking rules carefully. On the other hand, it is almost sure that the
coaches and players knew that they should not make great efforts to win by a higher
margin. Hopefully, our discussion will contribute to placing this match in the category
of the notorious ‘Nichtangriffspakt (Schande) von Gijén™ (Kendall and Lenten, 2017,
Section 3.9.1) in the history of sports.

There are some directions for future scientific research. First, by the quantification of
team strengths and the modelling of match outcomes, the probability of manipulation can
be estimated. Second, fairness of a tournament is a more general notion than incentive
compatibility as the 2016 UEFA European Championship (Guyon, 2018a), the 2026 FIFA
World Cup (Guyon, 2018b), the scheduling of round-robin tournaments (Krumer and
Lechner, 2017; Krumer et al., 2017a,b; Sahm, 2018), or the problem of penalty shootouts
(Palacios-Huerta, 2012, 2014; Brams and Ismail, 2018; Csat6, 2018a) show. The final aim
may be an extensive axiomatic discussion and comparison of sports ranking rules, which
has started recently (Arlegi and Dimitrov, 2018; Berker, 2014; Csat6, 2017b, 2018b,e;
Vaziri et al., 2018).

4 Kendall and Lenten (2017) use the term ‘Shame of Gijén’, and Wikipedia calls it ‘Disgrace of Gijén’.
The name is given to a 1982 FIFA World Cup football match played between West Germany and Austria
at Gijon, Spain, on 25 June 1982. A win by one or two goals for West Germany would result in both
them and Austria qualifying at the expense of Algeria. West Germany took the lead after 10 minutes,
and the remaining 80 minutes were characterised by few serious attempts by either side to score. Both
teams were accused of match-fixing although FIFA ruled that they did not break any rules.

49



MathSport International 2019 Conference Proceedings

Acknowledgements

This paper could not be written without my father, who have coded the simulations in
Python.

We are grateful to Liam Lenten and Tamds Halm for useful advice.

Three anonymous reviewers provided valuable comments and suggestions on an earlier
draft.

We are indebted to the Wikipedia community for contributing to our research by collecting
valuable information.

The research was supported by OTKA grant K 111797 and by the MTA Premium Post
Doctorate Research Program.

References

Arlegi, R. and Dimitrov, D. (2018). Fair competition design. Manuscript.
http://www.gtcenter.org/Downloads/Conf/Dimitrov2839.pdf.

Arrow, K. J. (1950). A difficulty in the concept of social welfare. Journal of Political
Economy, 58(4):328-346.

Berker, Y. (2014). Tie-breaking in round-robin soccer tournaments and its influence on the
autonomy of relative rankings: UEFA vs. FIFA regulations. European Sport Management
Quarterly, 14(2):194-210.

Brams, S. J. and Ismail, M. S. (2018). Making the rules of sports fairer. STAM Review,
60(1):181-202.

Carpio, G. (2014). Gilas beats Kazakhstan but misses semis.  Philippine Star.
29 September 2014. http://www.philstar.com/sports/2014/09/29/1374376/gilas~
beats-kazakhstan-misses—-semis.

Csat6, L. (2017a). 2018 FIFA World Cup qualification can be manipulated. Manuscript.
http://unipub.lib.uni-corvinus.hu/3053/.

Csaté, L. (2017b). On the ranking of a Swiss system chess team tournament. Annals of
Operations Research, 254(1-2):17-36.

Csat6, L. (2018a). A fairer penalty shootout design in soccer. Manuscript. arXiv:
1806.01114.

Csatd, L. (2018b). An impossibility theorem for paired comparisons. Central European
Journal of Operations Research, in press. DOI: 10.1007/s10100-018-0572-5.

Csat6, L. (2018c). Incentive compatible designs for tournament qualifiers with round-robin
groups and repechage. Manuscript. arXiv: 1804.04422.

Csat6, L. (2018d). It may happen that no team wants to win: a flaw of recent UEFA
qualification rules. Manuscript. arXiv: 1806.08578.

Csatd, L. (2018e). Some impossibilities of ranking in generalized tournaments. Manuscript.
arXiv: 1701.06539.

50



MathSport International 2019 Conference Proceedings

Csaté, L. (2018f). UEFA Champions League entry has not satisfied strategy-proofness in
three seasons. Manuscript. arXiv: 1801.06644.

Csaté, L. (2018g). Was Zidane honest or well-informed? How UEFA barely avoided a
serious scandal. Economics Bulletin, 38(1):152-158.

Csaté, L. (2019a). A simulation comparison of tournament designs for the World Men’s
Handball Championships. Manuscript. arXiv: 1803.10975.

Csatd, L. (2019b). When UEFA rules had inspired unfair behaviour on the field. Manuscript.
arXiv: 1806.03978.

Dagaev, D. and Rudyak, V. (2016). Seeding the UEFA Champions League participants:
Evaluation of the reform. Manuscript. DOI: 10.2139 /ssrn.2754127.

Dagaev, D. and Sonin, K. (2013). Game theory works for football tournaments. Manuscript.
http://voxeu.org/article/world-cup-football-and-game-theory.

Dagaev, D. and Sonin, K. (2017). Winning by losing: Incentive incompatibility in multiple
qualifiers. Journal of Sports Economics, in press. DOI: 10.1177/1527002517704022.

EHF (2014a). EHF FEuro Regulations. Applied on the 11th Men’s European Hand-
ball Championship (EHF Euro 2014). http://den2014.ehf-euro.com/fileadmin/
Content/DEN2014M/Files/Other_pdf/EUROreg Final 131212.pdf.

EHF (2014b). Report: 11th Men’s European Handball Championship (EHF Euro 2014),
Preliminary round — Group C, Match No. 17, Poland against Russia. 17 January 2014.
http://handball.sportresult.com/hbem14m/PDF/17012014/M17/M17 . pdf.

Fornwagner, H. (2018). Incentives to lose revisited: The NHL and its tournament incentives.
Journal of Economic Psychology, in press. DOI: 10.1007/10.1016/j.joep.2018.07.004.

Gibbard, A. (1973). Manipulation of voting schemes: A general result. Econometrica,
41(4):587-601.

Guyon, J. (2015). Rethinking the FIFA World Cup?™ final draw. Journal of Quantitative
Analysis in Sports, 11(3):169-182.

Guyon, J. (2018a). What a fairer 24 team UEFA Euro could look like. Journal of Sports
Analytics, 4(4):297-317.

Guyon, J. (2018b). Will groups of 3 ruin the World Cup? Manuscript. DOI:
10.2139/ssr1.3190779.

IHF (2018). Regulations for IHF Competitions. International Handball Federation.
Edition: 14 January 2018. http://ihf.info/files/Uploads/NewsAttachments/0_
Regulations’20for%20IHF),20Competitions_GB.pdf.

Kendall, G. and Lenten, L. J. A. (2017). When sports rules go awry. European Journal of
Operational Research, 257(2):377-394.

Koéczy, L. A. and Strobel, M. (2009). The invariant method can be manipulated. Sciento-
metrics, 81(1):291-293.

51



MathSport International 2019 Conference Proceedings

Krumer, A. and Lechner, M. (2017). First in first win: Evidence on schedule effects in
round-robin tournaments in mega-events. European Economic Review, 100:412—-427.

Krumer, A., Megidish, R., and Sela, A. (2017a). First-mover advantage in round-robin
tournaments. Social Choice and Welfare, 48(3):633-658.

Krumer, A., Megidish, R., and Sela, A. (2017b). Round-robin tournaments with a dominant
player. The Scandinavian Journal of Economics, 119(4):1167-1200.

Laliena, P. and Loépez, F. J. (2018). Fair draws for group rounds in sport tournaments.
International Transactions in Operational Research, in press. DOI: 10.1111 /itor.12565.

Lenten, L. J. A., Smith, A. C. T., and Boys, N. (2018). Evaluating an alternative draft
pick allocation policy to reduce ‘tanking’ in the Australian Football League. European
Journal of Operational Research, 267(1):315-320.

Palacios-Huerta, I. (2012). Tournaments, fairness and the Prouhet-Thue-Morse sequence.
Economic Inquiry, 50(3):848-849.

Palacios-Huerta, 1. (2014). Beautiful game theory: How soccer can help economics. Prin-
ceton University Press, Princeton, New York.

Palacios-Huerta, I. and Volij, O. (2004). The measurement of intellectual influence.
Econometrica, 72(3):963-977.

Pauly, M. (2014). Can strategizing in round-robin subtournaments be avoided? Social
Choice and Welfare, 43(1):29-46.

Pinski, G. and Narin, F. (1976). Citation influence for journal aggregates of scientific
publications: Theory, with application to the literature of physics. Information Processing
& Management, 12(5):297-312.

Sahm, M. (2018). Are sequential round-robin tournaments discriminatory? Journal of
Public Economic Theory, in press. DOIL: 10.1111/jpet.12308.

Satterthwaite, M. A. (1975). Strategy-proofness and Arrow’s conditions: Existence and
correspondence theorems for voting procedures and social welfare functions. Journal of
Economic Theory, 10(2):187-217.

Scarf, P., Yusof, M. M., and Bilbao, M. (2009). A numerical study of designs for sporting
contests. Furopean Journal of Operational Research, 198(1):190-198.

Szymanski, S. (2003). The economic design of sporting contests. Journal of Economic
Literature, 41(4):1137-1187.

Tasnéadi, A. (2008). The extent of the population paradox in the Hungarian electoral
system. Public Choice, 134(3-4):293-305.

Vaziri, B., Dabadghao, S., Yih, Y., and Morin, T. L. (2018). Properties of sports ranking
methods. Journal of the Operational Research Society, 69(5):776-787.

Vong, A. 1. K. (2017). Strategic manipulation in tournament games. Games and Economic
Behavior, 102:562-567.

52



MathSport International 2019 Conference Proceedings

Wright, M. (2009). 50 years of OR in sport. Journal of the Operational Research Society,
60(Supplement 1):S161-S168.

Wright, M. (2014). OR analysis of sporting rules — A survey. FEuropean Journal of
Operational Research, 232(1):1-8.

53



MathSport International 2019 Conference Proceedings

Appendix

Figure A.1: The
tournament format which was used in the 2014 European Men’s Handball Championship

(a) Group stages: preliminary and main rounds
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Figure A.2: Tournament format G66, which was used in the 2011 World Men’s
Handball Championship, and again in the 2019 World Men’s Handball Championship

(a) Group stages: preliminary and main rounds
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Figure A.3:
Tournament format G46, which was used in the 2007 World Men’s Handball Championship

(a) Group stages: preliminary and main rounds
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Abstract

Football is, probably, the most popular sport in Europe, in terms of supporters, news
generated, public interest and movement of funds, among others. Weekly, hundreds of
thousands of people go to the stadiums and millions watch the football match on TV,
through the Internet or listen to it on the radio. Even, the number of betting offices
increases and all the aspects related with football are specially important.

From a statistical point of view, football can also be seen as a generator of statistical
variables that may be studied. In this work, we want to focus on some count data variables
that reflect many of the most outstanding football aspects. Specifically, we consider the
number of goals scored by a footballer and the number of yellow cards that are shown to
a footballer. These variables have been collected in some of the most important football
leagues in Europe for several years such as the Spanish, English, German and Italian
leagues. For each variable we have proposed several count data model, such as the Negative
Binomial, the Univariate Generalized Waring, the Extended Biparametric Waring or the
Complex Biparametric and Triparametric Pearson distributions, among others. In each
case we select the best fit using the Akaike Information Criterion or the chi-square goodness
of fit test. We compare the results obtained for the different leagues considered.

1 Introduction

It can be considered that football, as the most popular sport in modern history, spans more than
150 years. It began in 1863 in England, when rugby football and association football branched
off on their different courses. Thus, the most ancient football association was founded.

Although both games have the same root, there are at least half a dozen different games,
varying to different degrees, and to which the historical development of football has been traced
back.

In its origins, controlling the ball with the feet was considered a feat, since it raised the
admiration of other citizens. The first reference of the game is a manual of military exercises
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that dates back to the China of the Han dynasty in the 2nd and 3rd centuries BC, known as
“Ts’uh Kuh”. This game consisted in introducing a leather ball, filled with feathers and hair,
into a small net, from an opening of 30 to 40 centimeters. In that same document, another
modality of the same game is described, in which, the players would have to overcome the rival
while they went to the goal (you could never catch the ball with your hand).

We can also mention the Japanese Kemari which began some 500-600 years later and is still
played today. In this game the players do not struggle to possess the ball but they pass it to
each other trying not to let it touch the ground.

More lively were the “Epislcyros” Greek and the “Harpastum” Roman. The latter was
played with a smaller ball and two teams on a rectangular field marked by boundary lines and
a centre line. The objective was to get the ball over the opposition’s boundary lines and as
players passed it between themselves, trickery was the order of the day. The game remained
popular for 700-800 years, but, although the Romans took it to Britain with them, the use of
feet was so small as to scarcely be of consequence.

Undoubtedly, football is nowadays the most popular sport in the world. It is important not
only on the sport level, as a game and pastime, but also on the social level, since it joins people,
social groups, clubs or even countries. Moreover, football is one of the sports which generates
more money in Europe, Latin America, Asia and, recently, in United States. Thus the FIFA
(Fédération Internationale de Football Association) World Cup, as many other international
competitions, entail a significant capital movement by multinationals, societies or individuals.

As occurs with other sports, where statistical studies are essential part of them (baseball,
American football, basketball...) almost all aspects of the game are gathered and analysed.
These data are referred to results (number of goals, assists, dribbles, ...) but also to personal
characteristics of each player. And many of these databases are available for the researchers.
In this sense, the aim of our study is to model and compare two important aspects for the
footballer performance expressed in form of count data variables: The number of goals scored
and the number of yellow cards received. To do this analysis we have taken into account the
global history of each player in the same team. We compare these two variables for the two
first teams of each one of the leagues in Spain, England, Germany and Italy.

The work is structured as follows. In Section 2 the models employed are briefly described.
Section 3 details the variables used and Section 4 shows the fits obtained in each case. Finally
some conclusions are stated.

2 Count data models

One of the advantages of the Calculus of Probabilities is to give models that may be employed
for the probabilistic approach of data. The characteristics of the theoretical model can be used
for the interpretation of the fitted model and so providing a better knowledge of the studied
phenomenon. In particular, the analysis of count data variables through the use of discrete
probability distributions is very useful in many disciplines. The basis model for these discrete
data sets is the Poisson distribution which has the property of equidispersion, that is to say,
the variance is always equal to the mean. But count data sets often verify that the variance
is greater than the mean, which is called overdispersion. For this situation, multiple models
have been developed, in many cases through a Poisson mixture, such as the Negative Binomial
(NB) or the Univariate Generalized Waring (UGW) distributions, as well as through other
models such as the Generalized Poisson (GP) or the Complex Biparametric Pearson (CBP)
distributions.
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In this work we use these distributions in order to model count data variables related to
football. Briefly we describe the models aforementioned.

e Negative Binomial distribution [3]: X ~ NB(0, ) with 6, ¢ > 0 and probability mass
function (pmf) given by

P(X =)= Féf();j) (eiu)e<0ﬁu>x, 2=0,1,...

e Generalized Poisson distribution [1]: X ~ GP(),0), A >0, max(—1,—-A/m) <60 <1
with pmf given by

)\()\4—995)“’_1 bz
P(X =z) = Te z=0,1,...
0 r>m

where m > 4 is the largest positive integer for which A +mé > 0 when 6 < 0. Let us
observe that, in that case, the distribution has finite range (from 0 to m). This lower
bound on € is imposed in order to assure at least five points in the sample space with
positive probabilities when 6 is negative. As a consequence of the definition, when 6 < 0,
the distribution does not sum to unity in 0,1, ..., m, and must be normalized.

e Univariate Generalized Waring distribution [2, 10, 6, 9]: X ~ UGW (a, k, p) with a,k > 0,
p > 2 and pmf given by
L(a+ p)T(k+ p) Ila+ z)T'(k+ 2)

PX =) = 5T ) Ta+tkhtpral@sl) - 0b-

e Complex Biparametric Pearson distribution [4, 7]: X ~ CBP(b,~) with b,y > 0 and pmf

iven b
: ’ P(X =z) = Dy + 0))I' (v — bi) (bi)x(=bi)s l
['(v)? (V) xz!’

where i is the imaginary unit and («), = T'(a +r)/T'(a), > 0.

z=0,1,... (1)

e Complex Triparametric Pearson distribution [5, 8]: X ~ CTP(a,b,v) with a € R, b,y > 0
and pmf given by
(a+ib)z(a —ib), 1
()2 al’
where fy is the normalizing constant whose expression is
Iy —a—ib)'(y — a+1ib)
B L(y)L(y - 2a) '

P(X=2x)=fo x=0,1,...

Jo

3 Description of data

Describing and documenting data is essential in ensuring that those people who may need to
use the data can make sense of them and understand the processes that have been followed in
the collection, processing, and analysis of the data. So, this section is devoted to this task.

We focus on the most famous European football leagues which are the Spanish, German,
Italian and English football leagues. However, we do not study them in the same period.
Specifically, we consider the data about the:
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Spanish football league from 1970 to 2018,

English football league from 1992 to 2014,

Italian football league from 1988 to 2018, and
e German football league from 1985 to 2014.

The variables selected for the study are:

e Number of yellow cards received by a footballer in the corresponding team (along the
span time considered).

e Number of goals scored by a footballer in the corresponding team (along the span time
considered).

We have made the analysis for all the teams that have belonged or belong to each one of
these football leagues, but in this work we only have included the two teams that more titles of
the national championship have achieved throughout the history of the league of their country.
Thus, the teams selected within each league are:

e Spanish football league:
— Real Madrid

— Barcelona

e English football league:
— Manchester United
— Liverpool

e [talian football league:

— Juventus
— Milan

e German football league:

— Bayern Munich

— Borussia Dortmund

Data have been collected from the web https://www.bdfutbol.com/. In a first approach
to these data, we make a descriptive summary of them. Table 1 contains the first and third
quartiles, the mean, the median, the standard deviation (s.d.) as well as the minimum and the
maximum for each one of the variables considered (by football team).

As it can be observed from Table 1, data exhibit overdispersion in all the teams, that is,
the variance is greater than the mean.

4 Fit of data

In this section we model the data using the count distributions described in Section 2. For all
the fits the maximum likelihood estimates (MLE) of the parameters, the Akaike Information
Criterion (AIC) and the Pearson y?—goodness of fit test have been obtained. In addition,
graphs with the observed versus the expected frequencies are shown.
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Spanish league

Number of yellow cards

Statistics Min. 1 Median Mean Q3 Max. s.d.
Barcelona 0.00 0.00 2.00 820 9.00 81.00 13.92
Real Madrid 0.00 0.00 2.00 8.59 11.00 111.00 15.60
Number of goals scored
Statistics Min. Q1 Median Mean Q3 Max. s.d.
Barcelona 0.00 0.00 2.00 10.99 9.75 383.00 27.86
Real Madrid 0.00 0.00 1.50 11.19 875 311.00 30.55
English league
Number of yellow cards
Statistics Min. 1  Median Mean Qs Max. s.d.
Manchester United  0.00 0.00 1.00 7.56  8.00  96.00 14.26
Liverpool 0.00 0.00 2.00 5,89 7.00 66.00 9.18
Number of goals scored
Statistics Min. 1 Median Mean Q3 Max. s.d.
Manchester United ~ 0.00 0.00 2.00 12.46 10.00 158.00 25.88
Liverpool 0.00 0.00 2.00 830 7.25 128.00 18.97
Italian league
Number of yellow cards
Statistics Min. 1 Median Mean Q3 Max. s.d.
Juventus 0.00 0.00 3.00 7.15  9.00 59.00 10.94
Milan 0.00 0.00 3.00 7.01 800 97.00 12.96
Number of goals scored
Statistics Min. Q1 Median Mean Q3 Max. s.d.
Juventus 0.00 0.00 2.00 7.27  7.00 188.00 17.65
Milan 0.00 0.00 1.00 6.51  6.00 127.00 14.44
German league
Number of yellow cards
Statistics Min. 1 Median Mean Q3 Max. s.d.
Bayern Munich 0.00 1.00 4.00 9.36 13.00  59.00 12.50
Borussia Dortmund ~ 0.00  0.00 2.00 7.94 11.75 66.00 12.02
Number of goals scored
Statistics Min. 1  Median Mean Qs Max. s.d.
Bayern Munich 0.00 0.00 4.00 11.79 12.00 107.00 19.75
Borussia Dortmund  0.00  0.00 2.00 7.89 8.00 116.00 15.78

4.1 Number of yellow cards
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Table 1: Descriptive summary of data

Table 2 contains the AIC value and the p—value corresponding to the y?—goodness of fit test
for the fits about the number of yellow cards received by a footballer in the teams selected. The
best AIC and p—value within each team are highlighted in bold.

The MLEs of the parameters and their standard errors (in brackets) for the best fit according
to the AIC are included in Table 3.

As it can be seen from Table 2, not all the studied teams behave in the same way when
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Football team
Bayern Munich  Borussia Dortmund — Manchester United  Liverpool

Model AIC

NB 1099.58 1253.97 819.95 1000.25

GP 1112.53 1261.56 829.51 1000.49
CBP 1164.12 1310.62 859.94 1033.83
UGW 1101.60 1256.04 821.96 1001.91
CcTP 1129.08 1277.71 841.56 1009.94
Model p—value

NB 0.63 0.04 0.34 0.76

GP 0.06 0.11 0.06 0.50
CBP 0.00 0.00 0.00 0.00
UGW 0.56 0.30 0.26 0.70
CcTP 0.00 0.00 0.00 0.13

Barcelona Real Madrid Juventus Milan

Model AIC

NB 2081.58 2041.53 1492.48 1603.37

GP 2093.52 2061.78 1511.09 1600.09
CBP 2170.39 2143.54 1584.37 1656.69
UGW 2083.60 2043.50 1494.50 1604.00
cTP 2118.49 2087.93 1532.02 1612.32
Model p—value

NB 0.63 0.92 0.12 0.23

GP 0.06 0.03 0.00 0.36
CBP 0.00 0.00 0.00 0.00
UGW 0.57 0.89 0.09 0.19
CcTP 0.00 0.00 0.00 0.00

Table 2: AIC value and p—value of y?—goodness of fit test for fits about yellow cards data

Bayern Munich — Borussia Dortmund — Manchester United Liverpool
NB
0 = 0.485(0.056) 0 = 0.436(0.047) 6 = 0.280(0.037) 0 = 0.518(0.062)
= 9.358(1.047) = 7.943(0.852) = "7.560(1.189) = 5.894(0.637)
Barcelona Real Madrid Juventus Milan
NB GP

0 =0.354(0.029) 6 = 0.322(0.027) f =0.405(0.041) A = 1.355(0.091)
i = 8204 (0.745)  [i=8.590 (0.823)  ji=7.154;(0.716) @ = 0.806(0.022)

Table 3: MLEs and standard errors (in brackets) for the best fit of yellow cards data

modelling the number of yellow cards. According to the AIC, the best model is the N B for all
the teams except for the Milan football club which selects the GP model. This performance is
more irregular according to the y2—goodness of fit test, since there are several cases in which
it disagrees with the AIC. Thus, for the Borussia Dortmund team the best fit, according to the
test, is that provided by the UGW model; however, the fit with lowest AIC is the corresponding
to the N B model. For the Milan football club both criteria agree on the GP model. For the rest
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Figure 1: Observed and expected frequencies for data about the number of yellow cards

of the teams the N B distribution is the best model with both criteria. It should be emphasized
that in some teams the yellow cards data are adequately modelled by several distributions, such
as the Liverpool football club, in which - in addition to the N B distribution - the UGW and
CTP distributions are also suitable.

Similar conclusions can be obtained from Figures 1 and 2, where the observed and expected
frequencies for each fitted model are shown.

4.2 Number of goals scored

Next we study the number of goals scored by the teams. We have followed the same procedure
as in Section 4.1.

If we analyze the AIC value from Table 4, we can observe that the N B model provides the
best fit for the German teams and the Manchester United football club, whereas the GP fit is
the best for the rest of the teams. Using the y?—goodness of fit test, there is a wider range of
appropiate models:

e The case of Manchester United can be considered special, since according to the p—value
of the goodness of fit test, both the GP and N B distributions could be adequate models.

e For the goals scored data corresponding to the Bayern Munich team there are two appro-
priate models, the N B and the UGW, although the N B fit is the best one according to
the AIC.
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Figure 2: Observed and expected frequencies for data about the number of yellow cards

e Besides these two distributions, the Borussia Dortmund and Real Madrid teams add the
GP distribution, although the N B fit continues being the best in terms of the AIC.

e The Barcelona and Juventus teams also add the CT P distribution, although the best fit
is that related to the G P distribution.

e Goals data for the Liverpool team can be modelled by the majority of the distributions
used (the only ones that do not fit appropriately are the CBP and UGW distributions).
However, in this case, the N B fit is not the best, as in the previous cases, but the GP fit.

e Finally, we have another particular case, the Milan football club, since for this team only
the CBP distribution does not provide an appropriate fit.

Figures 3 and 4 show the observed and expected frequencies for each fitted model depending
on the football team.
5 Conclusions
As it has been observed in the previous sections, the NB and GP distributions are the best

models for the number of yellow cards received and goals scored by the most famous European
football teams. The performance of the two variables is rather similar among leagues and also
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Football team
Bayern Munich  Borussia Dortmund  Manchester United  Liverpool

Model AIC
EBW 1151.47 1189.71 810.80 924.01
NB 1128.00 1170.98 796.76 924.36
GP 1138.86 1177.41 1177.41 917.88
CBP 1191.13 1218.55 828.55 941.92
UGW 1130.00 1172.29 6003.01 7483.96
cTP 1153.47 1191.71 812.80 926.01
Model p—value
EBW 0.00 0.04 0.00 0.42
NB 0.45 0.86 0.33 0.44
GP 0.04 0.33 0.33 0.75
CBP 0.00 0.00 0.00 0.00
UGW 0.38 0.82
CcTP 0.00 0.04 0.01 0.27
Barcelona Real Madrid Juventus Milan
Model AIC
EBW 1956.44 1863.66 1300.40 1355.69
NB 1932.34 1865.35 1289.98 1345.64
GP 917.88 917.88 917.88 1344.33
CBP 941.92 941.92 941.92 1383.34
UGW 1930.64 1866.53 1289.74 1347.59
CTP 926.01 926.01 926.01 1357.69
Model p—value
EBW 0.00 0.00 0.04 0.34
NB 0.46 0.63 0.67 0.67
GP 0.75 0.06 0.75 0.87
CBP 0.00 0.00 0.00 0.00
UGW 0.50 0.57 0.66 0.60
CTP 0.27 0.00 0.27 0.28

Table 4: AIC value and p—value of y2—goodness of fit test for fits about goals scored data.

among teams. In general, the number of yellow cards received is modelled by a IV B distribution,
whereas the number of goals scored is modelled by a GP distribution. Parameter estimates are
quite similar among teams in the same country, except for the case of the Liverpool football
club, since the variable follows a GP distribution.
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Bayern Munich — Borussia Dortmund — Manchester United Liverpool
NB GP
6 = 0.368(0.033) 6 = 0.296(0.042) 6 = 0.295(0.033) A = 1.410(0.117)
= 11.792(1.50) = "7.586(1.019) = "7.886(1.02) h= 0.761(0.030)
Barcelona Real Madrid Juventus Milan
GP

X = 1.089(0.091)
6 = 0.861(0.023)

1.088(0.092)
0.862(0.024)

A11(0.117) X = 0.956(0.074)

A = 1
b= =0.861(0.023) 6 = 0.853(0.024)

Table 5: MLEs and standard errors (in brackets) for the best fit of goals scored data
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Abstract

In American Football it is widely accepted that the ability to predict the next play of the
offensive team gives an advantage to their opponent. The purpose of this study was to examine
the effect of a random versus a non-random (and hence more predictable) sequence of offensive
plays on outcomes in American College Football. Surprisingly, differences in outcomes were
found only for away teams and in this case, the outcomes were seen to depend on the nature of
the non-random pattern of play. We saw that non-random play with very few switches between
runs of rushing and passing plays did not significantly reduce the chances of winning for either
team. In fact, away teams having this style of play showed a significant advantage in some key
game statistics. Away teams with non-random play that had many switches between rushing
and passing plays had a significantly lower proportion of wins and a significant disadvantage
in some game statistics. Our conclusions are that predictability itself does not lead to a serious
disadvantage on the playing field in American College Football, rather away teams who exhibit
a particular type of non-random play involving many switches between running and passing
plays are at a disadvantage. The asymmetry between the results for home and away teams
suggest that this type of play plays some role in home advantage. Since play calling is, to a
large degree, a factor under the control of the offensive team, knowledge of this association
may be useful in forming a strategy for the away team.

1 Introduction

Recent studies on models for predicting plays in the NFL [2] point to the commonly held belief that the
ability to predict plays in American Football is a significant factor in determining the outcome of the game.
The assumptions of game theory tell us that predictability should be a disadvantage for any team, but we find
no papers in the literature examining the effect of this factor on wins and losses or other important statistics in
football. This study examines the effect of randomness of play on wins and losses and various performance
statistics in college football with the available public data. One would expect that sequences of offensive
play that differ significantly from a random pattern increase the ability of the opposing team to predict plays
and thus lead to a disadvantage for the offensive team. On the other hand patterns of offensive play that
are not significantly different from randomly generated plays would tend to render attempts at prediction
ineffective. Unlike game statistics such as yards gained or time of possession, the sequence of offensive
plays executed is to a large degree under the control of the offensive team and can be changed strategically
to improve outcomes.

As with many statistical studies of college football, we found that the relationship between randomness
of play and wins and losses is more complex than what we expected. Using the Wald Wolfowitz test for
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randomness, we categorized the sequence of offensive plays for each game for both home and away teams as
either significantly different from a randomly generated sequence or not. Teams with sequences of offensive
play that had a significantly large or small number of runs of play types (or equivalently switches between
play types) in comparison to what is expected are deemed significantly different than a randomly generated
sequence by the test. For the sequences of play deemed significantly different from a random pattern, we
also kept track of whether the number of runs in the sequence of offensive plays was significantly larger or
significantly smaller than the expected number. The Wald Wolfowitz test does not make any assumption
about the percentage of rushing or passing plays in the data. Thus it recognizes the subtle difference between
a team who plays a large percentage of rushing plays, switching between passing and rushing plays in a
manner resembling random play calling, and a team who plays a large percentage of rushing plays, but has
too many or too few switches between play types for the play calling to be considered random.

The results were not as expected and somewhat counterintuitive. For the home team there was no signifi-
cant disadvantage to executing a sequence of plays that was significantly different from a randomly generated
sequence. There was a surprising asymetry between the results for the home team and the away team. Away
teams for whom the sequence of offensive plays had a significantly higher number of runs of rushing and
pass plays than that expected in a randomly generated sequence had a significantly lower probability of
winning than the other groups. On the other hand, away teams demonstrating non-random offensive play
sequences with fewer runs (and hence fewer switches between play types) did not have a significantly lower
probability of a win when compared with the other groups, in fact they had an advantage in rushing yards
and the number of first downs from rushing plays when compared with the other groups of away teams.

Since this is an observational study, it is unclear whether the pattern of play resulting in a large number
of switches between offensive play types is a symptom of the confusion and disorientation that an away team
experiences, or if it is a poor strategy choice that leads to poor outcomes for the away team. Our results
seem to indicate that an away team can significantly reduce the home field advantage by switching between
offensive play types less often.

2 Data, Methodology and Notation

In the study, we looked at 7,220 Divison I college football games, played between 2005 and 2013. The
data sets were compiled by http://www.cfbstats. com/ and are publicly available. For a given game and
team, we looked at the sequence of offensive play choices of the form “RUSH" and “PASS" for the entire
game. If the number of runs (or equivalently the number of switches between play types) of “RUSH" and
“PASS" plays in such a sequence was either too large or too small, one would expect that the play calling
was not similar to random play calling.

2.1 Wald Wolfowitz (WW) Test for Randomness

The Wald Wolfowitz test is a test for randomness in binary data with two values success (S) and failure (F).
The test statistic is the number of runs of Ss and Fs in the data. The Wald Wolfowitz test does not make any
assumptions about the probability of success or failure on any trial.

Given a sequence with two values, success (S) and failure (F), with Ny success’ and Ny failures, let X
denote the number of runs (of both S’s and F’s). Wald and Wolfowitz determined that for a random sequence

69



MathSport International 2019 Conference Proceedings

of length N with Ny success’ and Ny failures (note that N = Ny + Ny), the number of runs has mean and
standard deviation given by

EX)=p= ZN];N" +1, o(X)= ./(“_;)7_(‘?_2).

The distribution of X is approximately normal if Ny and Ny are both bigger than 10. Therefore the Z- value:

x—p X (Rt

o [ww2
N—1

7 =

has a standard normal distribution.

For example to test the hypothesis that the sequence of “RUSH"’s and “PASS"’s shown below is gener-
ated randomly, we let Np denote the number of “PASS"’s and let Ni denote the number of “RUSH"’s in the
sequence.

RUSH RUSH PASS PASS PASS RUSH PASS RUSH RUSH RUSH PASS RUSH PASS PASS RUSH PASS PASS PASS
PASS RUSH PASS RUSH PASS RUSH RUSH RUSH PASS PASS RUSH RUSH RUSH RUSH PASS PASS PASS RUSH PASS
RUSH RUSH PASS RUSH RUSH RUSH PASS PASS RUSH RUSH RUSH PASS RUSH PASS PASS RUSH RUSH PASS PASS
RUSH PASS PASS RUSH RUSH RUSH PASS RUSH PASS PASS RUSH PASS RUSH PASS PASS RUSH PASS RUSH PASS
RUSH PASS PASS RUSH PASS PASS RUSH PASS RUSH PASS PASS PASS

The sequence of plays has length N = 87. The number of “PASS" ’s in the sequence is Np = 45 and the
number of “RUSH" ’s is Ng = 42. We have underlined the runs of “RUSH" ’s in the sequence and we see
that the total number of runs in the sequence is X = 52 Thus we have

2(45)(42
u:%+1:44.44828, 0'%\/

(43.44828)(42.44828)
86

~4.630918

and the value of our test statistic is
Z=(X—u)/o=1.630718, p-value =0.1029497.

Thus we do not have sufficient evidence to reject the null hypothesis at a 95% level of confidence in this
case; in other words, this sequence of plays is not significantly different from what we would expect to see in
a randomly generated sequence of plays. Note that a sequence can lead to a rejection of the null hypothesis
in either of two ways; the test statistic, Z, might be high in absolute value and negative, or it might be high
in absolute value and positive.

2.2 Notation

For each game in our set of data we classified the teams as either the Home (H) or Away (A) team. We
calculated the Wald-Wolfowitz (WW) test statistic for the sequence of passing and rushing plays made by
the team’s offense throughout the course of the game and classified the test statistic, Z, resulting from that
sequence as; Low (L), indicating that it was not large enough in absolute value to reject the Null Hypothesis,
Significant and Positive (SP), indicating that the test statistic was positive and led to a rejection of the null
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hypothesis at a 5% level of confidence, Significant and Negative (SN), indicating that the test statistic was
positive and led to a rejection of the null hypothesis at a 5% level of confidence. We amalgamated both of the
above classifications to get 9 categories for the teams involved in any given game: HSN (Home Team with
significant negative WW Z-score), HL (Home Team with non-significant WW Z-score), HSP (Home Team
with significant positive WW Z-score), ASN (Away Team with significant negative WW Z-score), AL (Away
Team with non-significant WW Z-score) and ASP (Away Team with significant positive WW Z-score).

With this classification, we have a cross classification of each of the 7,220 games studied in terms of the
two categorical variables, the status of the WW test statistic for the away team, with categories ASN, AL
and ASP and the status of the WW test statistic for the home team, with categories HSN, HL and HSP. Table
1 below shows the number of games in each of the resulting nine game categories. As you can see the vast
majority of games had at least one team with an offensive play calling sequence that was not statistically
distinguishable from random play calling.

Home Team(H) Away Team(A)
ASN AL ASP Total
HSN N= 19 N= 384 = 15 = 418
HL N= 327 N= 6073 N= 224 = 6624
HSP N= 11 N= 163 N= 4 N= 178
Total N= 357 N= 6620 N= 243 N= 7220

Table 1: N = Number of games in each category.
A = Away Team, H = Home Team .
WW Test Statistic (SP = Significant and Positive, SN = Significant and Negative, L = Not significant).

3 Wins and Losses

In the contingency table below, Table 2, we show the number of wins for the home team (H), the number
of wins for the away team (A) and the proportion of wins for the away team (p(A)) for the games in each
category, where the games are cross classified as in Table 1, according to the status of the WW Z-score of
the home and away teams. Chi-square tests of independence was performed to examine the relation between
the status of the WW Z-statistic and wins.

The chi-squared test of independence on the marginal distribution of the away teams showed a significant
difference in the success rate of the categories ()-squared = 13.755, df = 2, p-value = 0.001031). Looking at
the standardized residuals, we see that the success rate of the away teams in the category ASP is significantly
lower than that of the away teams in the categories ASN and AL, and there is not a significant difference be-
tween the proportion of wins for away teams in the categories ASN and AL. This indicates that predictability
itself does not lead to a significant disadvantage for the away team, rather the nature of unpredictability may
lead to a disadvantage. In particular, away teams for which the number of switches between runs of passing
plays and rushing plays is significantly higher than what one would expect in a randomly generated sequence,
are at a significant disadvantage when compared to their less predictable and predictable counterparts in the
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AL and ASN categories respectively.

A chi squared test of independence on the marginal distribution for the home teams does not reveal any
significant difference between the probability of success for each of the three categories HSN, HL. and HSP
(x-squared = 2.3137, df = 2, p-value = 0.3145), thus indicating that the overall probability of a win for the
home team is independent of whether the sequence of offensive plays appears random or not.

The conditional distributions obtained by fixing a category of play for the home team give the following
results:

e When the home team falls in the category HSN, a ) -squared test of independence reveals no significant
relationship between the status of the WW Z-statistic for the away team and wins (-squared = 1.4006,
df =2, p-value = 0.4964).

e When the home team falls in the category HL, a y-squared test of independence show that there is
a relationship between the status of the WW Z-statistic for the away team and wins for the away
team ()-squared = 11.242, df = 2, p-value = 0.003621). An examination of the standardized residuals
reveals that the success rate of the away teams in the category ASP is significantly lower from that
of the away teams in the categories ASN and AL and there is not a significant difference between the
proportion of wins for away teams in the categories ASN and AL.

e When the home team falls in the category HSP, Fisher’s exact test (used when the counts in some
categories are very small) reveals no significant relationship between the status of the WW Z-statistic
for the away team and wins ( p-value = 0.1553).

The conditional distributions of wins and losses for the home team reveal also that given any of the
three categories of play for the away team (ASN, AL, ASP), the probability of a win for the home team is
independent of whether the sequence of offensive plays appears random or not.

Thus we conclude that the away team can significantly reduce their chances of winning by switching
between offensive play types very often. For example, if a team expects to play about 60 offensive plays in
a game and wants to play roughly 1/2 (Ng = 30) rushing plays and 1/2 (Np = 30) passing plays, then they
should keep the number of switches of play types below u + 1.960 ~ 38.53. where

[.12%4-1:31, o= (,11—1\17)#%3.84.

3.1 Point Differential

An analysis of variance also shows significant differences between the average point differential across levels
of the WW Z-score factor for the away team but not for the home team. The average point differentials (PD)
for the three different groups are given by :

WW Away Team | Mean PD(Home Pts. - Away Pts.)

ASN 4.37
AL 7.16
ASP 14.70

The output of an analysis of variance applied to the means for the three groups is shown in Table 3 and
shows that there is a significant difference between the means.
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Home Team Away Team
ASN AL ASP Total

H 9 H 226 H 10 H 245

HSN A 10 A 158 A 5 A 173
p(A) 0.52 p(A) 0.41 p(A) 0.33 p(A) 0.41
H 193 H 3767 H 162 H 4122
HL A 134 A 2306 A 62 A 2502
p(A) 0.40 p(A) 0.38 p(A) 0.28 p(A) 0.38

H 5 H 99 H 4 H 108

HSP A 6 A 64 A 0 A 70
p(A) 0.54 p(A) 0.39 p(A) 0.00 p(A) 0.39
H 207 H 4092 H 176 H 4475
Total A 150 A 2528 A 67 A 2745
p(A) 042 p(A) 0.38 p(A) 0.27 p(A) 0.38

Table 2: Percentage of Away wins for each combination of factors.

H = # Wins for Home Team, A = # Wins for Away Team,
p(A) = Proportion Wins for Away Team.

Pairwise comparisons reveal significant differences (at a 95% level of confidence) between the average
point differential in all three pairwise comparisons with the Holm adjustment, and significant differences
between the mean for ASP and the other two levels of the WW Z score status for the Away team with the
Bonferroni adjustment. The p-values for both follow up tests are shown in Table 4 below.

Note that the p-value for the difference in the average point differential between the ASN and AL levels
is borderline at 0.06 with the Bonferroni adjustment, this is still significant at a 90% level of confidence. The
barplot in Figure 1 below shows the the means for all three categories along with error bars.
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‘ Df SumSq MeanSq F value Pr(>F)
WW Away Team | 2 16496 8248 17.01  4.26e-08 ***
Residuals 7217 3499141 485

Table 3: Output of ANOVA applied to the mean of the PD for three levels of WW Away Team.

Holm Adi. Bonferroni Adj.
| ASN AL I ASN AL
AL | 002 - | AL | 006 -
ASP ' 53e-08  3.2e-07 ASP ' 5.3e-08  4.9e-07

Table 4: p-values for pairwise comparisons of the mean of the PD for three levels of WW Away Team.

Means by Staus of WW Z-Score for Away Team

Status

I Avn
[ %3
[

Mean PD (Home Score — Away Score)

0-

Figure 1: Mean of PD for each category for Away Team.

4 Comparison of Means for Game Statistics

In [3], Wagner lists a number of game statistics which are significant variables in predicting the point differ-
ential for the game. In order to get more insight into how the number of switches between types of offensive
plays for the away team affects the point differential, we compared the means of several of these statistics
across the three categories of the status of the WW Z-score for the away team.

The variables we looked at were:
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DTOP: Difference in time of possession (Home TOP - Away TOP).

DRY: Difference in Rushing Yards (Home RY - Away RY).

DPY: Difference in Passing Yards (Home PY - Away PY).

DFDR: Difference in First Downs from Rushing (Home FDR - Away FDR).

DFDP: Difference in First Downs from Passing (Home FDP - Away FDP).
DFDPen : Difference in First Downs from Penalties (Home FDPen - Away FDPen).

We ran an analysis of variance for each statistic above and found significant differences in the means
across the categories ASP, AL, ASN only for DRY and DFDR. Tables 5 and 6 show the results of our
analysis of variance and the follow up comparison of means with Bonferroni adjustment, for the variables
DRY and DFDR respectively. Figure 2 shows the barplots for the means of the other variables on our list
across the categories ASP, AL, ASN . Despite the fact that the differences between means are not statistically
significant, they do show an upward trend as the number of switches in play types increases across the three
categories, most likely contributing to the significant increase in the point differential in favor of the home
team when the away team in in the category ASP.

5 Conclusion and Further Study

The most surprising result in this study was that teams who switched between offensive play types less often
were at no disadvantage, despite having what would appear to be a more predictable sequence of plays. In
fact, for the away team, this style of play seems to be advantageous.

The asymmetry between the effect of randomness of play calls for the home and away teams is also
something of a surprise. For home teams, there was no significant difference in the probability of win
between those teams whose play sequences fitted the random profile and those who had play sequences that
did not. On the other hand for the away teams, teams who had offensive play sequences that did not fit the
random profile and had relatively large numbers of switches between play types had a significantly smaller
proportion of wins than the away teams in other categories. In fact we saw that away teams with non-random
offensive play sequences but fewer switches between play types had a significantly more favorable rushing
yard differential than the away teams in the other categories.

We see that non-random offensive play sequences with high numbers of switches between play types
puts the away team at a disadvantage and is not a good choice of strategy. On the other hand, teams with a
significantly lower number of switches in offensive play types than that expected in random sequences are
not at a disadvantage because of their increased predictability. In fact, they have a borderline advantage in
the point differential and a significantly advantage in rushing yard and first downs from rushing differentials
(DRY and DFDR resp.) when compared with the away teams in other groups.

The fact that play sequences with high numbers of switches between play types lead to poor outcomes for
the away team indicates that it is a factor that plays some role in home advantage. The nature of that role may
be cause and effect, or it may be part of a more complex dynamical system that leads to the disadvantage for
the away team. However, since the sequence of offensive plays is a factor which can be controlled to a large
extend by the offensive team, it is an association worthy of attention. Overall, the study seems to indicate that
it is in the interest of the away team to make sure that the number of times they switch between offensive play
types is not significantly higher than that expected in a random sequence. The results on the point differential
and key game statistics suggest that it may well be advantageous to keep switched between play types at a
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Barplots for DTOP, DPY, DFDP and DFDPen
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Figure 2: Means of variables DTOP, DPY, DFEDP and DFDPen for all three levels of WW Away Team.

Mean DFDP (Home FDP - Away FDP)
Mean DFDPen (Home FDPen - Away FDPen)

minimum. Both the home and away teams should note that teams with increased predictability resulting
from a reduction in the number of switches between offensive play types to levels below those expected in
randomly generated sequences are no less likely to win than their less predictable counterparts.

Further study plans for this project include examining the effects studied above when the sample is
restricted to the top 50 teams (selected using an average of a number of reputable rankings) from each
season. Clearly considering the interaction between offensive and defensive strategies would improve the
study greatly, however no defensive play-by-play data is publicly available.
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DRY : Difference in Rushing Yards (Home RY - Away RY)

Results of ANOVA
Df SumSq  Mean Sq F value Pr(>F)
WW Away Team 2 510149 255074 13.47  1.44e-06 ***
Residuals 7217 136617288 18930
Means
Levels off WW Away Team | ASN AL ASP
Mean DRY 431 28.75 63.71
Paired Comparisons with Bonferroni Adjustment
AHN AL
AL 0.0033 -
AHP 6.5¢-07 0.0003
Barplot of Means

Mean DRY (Home RY - Away RY)

Means by Staus of WW Z-Score for Away Team

names
I AN
W Ave
[

Table 5: Statistical Analysis for DRY for three levels of WW Away Team.
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DFDR : Difference in First Downs from Rushing (Home FDR - Away FDR)

Results of ANOVA
Df Sum Sq Mean Sq F value Pr(>F)
WW Away Team 2 1818 908.9 21.22  6.47e-10 ***
Residuals 7217 309112 42.8
Means
Levels off WW Away Team | ASN AL ASP
Mean DFDR -0.43 1.36 3.04

Paired Comparisons with Bonferroni Adjustment

AHN AL
AL 1.5e-06 -
AHP 6.1e-10  0.00026
Barplot of Means

Means by Staus of WW Z-Score for Away Team

Mean DFDR (Home FDR - Away FDR)

|

names
I AN
W Ave
[

Table 6:
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Abstract

In Volleyball, complex 1 consists of the serve’s pass (reception) - setting - attack skills in
this specified order. This sequence is a stable pattern to win a point. Furthermore, it is
important for the teams’ success. Taking into account that this pattern is a first-order Markov
chain, the creation of a probability transition matrix is feasible. Assuming multinomial
likelihood with a Dirichlet prior on the transition probabilities a Markovian transition matrix
can be constructed and the calculation of conditional success probabilities is, thus,
achievable. Data from the performance analysis of the winning team from recent world
championships in three age categories (U19, U21, Men) of male Volleyball is used. The
findings lead to redefining target pass area and to shrinking the evaluation scale at least for
the teams under study. Moreover, pass accuracy is necessary because it must give at least two
options for attack, but not sufficient condition for the success of attack in all age categories
for male Volleyball. In the U19 age category, there is a lack of stabilization in the complex 1
sequence after pass against jump spin serve.

1 Introduction

Volleyball consists of 3 stable patterns to win a point: pass-setting-attack after pass- outcome serve-
outcome and block-dig- setting- attack after dig or counterattack-outcome (Florence, Fellingham, Vehrs, &
Mortensen, 2008). For each pattern three are the possible outcomes: win a point, continuation of the action
and a point for the opponent. In rally point system the pattern pass-setting-attack after the pass is the
necessary condition to claim the victory because in terms of probability winning a point when receiving is
easier than winning a point when serving in male volleyball(Calhoun, Dargahi-Noubary, & Shi, 2002;
Ferrante & Fonseca, 2014).

Winning teams were significantly better in attack after pass than losing teams (Hayrinen, Hoivala, &
Blomgvist, 2004) and attack after pass emerged as a decisive factor for team’s success (Patsiaouras,
Charitonidis, Moustakidis, & Kokaridas, 2009). It is crucial for a team to organise a tactically well
structured and highly synchronised offensive game after receiving opponents serve. It is the hierarchical
order of skills in Volleyball that makes the performance in one skill depends on the performance in the
previous one. The precise pass is a powerful aggressive tool for high-level teams and is a good predictor for
winning (Zetou, Moustakidis, Tsigilis, & Komninakidou, 2007). For many coaches receiving well is a
guarantee for a winning attack. The connection between the quality of pass and achievement in attack is
undoubted for men age category in many types of research. A partial rejection of this belief is suggested by
Lobietti, Michele, & Merni (2006) who proposed that passing accuracy does not appear so fundamental but
it is important avoiding passing errors.

The assumption that pass-setting-attack after pass pattern is a first-order Markov chain allows the
recording of these sequences in a transition probabilities matrix where data of the matrix represent the
probability to move from one state to another and, finally, to an outcome. With the use of the Bayesian
analysis, the past team’s performance or the coaches’ opinions about passing effects in the attack can be
taken into consideration as a prior distribution in order to create with actual data the posterior distribution
and, consequently, the conditional success probability.

Thus, the aim of this study is to determine the influence of each level of a pass to the success of attack
in 3 different age categories (U19, U21, Men) for male high-level Volleyball.
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2 Method

All recorded data refer to the performance in pass and attack after the pass of the winning team of the
world championship for national teams in three age categories for male volleyball. All data record the
performance on selected matches of the World national team champions (Poland in Men, 2014; Russia in
U21 and in U19 for 2013). Thus the initial sample (N=) was 815 for Men, 525 for U21 and 407 for U19
passes respectively. For the evaluation of pass, a 6-level ordinal scale was used with the 1* level being a
passing error and the 6 level to be a pass performed in an optimal way. In Table 1 the performance ratings
and a brief description of each passing level are presented. Attack was evaluated with three possible
outcomes: point for the team under observation, rally continuation and point for the opponent.

Table 1.Performance ratings for a pass (vs Jump Spin & Jump Float Serve)
Level code
(Symbol)

Level brief description

The ball was passed accurately with suitable height, speed and parabolic
trajectory in the target area (3m-4m from the right sideline and about 30-50

6(#) cm from the net or over 30-50 cm over the net if setter has the ability to
jump setting). The setter could have all the options (location & type) for a
set from the sidelines and the central lane without any adjustments in his
approach to the ball.

The ball was passed either away (Im. behind or 2m. in front of the target
area), or travelled higher, or lower (setter’s shoulder level). The setter could

5(H) have all the options for attack (location & type) from the sidelines and the
central lane with adjustments in his approach to the ball.

The ball was passed with either 3m away from the net or near the sidelines
4 or to the top of the net. The setter could have two options for attack only
from the sidelines.

The ball was passed with very poor parabolic trajectory or near the sidelines,
end line or outside of the court. The setter could have just one mandatory

3() option for attack or the setter could not approach the ball and another player
sets the ball mandatory.

The ball was passed directly to the serving team court. No option for attack
2(/) for the receiving team.

The ball hit the floor directly or after touched by a receiver. The rally was
ended after Ist or 2nd contact.

1)

The observer was a volleyball coach, expert in evaluation and recording of volleyball performance
data and excellent user of the software. The interobserver reliability of the data collection and recording
was checked by a test-retest procedure, with a one-week interval, from a random sample of 100 actions of
stable pattern pass-set attack after pass-outcome for each one of the teams under observation. As the
acceptable value of Adjusted Cohen’s Kappa was set 0.80 (Altman, 1991). The interobserver reliability in
evaluation and recording of data was well established because of acceptable Adjusted Cohen’s Kappa
values calculated after the test-retest procedure. The values were 0.91 and 0.90 for a pass against jump spin
and jump float serve respectively.

Every time the opponent serves the ball on the side of the observed team a sequence of events takes
place that follows a specific scheme: pass—set—attack after pass—outcome. An assumption that this scheme
is a first-order Markov chain is stated. This sequence was recorded in a transition probability matrix where
data of the matrix represent the probability to move from one state to another and finally to reach an
outcome. In this way three (one for each team) transition probabilities matrices were created.
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A simple Bayesian model F’(Yt = Sk |Yt = Si)to estimate the transition probabilities, and through
them, the success probabilities were made. A multinomial likelihood for each row (i.e. level of the pass)

f(Yigsnes Yins Yinets Yinea | Fitseeos i i 15 Finin) OF H Ty
ke,
1 nes y . . . . .
with S = > 7 =1 for each i; where A4; is the set of indexes corresponding to possible following
k=1 ke
skill §;, was assumed. Given that the interest was in what the data suggest on the relationship between the
different states of the sequence, a minimally informative prior distribution is assumed. A conjugate
Dirichlet prior distribution was used where each row of the prior parameters were all assumed to be equal
to one (except those that were constrained to be zero). All conditional probabilities scores were calculated
using a simple Monte Carlo scheme of 10,000 iterations to acquire a random sample from the posterior
distribution. For a detailed description of the model see Drikos, Ntzoufras, & Apostolidis (2019).

3 Results

The posterior means of conditional probabilities for each no terminal level of the evaluation scale for
jump spin and jump float serve are presented in Table 2. Level 1 of pass scale is a terminal level and its
probability to move to another state or to reach a positive outcome is zero. For level 2 of the pass, there is a
noticeable finding. After overpass against jump spin serve the receiving team keeps a sufficiently higher
probability (0.45) to win a point than to keep the ball in its court and have a mandatory attack (level 3). As
expected, the pass in level 4, 5, and 6 of the scales have higher conditional probabilities. An important
increase of probability to win a point is obvious when the pass is evaluated as level 4 (two options from
sidelines) contrary to evaluation as level 3 (one mandatory option for the setter). This increase is 0.21, 0.16,
0.28 against jump spin serve and 0.19, 0.19, 0.16 against jump float serve for Men, U21, and U19
respectively. For U19 against jump serve the probability to win a point with pass level 4 is higher than with
more precise passes (levels 5&6). Comparing success probabilities between levels 5 & 6 it is clear that
more precise pass (level 6) does not mean higher success probabilities. Taking into consideration the
standard deviation of each posterior mean, it is clear that success probabilities of a pass in levels 5 & 6 are
almost equal for each age category. Also in Table 2, the tail posterior probability level of differences across
age categories for each level of pass evaluation scale is presented. It is remarkable that the U19 team has a
significantly higher probability of taking a point after a pass level 4 against both types of serve (offensive
options only from sidelines) than U21 and Men team. Also, the U19 team has a higher probability to gain a
point after an overpass against jump spin serve than both U21 and Men. Meanwhile, the U19 team has a
higher probability of winning a point compared to U21 when the pass from a float serve is accurate on the
net (level 6).

Table 2. Posterior means (+sd) of conditional probabilities and summary of posterior differences
across age categories for each no terminal level of pass evaluation scale

] Skills Posterior
Skills (5) i) Men Uz v differences’

Pass in Jump 2()) 0.274 (£0.058)  0.266 (+0.053)  0.454 (+0.124) Men,U21<U19
3(-) 0.308 (£0.038)  0.337 (+0.055)  0.307 (+0.090)
401 0.548 (£0.022)  0.515 (£0.033) 0.631 (£0.045) Men<U19, U21<<U19
5(+) 0.593 (£0.022)  0.548 (+0.029) 0.605 (+0.045)
6(#) 0.589 (£0.0212) 0.545 (£0.032)  0.565 (+£0.048)
Pass in Jump 2(/) 0.256 (£0.046) 0.188 (£0.069) 0.281 (+0.049)
3(-) 0.325 (£0.039)  0.304 (£0.052) 0.412 (+0.079)
41 0.539 (£0.024)  0.513 (£0.031) 0.603 (£0.035) Men<U19, U21<<U19
5(+) 0.581 (£0.022)  0.563 (£0.027) 0.616 (+£0.031)
6(#) 0.569 (£0.022)  0.558 (£0.026) 0.629 (+0.030) Men<U19,U21<<U19
" Inequalities indicate important differences between age categories: Age category A has lower success
rates than age category B with posterior probability less than 0.01 ("A<<<B"), between 0.01 and 0.05
("A<<B"), between 0.05 and 0.10("A<B").
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A detailed preview of success conditional probabilities are provided in Figures 1&2.
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Figure 1 and 2.Box-plots (with outliers) of success conditional probability of each no terminal level of
evaluation scale for a pass in Jump spin serve and for a pass in Jump float serve.

4 Discussion

The target for the receiver is an area close to the net or sometimes over it (3m-4m from the right
sideline and about 30-50 cm from the net or over 30-50 cm over the net if the setter has the ability for jump
setting). The pass that is directed to the court of the serving team (2nd level, that is to say, overpass) and the
pass with the one-option setting (3rd level of the evaluation scale) have the same characteristics at all ages,
with an exception of U19 only for a pass against jump spin serve. The penalty for the overpass is higher
compared to this for a 3 level pass. Also, the pass level 6 on the net or too close to the net does not present
a higher probability compared to the 5™ level. Silva, Lacerda, & Joao (2014) have mentioned the possible
difficulty of the setter to handle a ball on the net. These findings follow the conclusions of Miskin et al.
(2010) that, at least for the teams under consideration, the target area of a pass on the net must be more
conservative.

In all age categories, the probability of winning a point in the stable pattern pass-set-attack after the
pass is above 0.5 when the pass is evaluated on levels 4, 5, 6 of the evaluation scale. Thus, the first priority
for a team should be to keep the ball in its court giving the setter the opportunity to choose at least between
two attackers from the sidelines (outside hitter and opposite). The coaches’ belief that a good pass is a
guarantee for an effective attack can be more specified by pointing out that a pass which secures at least
two attacking options increase the probability of a successful attack for all age categories in male
Volleyball. This is in partial agreement with many studies about the relationship between pass and attack.
The lack of discrimination between the 5™ and 6™ level of evaluation scale according to success
probabilities ensures the finding of Lobietti et al. (2006) that passing with high accuracy is not a necessary
condition for a successful attack. Also, this means that, at least for the teams under examination, the
passing rating system has to be changed. A possible junction of 5™ and 6™ level should be examined.

The large discrepancy of success probability from 1%, 2™ and 3™ in relation to 4™, 5™, 6™ level of the
pass evaluation scale is a clear message that the probability of success is not increasable as the evaluation
grade gets higher. This phenomenon is observed in all age categories. There is no a fixed interval between
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levels of the scale, thus the assumption of treating ordinal data as numerical data and the use of descriptive
statistics, such as mean and standard deviation, for the evaluation of teams’ or players’ performance may be
groundless. The same has been concluded by Florence et al. (2008) after examination of a college women’s
volleyball team.

It is difficult to explain the finding that the U19 team has higher probabilities after an overpass against
jump spin serve instead of keeping the ball in its court with only one option for attack. It is clear that this
analysis is applicable only to these teams, their level and their opponents and generalisations may be not
applicable to other teams. In the model, only the next two touches of the team under observation were
recorded, so it is highly likely that a point after an overpass is due to opponents’ error. But even with this
assumption, it is important to mention that the jump spin serve has a higher speed than jump float serve and
the reaction time for receivers is reduced in <0.5s (Pena, Busca, Galceran, & Bauza, 2013).

Consequently, the reaction time is also limited to the serving team too, especially if they are not well

prepared to play an opponents’ overpass as a free ball.
Team U19 after pass level 4 against jump spin serve is more effective than Men & U21 teams. Also, it is
noteworthy that there is not increased the probability to win a point when passing performance rises above
level 4, contrary to Men and U21 teams. Performance of Ul9 team in pass-set-attack after pass pattern
confirms the findings of Costa G. C. et al. (2011) that subsequent actions do not have high functional
dependence in relation to the precedent ones in the age category of U19 due to the fact that because of lack
of players’ maturity the game is not well integrated.

To sum up, the present study is validating the six-level scale for evaluation of pass, it is developing a
Bayesian model including prior distribution and is applying this model to performance data of world
champion teams in three age categories. The conclusion reached is that for all ages the quality of pass is
important to ensure at least two offensive options for the setter. Furthermore, the discrepancy of success
probabilities among the levels of the scale makes it clear that for this ordinal scale it is unrealistic to use
descriptive statistics, like a mean and standard deviation. Finally, the target area of the pass must be more
conservative and the evaluation scale must be shrunk, at least for teams under observation.
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Abstract

Unlike what happens for other major sports such as football, basketball and baseball,
modeling volleyball match outcomes has not been thoroughly addressed by statisticians
and mathematicians. The main reason could be the game complexity: the total number
of sets is a random variable which ranges from a minimum of three to a maximum of five;
the number of points achieved by the two competing teams in each set varies depending
on whether they are playing the fifth set or not; the number of final set points for two
competing teams may exceed 25 when both the teams reach 24 points (24-deuce). We
propose a Bayesian negative binomial model for the points achieved by the team loosing the
single set, modelling the probability to realize a point via some team-specific point abilities;
the probability of winning a set depends on team specific set abilities. Both point and set
abilities are assigned some weakly informative prior distributions. We used goodness of
fit tools to compare our proposal with other competing models on Italian Superlega 2017-
2018, and MCMC replications from the predictive distribution as a simulation device to
reconstruct the league. Preliminary results show that our model outperforms Poisson and
binomial models in terms of DIC and is adequate in replicating the final ranking of the
league.

1 Introduction

Statistical modelling for sports outcomes is a trend topic and the community of scholars involved
to this task is still growing. Unlike what happens for other major sports such as football
[4], basketball and baseball [5], modeling volleyball match outcomes has not been thoroughly
addressed by statisticians and mathematicians: early attempts date back to [1] and [2]. The
goals and the points realized over football and basketball matches are cumulative from the
beginning to the end of the game: in such situations a model for the total scores is required.
The complexity of volleyball in terms of final scores may be essentially summarized by three
arguments: the total number of sets of a volleyball match is a random variable which ranges
from a minimum of three to a maximum of five; moreover, the number of points achieved by
the two competing teams in each set varies depending on whether they are playing the fifth
set or not; finally, the number of final set points for two competing teams may exceed 25 when
both the teams reach 24 points (24-deuce). Volleyball outcomes consist of a natural hierarchy
of points within sets, and both the measurements are random variables.

In our perspective, the task of modelling volleyball match results should follow a top-down
strategy, from the sets to the single points. Thus, defining the probability of winning a set is the
first step; building up a generative discrete model for the points realized in each set is the second
step. Although following this order is not mandatory, we maintain with the idea to replicate the
hierarchy of the game into our models. In this paper we propose a set-by-set negative binomial
model for the points achieved by the team loosing the single set: the distribution of the points
is then conditional to the set result. Another aspect to consider is the strengths’ difference
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among the teams: weaker teams are of course not favoured when competing against stronger
teams, and a parametric assumptions about teams’ skills is needed. In the Bayesian approach
teams’ abilities are easily incorporated into the model by use of some weakly-informative prior
distributions [3]: similarly to what happens for football models [4], the abilities may regard
both attack and defense skills, and, moreover, be considered as dynamic over the season [6].

The rest of the paper is organized as follows. In Section 2 we introduce some discrete
models for volleyball outcomes, such as Poisson and binomial. Model extensions are thoroughly
presented in Section 3, whereas model estimation and goodness of fit tools are detailed in Section
4. MCMC replications for the negative binomial model, the final selected model, are used in
Section 5 to assess its plausibility in comparison with the observed results and to reconstruct
the final rank of the league. Section 6 concludes.

2 Models

Let Y14 and Y, are the points for each set g = 1,2, ..., G collected by the two competing teams,
and W, is the binary indicator for the win of the home team. Then we can calculate Yy, the
number of points for the team loosing the g-th set using the equation Yy, = W,Y5,+(1—Wy)Yq,.
We describe three different models to address the problem.

2.1 Truncated negative binomial model

We denote by NegBin(r,py)I(Z < c) the right truncated Negative Binomial distribution, where:
pg (1 —pg) denotes the probability of realizing a point for the team winning (loosing) the set g;
r = 25 because each set is played until the winning team achieves 25 points; the right truncation
has been fixed at ¢ = 23 points since this is the highest number of points that can be achieved
by the loosing team (under the assumption of no ties).

The model for the total points realized by the team loosing the g-th set, for g =1,...,G, is
specified as a mixture as follows:

Yy =W,yYae + (1 - W)Yy
Yy ~ NegBin(25, pg)I(Y, < 23) (1)
W, ~ Bernoulli(wg),

where the number of points for the team loosing the set are realized by team B (A) if team A

(B) wins the set, i.e. W, =1 (W, = 0). Both set and point probabilities wy and 1 — p, depend
on some team specific abilities. Team A wins the set with probability wg:

logit(wy) = Hs + aa(g) — ap(g),; (2)

where H, is the set home advantage for the hosting team, and « 4¢4), ap(y) the set teams abilities
for teams A(g) and B(g), respectively. The logit probability of realizing a point when loosing
the set is defined as:

1—pg
9

log =+ (L=Wo)Hy + (Bagg) — Bp(g)(1 —2Wy) (3)

where p is a common baseline parameter, H,, is the point home advantage for the hosting team,

Ba(g): Br(g) are the point teams abilities for teams A(g) and B(g), respectively. The sampling
distribution in (1) is an upper truncated negative binomial, with upper truncation at ¢ = 23.
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Let us focus for a moment on the untruncated negative binomial, for which the average number
of points for team A (evaluated if W, = 0) and team B (evaluated if Wy = 1) in the g-th set
are, respectively:

1—
EYi] = i g = 25—2

= 25 exp {,U + Hp + ﬂA(g) - /33(9)}
9 (4)

1-p
; 9 = 25exp {u—ﬁA(g) +5B(g)}'

E[Ya,) = pipg = 25

Consider the first equation: the larger is the difference B4, — Bp(y), and the higher is the
expected number of points team A will win when loosing a set. Equivalently, the lower will be
the number of points team B is winning when loosing a set.

However, in our model the loosing-set team can reach at most 23 points (in case of no
extra points), then we need to reconsider the expected number of points of the loosing team
(i.e. equations (4)) in light of the upper truncation at ¢ = 23. From [7] we know that if
X ~ NegBin(r,p)I(X < ¢), then its mean value is E(X|X <¢) =pu— %%, where the
untruncated mean is g = r(1 — p)/p, whereas f(c+ 1) and P(X < c¢) represent the probability
mass function and the cdf of the untruncated negative binomial distribution, NegBin(p, ),
evaluated in ¢, respectively. Then, the truncated means are:

24f(24)
EY1,Y1, <23] = - =
[ 19| 1g = ] IU/A79 ng(YA,g S 23)

= 25exp {p+ Hy + Bagg) — Bprg) } — c*
24f(24)
ng(YA,g S 23)

=25exp {1 — Ba(g) + Br(g) } — *»

ElY2|Y2g < 23] = pp,g —

%, cx > 0. The interpretation is identical wrt the untruncated case: the
9 g =

higher is the set bility of a team, the higher will be the number of points when loosing a set.
However, the untruncated mean is subtracted by the positive factor cx, which forces the loosing
team points to be lower or equal than 23 (see Figure 1 for a graphical comparison between the
untruncated and the truncated negative binomial). In Section 3 we will extend the model to
allow for eventual extra points after 25.

where cx =

2.2 Binomial model

We denote by Bin(n,1 — pg) the binomial distribution, where 1 — p, denotes the loosing team
probability of realizing a point in the g-th set and n is the total number of points Y3, + Ya,
realized in the same set. The model for the points Y, realized by the team loosing the g-th set
is the same as in (1), but the likelihood is binomial:

Y, ~ Bin(n, 1 - p,) (6)

As for the negative binomial case, equations (2) and (3) model the team A probability w, of
winning a set and the loosing-set team probability of realizing a point, respectively.

88



MathSport International 2019 Conference Proceedings

Neg Binomial Truncated Neg Binomial
wn |
N
2 g | B e e
£ £
g g 81
E o - €
E — E 3 -
g 8 ER
8 8
s 8 s ©
X X
w w
o — o
T T T T T T T T
0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
P P

Figure 1: Expected number of points for a team loosing a set according to the negative binomial
(left plot) and the truncated negative binomial with upper truncation at ¢ = 23 (right plot).
As the point probability for the team winning the set increases, the expected number of points
decreases.

2.3 Poisson model

We denote by Pois(\g) the Poisson distribution, where the rate parameter A, represents the
average number of points realized in the g-th set by the loosing team. The model for Y is then:

Yy~ Pois(v,) (7)

Team A probability w, of winning a set is defined by (2), whereas the logarithm of the average
number of points realized by the loosing-set team in the g-th set is modelled as:

logyy, = p+ (1- Wg)Hp + (BA(g) - ﬁB(g))(1 - 2Wg)~ (8)

3 Model extensions and further assumptions

3.1 Prior distributions and constraints

The Bayesian model is completed by assigning some weakly informative priors [3] to the set
and point abilities, for each team ¢ = 1,...,nteams:

ay, By ~ Normal(0,1) (©)
w, Hy, Hy ~ Normal(0, 10%)

In order to achieve identifiability, set and point abilities need to be constrained; in such a
framework we impose a sum-to-zero constraint for both « and .

3.2 Attacking and defensive abilities

In many sports, such as football, basketball, hockey, there is the need to separately model the
abilities arising from attacking and those coming from the defence. A proper assumption for
the point abilities could then be:
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Bag) = attarg) +defa(g)

(10)
BB(g) = attp(g) + defp(g),

where att 4(4), att p(g), def4(q), defp(4) are the attack and the defence abilities for the two teams,
respectively. Many extensions could be proposed: in the basic models of the previous sections,
we assumed that att 4.5 = defy(y), attp(y) = defp(y), with no need of distinguishing between
attack and defence skills.

3.3 Zero inflated Poisson (ZIP) for the extra points

To allow for eventual extra points due to the 24-deuce, the three models in Section 2 may be
extended specifying a zero-inflated Poisson (ZIP) model for the extra points collected by the
loosing-set team. The number of extra points is zero if the loosing-set team does not reach 24
points, and greater than zero otherwise. The ZIP model is then defined for g =1,...,G as:

Yy = WyYaq + (1= Wy)Yiy
Yy~ Oy + WyLog+ (1 —Wy)Liy (11)
Oy ~ ZIPoisson(pog, Ag)-

The zero inflated Poisson (ZIP) distribution for the number of extra points O, collected by the
loosing-set team in the g-th set is then defined as:

fz1p(0g) = pogl(0g = 0) + (1 — pog) f(0g5 Ag), (12)

where po4 describes the proportion of extra zeros and f(og4; Ag) is the probability mass function
of a Poisson distribution with rate parameter \,. The probability to observe a zero should
be strictly related to the abilities between the two competing teams, since the greater is their
difference and the less likely should be the probability of a tie:

logit(pog) =m + d(aa(g) — ap(g)) +7(Bagg) — Br(g))
log(Ag) =1 : (13)
8,7 ~Normal(0,1); 1 ~ Normal™ (0, 10?)

The log-linear model for A, is unstructured and 7 is assigned a weakly informative prior distri-
bution, an half-normal distribution with location 0 and scale 10.

3.4 Dynamic abilities

Teams performance are likely to change over an entire season, and temporal trends may be
helpful for modelling the ability of a given team in a given period. A dynamic structure
assumption for the abilities is a step forward, a natural choice is an auto-regressive model for
both the point and the set abilities. For each team t and match n, n = 2,..., N we specify:

. ~Normal(ay ,,—1,02)

14
Bi.n NNormaI(ﬁt,nAvU%)a Y
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whereas for the first match we assume:

at1 ~Normal(0, 02)

5 (15)

Bt.1 ~Normal(0,03),
As mentioned in Section 3.1, sum-to-zero constraints are required for each match-day to achieve
identifiability. o2 and U% are assigned two inverse Gamma priors with shape and rate parameters
equal to 0.001.

3.5 Connecting the abilities

In equations (2) and (3) set and point abilities are separately modelled: conditionally on win-
ning/loosing a set, point abilities are then estimated from the probability to realize a point.
However, we could use them as jointly by defining a sort of global ability measure:

1-p
log — L =p+ (1= Wo)[Hy + (Ba) — Brg)) +11laa) — ang)l+ (16)
g

+ Wyl(Bp(g) = Baig)) +12(ap(g) — aa))l;

where parameters v; and v, summarize the effect of the set abilities. For illustration purposes
only, just reason in terms of team A. If two teams are almost equally strong, then the set
abilities difference a4(4) — ap(g) is very small, and the point probability is entirely driven by
the point abilities. Conversely, when two teams are expected to be quite far in terms of global
performance, then the set abilities difference is expected to be high, and, consequently, the
probability to realize a point is much affected by the parameter ;.

4 Estimation

We used the rjags R package (MCMC sampling from the posterior distribution using the Gibbs
sampling) to fit the models. Data come from the regular season of the Italian SuperLega 2017-
2018 and consist of a seasonal sample of 680 set observations, for a total number of 182 matches
and 14 teams.

In Table 1 we report the DIC for each model with the corresponding number of parameters:
in this table we counted only the primitive parameters - for instance the set and point abilities
« and 8 - and not the transformed parameters - such as the set and point probabilities w and p,
specified in terms of some logit transformations involving the primitive parameters Hy, H,,, o, 5.
The ZIP truncated negative binomial model presented in Section 2.1 is the best fitted model.
A dynamic structure seems not to improve over the fit, likewise considering the attack and the
defense abilities as separately.

Posterior estimates for the set home advantage Hy, the point home advantage H,, the grand
intercept p and the ZIP parameters 7, m,d,~ are reported in Table 2. There is a clear signal
of home advantage both at the set and at the single point level; a small positive association
is observed concerning the differences in terms of point (parameter J) and set (parameter )
abilities.

Set and point abilities for each team are displayed in Figure 2, in terms of posterior means
+ standard errors. The estimates are displayed following the final actual rank of the Italian
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Model distribution Additional model details # param.  DIC
1. Neg. binomial r =25 31 4779.3
2. Poisson log-linear model for v, 31 4574.5
3. Binomial ng ~ Pois(46) 31 8031.6
4. ZIP Tr. Neg. bin. 35 4544.1
5. ZIP Tr. Poisson 35 4565.3
6. ZIP Tr. Binomial ng ~ Pois(46) 35 8408.7
7. ZIP Tr. Neg. bin. att # def 49 -

8. ZIP Tr. Neg. bin. oy, B¢ dynamic 737 4721.7

Table 1: Details of the fitted models: Italian SuperLega 2017-2018 season (MCMC sampling,
500 iterations).

Mean Median sd 2.5% 97.5%

H, 0.16 0.16 0.08 -0.00 0.31
H, 020 0.19 0.07 0.07 0.34

I 0.36 0.36 0.05 0.26 0.46
n 1.38 1.38 0.07 1.26 1.50
m  2.13 2.10 0.12  1.90 2.39
0 -0.20 -0.20 0.76 -1.69 1.24
ol 0.09 0.09 0.18 -0.26 041

Table 2: ZIP truncated negative binomial model: Posterior estimates for the following param-
eters: the set home Hy, the point home H,,, the grand intercept u; 7, m, v, § (ZIP part).

SuperLega 2017-2018: the global pattern mirrors almost perfectly the final rank. BCC Castel-
lana Grotte, the worst team in the league, is associated with the lowest abilities, whereas Sir
Safety Perugia, the league winner, registers the highest set and point abilities.

5 League reconstruction and predictive measures of fit

To assess the in-sample predictive accuracy of our model we try to reconstruct the league in
terms of final points and rank positions. Table 3 reports the expected final points obtained from
MCMC sampling along with the observed points and the final teams rank. The prediction is
quite good for the majority of teams, only the positions of a few of them are switched, however
the pattern is quite close to the observed one.

For each set g, we denote by d, the set points difference Y4, — Y24, and with Jgs), s=1,...,8

the corresponding points difference arising from the s-th MCMC replication, j/g) - gg‘;’. Once
we replicate new existing values from our model, it is of interest to assess how far they are if
compared with the actual data we observed. Figure 3 displays the predictive distribution of
each d§5> (light blue) against the true observed distribution for dg: the replicated distribution
seem to perfectly mirror the observed distribution.
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Figure 2: ZIP truncated negative binomial model: posterior means + s.e. for the set abilities a
and the point abilities 3, ordered by the actual final rank of the Italian SuperLega 2017-2018.

Teams Fxp. Points  Actual points  Actual rank
Sir Safety Perugia 70 70 1
Cucine Lube Civitanova 63 64 2
Azimut Modena 60 60 3
Diatec Trentino 52 51 4
Calzedonia Verona 50 50 5
Revivre Milano 44 44 6
Bunge Ravenna 41 41 8
Wixo LPR Piacenza 41 42 7
Kioene Padova 35 35 9
Gi Group Monza 28 28 10
Taiwan Exc. Latina 26 25 11
Callipo Vibo Valentia 13 13 12
Biosi Sora 13 13 13
BCC Castellana Grotte 10 10 14

Table 3: ZIP truncated negative binomial model: final league reconstruction from MCMC
sampling along with the actual points and the actual final rank for each team.

93



MathSport International 2019 Conference Proceedings

0.09

0.06
Yrep

0.03

J

0.005; -10 0 10 20

Figure 3: ZIP truncated negative binomial model: distribution of the observed set points
differences d, = Y1,—Y3, (dark blue) against the MCMC simulated distribution dgs) = gﬁ) fjjéz)
(light blue).

6 Discussion

We end up to select a ZIP truncate negative binomial model for the volleyball match outcomes;
with such a choice, we allow for eventual extra points after the 24-deuce. Preliminary results
show a good plausibility of the model estimates in comparison of the observed results, and an
overall good ability to replicate the final rank of the league.

Further work should be done to formulate an overall measure of goodness of fit, both at
point and at set levels. Moreover, the inclusion of some game-covariates is of future interest.
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Abstract

Extreme value theory studies the extreme deviations from the central portion of a
probability distribution. Results in this field have considerable importance in assessing the
risk that characterises rare events, such as collapse of the stock market, or earthquakes of
exceptional intensity, or floods. In the last years, application of extreme value theory for
prediction of sport records have received increased interest by the scientific community. In
this work we face the problem of constructing prediction limits for series of extreme values
coming from sport data. We propose the use of a calibration procedure applied to the
generalised extreme value distribution, in order to obtain a proper predictive distribution
for future records. The calibrated procedure is applied to series of real data related to
sport records. In particular, we consider sequences of annual maxima for different athletic
events. Using the proposed calibrated predictive distribution, we show how to correctly
predict the probability of future records and we discuss the existence and interpretation of
ultimate records.

Keywords: athletic records, bootstrap, generalised extreme value distribution, prediction.

1 Introduction

From the very beginning, a big effort has been put into understanding the limits of human
being capabilities: how fast can we run or swim? How far can we jump? In the last decades
interest has mainly regarded the application of mathematical or statistical results in order to
describe the progression of records in several sport events and in particular for track and field
competitions.

Different approaches are used for assessing the probability of a new record or eventually the
determination of an ultimate record, that is a measure that will not be overcome ever. [8] and
[7] apply the theory of records to best annual performances. [10] propose a model for series of
records, based on a random walk structure. In [11] a nonlinear regression model is introduced
for fitting the progression of best annual results. Extreme value theory is applied in [9] to model
the tail of the distribution for annual best records. [4] also takes advantage of the theory of
extremes, enlarging the sample dimension by considering the personal best performance of as
many athletes as possible over a period of several years.

In this work we apply the generalised extreme value (GEV) model to best annual results
in the period from 2001 to 2018 for different athletic competitions. Depending on the data,
the estimated model may comprise an end point that depends on the estimated parameters, or
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not. We propose a bootstrap procedure that allows the computation of a calibrated predictive
distribution for best annual performances. The proposed predictive distribution works well in
regular cases, i.e. when the estimated model is unbounded, but can also be useful when the
end point of the support depends on the estimated parameters. Being calibrated, it allows to
compute the correct probability of improving a world record in regular cases and to assess the
quality of the endpoint of the estimated model in non regular cases.

The paper is organised as follows. In Section 2 we briefly describe the bootstrap calibrating
procedure and in Section 3 we define the family of GEV distributions. In Section 4 we apply
the proposed predictive procedure to athletic records.

2 Calibrated distributions for prediction

In this section we briefly review the calibrating approach proposed by [5], that provides a pre-
dictive distribution function whose quantiles give prediction limits with well-calibrated coverage
probability.

Suppose that {Y;};>1 is a sequence of continuous random variables with probability distribu-
tion specified by the unknown d-dimensional parameter § € © CRY, d > 1; Y = (Y3,---,Y,),
n > 1, is observable, while Z = Y, ;1 is a future or not yet available observation. For simplicity,
we consider the case of Y and Z being independent random variables and we indicate with
G(#;0) the distribution function of Z.

Given the observed sample y = (y1,...,¥yn), an a-prediction limit for Z is a function ¢, (y)
such that, exactly or approximately,

Py z{Z < co(Y);0} = «, (1)

for every 6 € © and for any fixed o € (0,1). The above probability is called coverage probability
and it is calculated with respect to the joint distribution of (Z,Y").

Consider the maximum likelihood estimator § = é(Y) for @, or an asymptotically equivalent

alternative, and the estimative prediction limit z,(6), which is obtained as the a-quantile of

the estimative distribution function G(-;0). The associated coverage probability is
Py z{Z < za(0(Y)); 0} = Ey[G{za(0(Y)); 0};6] = C(av,0) (2)

and, although its explicit expression is rarely available, it is well-known that it does not match
the target value a even if, asymptotically, C'(a,0) = a + O(n™1t), as n — +oo, see e.g. [1]. As
proved in [5], function

Gc(z;évo) = C{G(zaé)79}7 (3)

which is obtained by substituting o with G(z; é) in C(a,0), is a proper predictive distribution
function, provided that C(-,0) is a sufficiently smooth function. Furthermore, it gives, as
quantiles, prediction limits zg(é, 0) with coverage probability equal to the target nominal value
a, for all & € (0,1).

The calibrated predictive distribution (3) is not useful in practice, since it depends on the
unknown parameter 6. However, a suitable parametric bootstrap estimator for G.(z; é, 0) may
be readily defined. Let y*, b = 1,..., B, be parametric bootstrap samples generated from the
estimative distribution of the data and let 8°, b = 1,..., B, be the corresponding maximum
likelihood estimates. Since C(a,0) = Ey [G{z4(0(Y));0}; 6], we define the bootstrap-calibrated
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predictive distribution as
1 & o
GA(5:0) = 3 3 GLaal0"): 0 ooy (4)
b=1

The corresponding a-quantile defines, for each o € (0,1), a prediction limit having coverage
probability equal to the target «, with an error term which depends on the efficiency of the
bootstrap simulation procedure.

3 Generalised extreme value distribution

The previous result can be applied, with some care, to the context of extreme value prediction.
Indeed, assume that {X;};>1 is a discrete-time stochastic process with probability distribution
specified by an unknown parameter. Furthermore, let ¥; = maxger, Xi be the maximum of
the process over time interval T;, ¢ > 1. It is a well known result in extreme value theory
that, under suitable conditions and if the number of observations in each period is big enough,
the Y;’s are approximately independent and with the same generalised extreme value (GEV)
distribution; see for instance [2].

Now, assume that Y = (Y7,---,Y,), n > 1, is observable, while Z = Y,,;; is a future or
not yet available observation of the maximum of the process over the next time interval. Then
Yi,---,Y, and Z = Y, ;1 can be considered as independent random variables with the same
GEYV distribution function

G(Z;u,ff,f)exr){ {1+€<20u>}1/5}, (5)

with z such that 14+ &(z — p)/o > 0 and o > 0.
The GEV distribution has three parameters: a location parameter p, a scale parameter o
and a shape parameter . In particular, the values of £ determine the type of GEV distribution:

e & — 0 corresponds to the Gumbel distribution (type I);
e & > 0 corresponds to the Fréchet distribution (type IT);
e ¢ < 0 corresponds to the (negative) Weibull distribution (type I1T7).
It is important noticing that when & > 0 or £ — 0 the support of the distribution is not limited

from above. Only in the case when £ < 0 the support has an upper bound equal to p — o /€.
Inverting (5) we can achieve an explicit expression for the quantiles of the distribution:

p— g [1—{=log(a)}~¢] ifE#0

u— olog{—log(a)} if&E=0 (©)

Zo = Za(p,0,8) = {

with G(zq; i1, 0,&) = a. The value z, is also called return level and it indicates the value that
is expected to be exceeded on average once every 1/(1 — «) time intervals.
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4 An application to athletic records

In this section we apply the calibrated procedure to athletic records for two different purposes.
First, we estimate the probability of observing a new record in the next year and we predict
the expected time for a future record. This also allows to evaluate the goodness of a current
world record. Secondly, we discuss the existence of the ultimate record and we give the correct
interpretation to its estimate.

We have collected data from the web site of the International Association of Athletics
Federations (IAAF) [6]. Starting from 2001, we have registered the annual records for males
and females, for the following events: 100 m, 200 m, 400 m, 10,000 m, long jump and javelin.
We have transformed times into mean speeds so that, for each event, the higher the best.

4.1 Parameter estimation

The first step consists of estimating the unknown parameters of each distribution. In particular,
the estimates obtained for the shape parameters are very important because they determine
the particular distribution to be used inside the GEV family.

Here we consider three different methods of estimation: maximum likelihood, L-moments
and generalised maximum likelihood. In spite of its optimal asymptotic properties, the method
of maximum likelihood does not perform very well for small sample sizes. Instead L-moments
and generalised maximum likelihood estimates ensure a better fit, especially for the shape
parameter. In particular, estimation based on the generalised maximum likelihood retains large
sample properties of the maximum likelihood but improves on its small sample performance
(see, for instance, [3]).

Table 1 and Table 2 show estimates for the shape parameters £ obtained using the three
different estimating methods, for men and women, respectively. The first row of each table
reports maximum likelihood estimates (mle), the second row contains estimates obtained by the
method of L-moments (Lmom) and the third row is for generalized maximum likelihood (gmle).
All the estimated values for the shape parameters are negative, with an exception for women
long jump, for which the three estimates are positive. Thus, the corresponding estimative
distributions are reverse Weibull distributions for all events with negative shape parameter and
a Fréchet distribution for women long jump. In the sequel we will use generalised maximum
likelihood estimates.

estimate ‘ 100m  200m 400 m 10,000 m long jump javelin

mle -0.1618  -0.0826 -0.1781 -0.2157 -0.3984 -0.3231
Lmom | -0.1281 -0.0553 -0.2246 -0.0819 -0.3104 -0.3755
gmle -0.1281 -0.0553 -0.2246 -0.0819 -0.3104 -0.3755

Table 1: Men: estimates of the shape parameters for different events

estimate | 100m 200 m 400 m 10,000 m long jump javelin

mle -0.3343  -0.4416 -0.1658 -0.1269 0.1116 -0.3033
Lmom | -0.3069 -0.3006 -0.1330 -0.1803 0.1126  -0.1864
gmle -0.3069 -0.3006 -0.1330 -0.1803 0.3311  -0.1864

Table 2: Women: estimates of the shape parameters for different events
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4.2 Prediction

In this section we compare the estimative distribution function obtained from the generalised
maximum likelihood estimator with the bootstrap calibrated one, for each of the considered
events.

We will see that, using the bootstrap calibrated predictive distribution, we can properly
calculate probabilities related to the variable Z which represents the best performance in the
year to come. In particular we can predict the probability of having a new world record in
the next year as awpr = P(Z > WR), where WR represents the present world record. This
probability can also be used to evaluate the goodness of the world record. Moreover, from ayy g
we can calculate the expected number of years for the next record, Tywr = 1/awg.

In all the cases when the estimate of the shape parameter £ is negative, the estimative
distribution is a (negative) Weibull distribution. It has a bounded upper tail at UL = ji — 6 /<.
In the analysis of sport data UL is the estimate of what is called the ultimate record, which is
a value that cannot be exceeded by any performance. Instead, using the calibrated predictive
distribution we can show that the probability of exceeding UL, ayr, = P(Z > UL), is different
from 0. Unfortunately, in non regular cases when the support of the distribution depends
on unknown parameters, formula (4) is only useful for calculating the bootstrap calibrated
predictive distribution inside the estimated domain. As a consequence, when the present world
record exceeds the estimated upper bound, we cannot calculate ap r. This drawback is not
present for women long jump, since in this case the estimated shape parameter is positive,
giving rise to a Fréchet estimative distribution whose upper tail is unbounded.

Table 3 and Table 4 summarise the main results obtained for each considered event. In
particular they report for men and women, respectively: the estimate of the ultimate record UL,
the probability apr of exceeding that estimate, the present world record W R, the probability
awr of exceeding it and the expected time Ty g for improving it.

100m 200 m 400 m 10,000 m long jump javelin

UL | 10.797 12.052 9.431 6.804 8.871 95.364
ayr | 0.009  0.008  0.011 0.008 0.011 0.013

WR | 10.438 10.422  9.296 6.339 8.95% 08.48*
awr | 0.031  0.057  0.029 0.054 - -
Twr | 31.79 17.51 3391 18.62 - -

Table 3: Men’s summary results. * means that the corresponding world record is not included
in the data.

100m 200 m 400 m 10,000 m long jump javelin
UL 9477  9.368  8.449 5.897 - 78.318
ayr | 0.012  0.011  0.009 0.010 - 0.010
WR | 9.533% 9.372* 8.403* 5.690 7.52% 72.28
OWR - - 0.009 0.028 0.056 0.084
Twr - - 105.55 36.05 17.93 11.83

Table 4: Women’s summary results. *

included in the data.

means that the corresponding world record is not

Three different possible situations are illustrated and commented using data from men’s 400
m, women’s 100 m and women’s long jump.
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4.2.1 Men’s 400 m

Figure 1 shows the estimative (red dashed) and bootstrap calibrated (black solid) distribution
functions for men’s 400 m data. The bootstrap procedure is based on 5000 replications. The
present world record (blue dash-dotted) and the estimated ultimate record (red dotted) are also
represented. Here the original time data (sec) have been transformed into mean speeds (m/sec)
since the GEV model fits to maxima data.

For the transformed data, the estimate of the shape parameter is negative. This implies
that the estimative distribution function is a reverse Weibull distribution with upper bound
UL =ji—&/& = 9.431 m/sec. This corresponds to a time of 42.41 sec. The value UL is usually
interpreted as an estimate of the ultimate record which is the best possible performance in
the event. It is important noticing that this is just an estimate and, of course, it is subject
to variability. To account for this variability, we can use the calibrated predictive distribution
and correctly predict the probability of exceeding UL. As one can see in the plot, in fact,
this probability is the difference between the value 1 of the estimative distribution at UL and
the value of the bootstrap calibrated distribution at UL. Thus, ey = P(Z > UL) = 0.011.
Similarly, we can calculate the probability of improving the present world record of 43.03 sec,
WR =9.296 m/sec, as awr = P(Z > WR) = 0.029, meaning that we expect to improve the
present world record about 3 times every 100 years. This can also be taken as a measure of
goodness of a world record. Both probabilities oy, and aw g are wrongly underestimated by
the estimative distribution function because in the estimation procedure the true parameters
are substituted by their estimates without taking into account for the additional uncertainty
introduced. In particular, the estimative distribution underestimates to 0.016 the probability
of improving the current world record.

4.2.2 Women’s 100 m

Figure 2 shows the estimative (red dashed) and bootstrap calibrated (black solid) distribution
functions for women’s 100 m data. The bootstrap procedure is based on 5000 replications. The
present world record (blue dash-dotted) and the estimated ultimate record (red dotted) are also
represented. As in the previous example, the original time data (sec) have been transformed
into mean speeds (m/sec) since the GEV model fits to maxima data.

For the transformed data, the estimate of the shape parameter is negative, thus the estima-
tive distribution function is a reverse Weibull distribution with upper bound UL = ji — &/f =
9.477 m/sec. This corresponds to a time of 10.55 sec. We can use the calibrated predictive
distribution to correctly predict the probability of exceeding U L. As one can see in the plot, in
fact, this probability is the difference between the value 1 of the estimative distribution at UL
and the value of the bootstrap calibrated distribution at UL. Thus, ayr, = P(Z > UL) = 0.012.
In this example, the present world record WR = 9.533 m/sec (10.49 sec) exceeds the upper
limit UL, as can be seen in figure 2. This may occur when the data used for estimation do not
include the world record. Indeed, the present world record dates back to 1988, while we have
considered data from 2001 to 2018. A methodological problem arises in this situation, since
we are not able to calculate the values of the bootstrap calibrated predictive distribution (4)
in points that exceed the upper bound of the estimative distribution. The upper tail of the
calibrated predictive distribution can be estimated using non linear regression, but this issue
requires further research. At the moment, we can only conclude by saying that the probability
of improving the present world record is awwr = P(Z > WR) < P(Z > UL) = 0.012. Actually,
the present world record seems to be an exceptional result that can be hardly improved at the
moment.
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Figure 1: Men’s 400 m. Plot of estimative (red dashed) and bootstrap calibrated (black solid)
distribution functions for men’s 400 m data. Bootstrap procedure is based on 5000 replica-
tions. World record (blue dash-dotted) and estimated ultimate record (red dotted) are also
represented.

4.2.3 Women’s long jump

Figure 3 shows the estimative (red dashed) and bootstrap calibrated (black solid) distribution
functions for women’s long jump data. The bootstrap procedure is based on 5000 replications.
The present world record (blue dash-dotted) is also represented.

This is the only event for which the estimate of the shape parameter of the GEV distribution
is positive, thus the estimative distribution function is a Fréchet distribution with no upper
bound. The present world record, W R = 7.52 m, dates back to 1988 and is not included in the
data. Anyway, this is not a problem, being the upper bound UL = 4oc. Using the bootstrap
calibrated distribution, we can predict the probability of improving the present world record:
awr = P(Z > WR) = 0.056. Notice that the estimative distribution wrongly underestimates
this probability to 0.040. The expected time for improving the current world record is about
18 years.

102



MathSport International 2019 Conference Proceedings

women's 100 m

e ] i hati o i
o - est!matlve _ == f T
—— calibrated :

7 I

-=-- world record i

----- ultimate record i

o _| i
o |
]

i

i

© | !
o |
|

i

i

< | |
o |
I

i

i

N |
o |
|

|

i

o | !
o |

Figure 2: Women’s 100 m. Plot of estimative (red dashed) and bootstrap calibrated (black
solid) distribution functions for women’s 100 m data. Bootstrap procedure is based on 5000
replications. World record (blue dash-dotted) and estimated ultimate record (red dotted) are
also represented.
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Abstract

Quality as well as quantity of tracking data have rapidly increased over the recent
years, and multiple leagues have programs for league-wide collection of tracking data.
Tracking data enables in-depth performance analysis, especially with regard to tactics.
This already resulted in the development of several Key Performance Indicators (KPI’s)
related to scoring opportunities, outplaying defenders, numerical balance and territorial
advantage. Although some of these KPI’s have gained popularity in the analytics
community, little research has been conducted to support the link with performance.
Therefore, we aim to study the relationship between match outcome and tactical KPI’s
derived from tracking data. Our dataset contains tracking data of all players and the ball,
and match outcome, for 118 Dutch premier league matches. Using tracking data, we
identified 72.989 passes. For every pass-reception window we computed KPI’s related to
numerical superiority, outplayed defenders, territorial gains and scoring opportunities
using position data. This individual data was then aggregated over a full match. We then
split the dataset in a train and test set, and predicted match outcome using different
combinations of features in a logistic regression model. KPI’s related to a combination
of off-the-ball features seemed to be the best predictor of match outcome (accuracy of
64.0% and a log loss of 0.67), followed by KPI’s related to the creation of scoring
opportunities (accuracy of 58% and a log loss of 0.69). This indicates that although most
(commercially) available KPI’s are based on ball-events, the most important information
seems to be in off-the-ball activity. We have demonstrated that tactical KPI’s computed
from tracking data are relatively good predictors of match outcome. As off-the-ball
activity seems to be the main predictor of match outcome, tracking data seems to provide
much more insight than notational analysis.

* Presenting & Corresponding Author
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1 Introduction

Soccer is one of the most popular global sports, and match performance analysis has been the subject
of intensive research over several decades'. Soccer, nowadays, is a multi-billion industry that embraces
mathematical ideas as teams are constantly searching for ways to improve their odds at winning, while
spectators are trying to predict the outcome of a game to win money on the gambling market’. As a
result, analyzing tactics and match performance in soccer is of particular interest to a broad and varied
audience.

Traditionally, tactical analysis has been conducted based on observational assessment by experts or
by means of notational assessment on-ball events like passes, dribbles, and tackles®. Despite the
limitations of notational data, the focus on ball-events like passes in itself is understandable. A pass is
the most frequent ball-event in a match and passing is a — or even the — key aspect of tactics in soccer.
However, notational data only provides discrete low-level data, and thus only tells us what happens
with the ball. Therefore it has limited practical value*. Teams might even dominate typical summary
statistics like possessions, shots and number of passes, but still fail to score’. Nevertheless, notational
analysis is still frequently used for tactical analysis by broadcasters, teams and scientists*°. One could
argue however that it would be much more interesting to look at what is going on with the 21 players
not carrying the ball during a ball-event like passing. Yet achieving this requires not only notational
data, but also position tracking data.

As opposed to notational event data, automatically generated position tracking data provides the
opportunity to derive high-level continuous data off all players and the ball at the same time’. As a
result of technological innovation and the league-wide implementation of position tracking systems in
for example the German Bundesliga and the Dutch Eredivisie, the quantity and quality of available
tracking data rapidly increased over the recent years>°. Despite this increasing availability, the potential
of position tracking data to analyze tactical performance has not been harnessed as tracking data is
mostly used by analysts to monitor physical performance®. However, this data allows us to
automatically study the complex interactions of all players on the field during every pass, and can
therefore be regarded as a potential game changer for tactical analysis in soccer’.

The limited practical use of position tracking data for tactical analysis might be explained by two
reasons. First of all, most scientific work on tactical analysis using position tracking data — although of
great scientific importance — has relatively little practical implications. Only a minority of the work
investigated a link between the features they used for tactical analysis and actual match performance,
and most of them did not find a clear relationship. In order to derive practical meaning from these types
of analyses, we therefore propose it is critical to study the link between tactical features and match
performance. Secondly, one could argue that as position tracking data is characterized by a much higher
complexity and volume in comparison to notational event data, it challenges the typical data
management and data analytics methods® commonly employed in sports science, and can therefore be
considered big data. As a result, we propose that unlocking the potential of this data for tactical analysis
requires the implementation of skills and techniques from other domains than sports science.

In conclusion, one could argue position tracking data harnesses the potential to provide in-depth
insights in the complex tactics of soccer, and these insights can theoretically be used in the analysis and
maybe even the prediction of performance. However, in order to achieve this and derive practical
meaning from tactical analysis, the link between tactical features derived from position tracking data
and actual match performance first has to be established. With the current paper, we therefore aim to
study the relationship between tactical features derived from position tracking data and match outcome.
To achieve this, we will use a match outcome prediction model based on tactical key performance
indicators (KPI’s). The results of our study could allow analysts to derive more practical meaning from
tactical analysis using position tracking data, and scientists could use these KPI’s to study the
relationship between their tactical features and match success.
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2 Quantifying Tactical Behavior

Tactics, often referred to in research as tactical behavior, can be defined as the management of space
and time by a group of cooperating individuals, in interaction with the opponent while constantly
adapting to the conditions of play, in order to achieve a common goal®'°. This common goal is related
to ball-possession status, as teams have different tactical objectives when attacking and defending!!.
When in possession of the ball, teams aim to move the ball in the direction of the opponents goal,
increase the effective play area through depth and width mobility, create numerical superiority in key
offensive areas of the field, destabilize the defense, and ultimately create scoring opportunities'2. On
the other hand, when defending, teams aim to keep the opponent away from the goal, keep the effective
play area small, move in unity to prevent destabilization, and keep numerical superiority close to their
own goal'?. These common goals are widely considered the general principles of play in soccer'"'2.
Achieving these goals can be seen as successful tactical behavior, and a relationship between tactical
behavior and match outcome is widely assumed.

In order to study the relationship between tactical behavior and match outcome, one first has to
quantify successful tactical behavior. As we are mainly concerned with offensive tactical behavior, we
focused on tactical features related to the offensive principles of play. For this purpose, we first need to
discuss how existing tactical features (either commercially available or derived from scientific research)
can be related to the offensive principles of play.

First of all, moving the ball towards the opponent’s goal and subsequently creating scoring
opportunities (zone principle) can be assumed to have the most direct relationship with scoring goals in
comparison to the other principles of play. Existing features like expected goals (xG)!* (Optasports,
London, United Kingdom), and Link’s dangerousity'* feature directly quantify this tactical principle.
Both features are computed using distance and angle between the goal and the ball carrier, and award
higher values for locations closer to the goal. As XG is typically computed using only notational event
data, it is relatively inaccurate and does not take the pressure of defenders or any other of-the-ball
activity into account. Therefore, it provides low-level information. Dangerousity is computed in a
somewhat similar fashion, yet it is computed based on position tracking data and takes defensive
pressure as well as of the ball activity into account as moderating factors. Therefore, dangerousity could
be regarded as a high-level expected goals model.

Secondly, gaining numerical superiority (balance principle) is often believed to be of key
importance for creating high probability scoring opportunities, as it will contribute to space creation
and destabilization of the defense!. Numerical superiority and outplaying defenders can be analyzed
from an on-the-ball as well as an off-the-ball perspective: teams can try to outplay defenders through
passing and dribbling, and they can position their off-the-ball players in key areas of the field. Existing
features like Packing-Rate!® and Impect!¢ (Impect GmbH, Cologne, Germany) have gained popularity
in especially the German Bundesliga. They quantify the number of outplayed (packed) opponents or
defenders through passing, and can easily be derived from position tracking data. Off-the-ball
superiority has gained considerably less attention in the literature, but can also be directly derived from
the position tracking data.

Finally, it is often believed in soccer that keeping the effective play area large when in possession
of the ball (space mobility principle) is another prerequisite for space creation and destabilization of the
defense. The effective play area of the attacking team can be defined as the attacking team’s surface,
and can be derived from position tracking data using the Convex Hull method!’”. One can compute the
Convex Hull for every timeframe in ball possession and take the average as an indicator of space
mobility.
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3 Feature Engineering

3.1 Features Related to Zone

To quantify tactical performance with regard to the zone, balance and space mobility principles, we
constructed separate features for every principle of attacking play. For the current study we adapted
features currently available in science and practice. As in most cases limited technical details underlying
a certain feature are publically available, and in order to solve some feature-specific limitations, we
choose to construct our own adaptation of these features rather than exactly replicate existing features.
All feature construction was conducted in Python 3.6 using the NumPy, Pandas and SciPy libraries.

To quantify tactical performance on the zone principle, we constructed a low-level and high-level
zone feature, partly adapted from the work by Link'4. First, we determined the low-level zone value
based on the position of the ball-carrier relative to the goal in every pass and reception (Figure 1). Zone
values could range from 0 (furthest from the goal) to 1 (closest to the goal). The high-level feature was
then computed by adding on-ball-pressure to the model. Pressure on the ball was computed using the
model proposed in Andrienko et al'®. This model computes a pressure value PR (0-100%) based on the
distance off all defensive players to the ball carrier, and the angle of all defensive players towards the
threat direction (in this case the direction from the ball carrier to the goal). In this model, 0 represents
no pressure at all, while values of 100% represent high pressure from the defenders close to the ball-
carrier. As we assume high pressure increases the difficulty of creating a scoring opportunity, the zone
value Z is penalized by PR as shown in Eq. 1.

Z=27 *(1-PR) (1)
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Figure 1 - Visual representation of zone values computed for every pass and reception. Color
bar represents the zone values (range 0.0 - 1.0)
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Both the low-level and high-level zone were computed for every successful pass and reception and
then aggregated over the full match. This resulted in mean and total low- and high-level zone values for
passers and receivers on a team.

3.2 Features Related to Balance

To quantify tactical performance on the balance principle, we constructed two passing features and
three off-the-ball balance features. Our passing features follow the description of the Packing-Rate?®
and Impect®®. We computed the number of outplayed opponents based on the longitudinal coordinates
of'the pass, reception and all the opposing players, and we computed the number of outplayed defenders
based on the longitudinal coordinates of the pass, reception and the last 6 players on the field plus the
goalkeeper (Figure 2). Note that the number of outplayed opponents can also be negative in the case of
a backwards pass. Furthermore, note that we only looked at the X-coordinates to determine what
defenders are outplayed.

Outplayed Opponents
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Figure 2 - Visual representation of outplayed opponents (top) and outplayed defenders (bottom) as a
result of pass. Outplayed opposing players are shown in red, other opposing players are shown in grey.
Note that in our approach the number of outplayed defenders is based on the last 6 outfield players
and the goalkeeper.
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As off-the-ball balance features we computed numerical superiority scores for the attacking team on
the opposing half, in the final 3™ and in the score-box. To do so, we assessed numerical balance (by
counting players of both teams) in a certain area (i.e. final 3™ or score-box) during every pass-reception
window, and awarded points for every window in which the attacking team had numerical superiority
in that area (+1 player = 1 point, +2 players = equal 2 points, etc.).

3.3  Features Related to Space Mobility

Finally, as a quantification of the space mobility principle, we computed the average attacking
team’s surface area for every attack during a game, over the duration of the complete possession. The
attacking team surface area (Sa) on every timestamp t in the game was computed as the Convex Hull of
an array P; containing the positions of all n outfield players (the goalkeeper was excluded), using the
QHull implementation in the SciPy library (eq. 2 & 3).

Po=[[X] + Y1 [Xipy + Yl L)) (X5, Vi1 2

Sa = ConvexHull || P, || (3)

4 Modelling Match Performance in Soccer

To evaluate tactical performance of a team in relation to the different principles, and analyze the
relationship between tactical performance and match outcome, we collected and processed position
tracking data on both teams for matches played during 4 consecutive Dutch Eredivisie seasons. Players
were tracked with a semi-automatic optical tracking system (SportVU; STATS LLC, Chigago, IL) that
captures the X and Y coordinates of all players and the ball at 10 Hz. Our dataset contained 118 matches
in which 26 unique teams played each other. As we were only concerned with the differences between
winning and losing teams, we excluded matches that ended in a draw. This resulted in a final dataset
that consists of 25 teams that played in 89 matches that resulted in a win or a loss and contained 98.718
pass attempts of which 60.524 passes were successful.

The data of every single match were first pre-processed with ImoClient software (Inmotio Object
Tracking B.V., The Netherlands). Pre-processing consisted of filtering the data with a weighted
Gaussian algorithm (85% sensitivity) and automatic detection of ball possessions and ball events based
on the tracking data. Both the tracking data and the ball event data were then imported as individual
data frames in Python 3.6 and automatically processed on a match-by-match basis. We then computed
the low-level and high-level zone feature for every pass and reception, the number of outplayed
opponents and outplayed defenders for every pass, the numerical superiority in 3 areas for every pass-
reception window, and the team surface area of all outfield players for every timeframe the team was
in possession of the ball. All features were computed according to the methods as described in section
3.
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Table 1 - Descriptive statistics (mean * std.) of winning and losing teams on the various principles of play. ¥
(p <.05) and % (p <.01) denote significant differences between winning and losing teams.

Wins (N=89) Losses (N=89) Mean Effect Size
Diff. (Cohen’s d)
Zone Principle
Low-level zone passer (Mean) 0.031£0.013  0.028 £0.012 +10.7% 0.24
Low-level zone receiver (Mean) = 0.040+0.014  0.037 +0.014 +8.1% 0.24
High-level zone passer (Mean) 0.022+0.010  0.020+0.010 +10% 0.21
High-level zone receiver (Mean) 0.032+0.012  0.028 + 0.011 +14.3% 0.28%
Low-level zone passer (Total) 10.62 + 5.40 9.55+4.54 +11.2% 0.21
Low-level zone receiver (Total) = 13.54 + 6.21 12.36 £5.26 +9.5% 0.20
High-level zone passer (Total) 7.11+3.70 6.51 +3.57 +9.2% 0.16
High-level zone receiver (Total) = 10.10 +4.52 9.14+£4.01 +10.5% 0.22
Balance Principle

Outplayed defenders (Mean) 0.23+0.10 0.21+0.09 +9.5% 0.19
Outplayed opponents (Mean) 0.39+0.17 0.39+0.16 +2.6% 0.13
Outplayed defenders (Total) 71.01 £29.69 @ 67.88 + 30.57 +4.7% 0.11
Outplayed opponents (Total) 119.69+£49.46 121.91 £50.88 -1.8% -0.04
Half Superiority (Total) 2.82+7.67 1.87+5.78 +50.8% 0.14
Final 3" Superiority (Total) 3.11+3.52 2.22+3.04 +40.0% 0.27.%
Score Box Superiority (Total) 0.84 +1.51 0.76 +3.39 +10.5% 0.03%

Space Mobility Principle
Team Surface Area (mean) 979.76 £99.12  966.41 + 96.70 +1.4% 0.14

To compare performance between winning and losing teams, we aggregated all feature scores into
mean (values per pass), and total (sum over a full match) scores. We then took the means and standard
deviations of all winning and losing teams for a between-group comparison (Table 1). As most features
scores were not-normally distributed, and variances were heterogenic, we conducted Kruskal-Wallis
tests to statistically compare both groups. We found that winning teams had a significantly increased
mean high-level zone score for pass receivers (H(176) = 4.16, p < 0.05), and a significantly increased
superiority score in the final 3™ (H(176) = 6.90, p < 0.01) and score box (H(176) = 5.09, p < 0.05)
compared to losing teams.

As a next step, we predicted match outcome based on several combinations of performance features.
To do so we first split the data set in a training set that contained 80% of the data, and a test set that
contained 20% of the data, stratified on match outcome. Furthermore, we scaled our features to the
same scale using a robust scaling algorithm. We then fitted a 5-fold cross-validated Logistic Regression
model to our training dataset and predicted winning and losing probability for both teams in every
match.

First, we fitted the model using only the features that had shown (significant) power to discriminate
between winning and losing teams (Table 1), as we expected this model to perform the best. Based on
the mean high-level zone receiver score (B1), the total final 3" superiority score (B,), and the total score
box superiority score (B3), we were able to predict binary match outcome with an accuracy of 64% and
a log loss of 0.67, based on the following regression equation (4):

Outcome =-0.0167 +0.136 ; + 0.130 8, - 0.0162 B3 4)
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Then, we fitted models for all three discussed principles of play, to see what principle has the
strongest relation with success. In cases where we had both mean and total values for a variable, we
opted for the mean as this consistently proved to be a better discriminator. For performance on the zone
principle, we fitted a model using the mean low-level zone for passers (84) and receivers (Bs), and the
mean high-level zone for passers (8¢) and receivers (B37). Based only on zone features, we were able to
predict binary match outcome with an accuracy of 58% and a log loss of 0.69, using the following
regression equation (5):

Outcome = -0.7e® + 0.00028 B4 + 0.00035 Bs + 0.00014 Bs + 0.00054 B35 %)

For performance on the balance principle, we fitted a model using the mean outplayed defenders
(Bs) and opponents (Bo), and the total half superiority (B1o), final 3™ superiority (B11), and score-box
superiority scores (B12). Based only on balance features, we were able to predict binary match outcome
with an accuracy of 58% and a log loss of 0.70, using the following regression equation (6):

Outcome = 0.018 + 0.97 Bs - 0.65 By - 0.06 Big+ 0.38 B11 - 0.04 B2 (6)

Finally, for performance on the space mobility principle, we fitted a model using the mean team
surface area per attack (8:3). Based only on a space mobility feature, we were able to predict binary
match outcome with an accuracy of 64% and a log loss of 0.69, using the following regression equation

(7):

Outcome = 0.003 + 0.06 B3 @)

5 Discussion

The aim of this study was to analyze the relationship between tactical features derived from position
tracking data and match outcome. To achieve this we constructed features that quantify performance
on three main principles of attacking play in soccer!'’'?, and studied the relationship between
performance on these principles and binary match outcome (win or lose). Our results indicate
differences between winning and losing teams are relatively small, but especially features that are either
directly related to off-the-ball activity (numerical superiority) or at least incorporate off-the-ball activity
(high-level zone for receivers) are able to discriminate between winning and losing teams and predict
match outcome with fair accuracy. Based on these results we were able to confirm the relationship
between tactical performance on the zone and balance principles, but not on the space mobility
principle. Furthermore, our results indicate some of the features that have gained considerable
popularity within the analytics community over the recent years seem to have limited practical value.

To study tactical performance on the zone principle, we constructed low-level and high-level zone
features for both the passer and receiver in every pass. Our low-level feature has some resemblance
with the popular expected goals (XG) feature!®, and — while we derived it directly from the tracking data
— could be approximated with notational analysis. Our high-level feature accounts for defensive
pressure and therefore requires position tracking data of all players on the field. Both the high-level and
low-level features showed some discriminative power between winning and losing teams, with low to
medium effect sizes, yet only the mean high-level zone for receivers was significantly increased in
winning teams in comparison to losing teams. Based on these results we conclude winning teams more
often seem to bring the ball into a position from which scoring opportunities can be created. Both high-
and low-level features seem capable of capturing this principle, yet high-level features seem to have
more discriminative power. As Optasport’s XG is typically only computed for actual shots, and we
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computed zone values for every pass and reception, one has to be cautious in generalizing our results
to interpret actual XG values.

To assess performance on the balance principle, we used both on-the-ball and off-the-ball features.
Our on the-ball-features are focused on outplayed opponents and defenders, and resemble the popular
Packing-Rate'® and Impect'®. Although these features have gained considerable popularity in especially
the German Bundesliga over the recent years!®, and multiple claims have been made about a possible
link with match outcome, our research does not support such a relationship. Whereas winning teams
did show a slightly higher mean number of outplayed defenders per pass, there was no difference in the
mean and total number of outplayed opponents between winning and losing teams, and adding these
features to the prediction model decreased prediction accuracy. Off-the-ball features on the other hand
seemed to be a strong discriminator between winning and losing teams, as winning teams had
significantly increased superiority scores in the final 3™ and the score box. Interestingly, the effect for
score-box superiority was only small, but still significant, and leaving this feature of the prediction
model harmed the accuracy of the prediction. The lack of a relationship between outplayed
opponents/defenders and match outcome might be explained by methodologic limitations. One could
for example argue that one should not only look at how many players were passed in the longitudinal
direction but also in the lateral direction, and that in some areas of the field passing backwards can be
more effective. However, to closely resemble existing approaches we choose not alter the approach for
the current study.

Finally, performance on the space mobility principle did not seem to have a clear relationship with
match outcome, despite the fact that space mobility is assumed to be a key aspect of offensive
performance'!. The absence of a clear effect might be explained by the fact that we used the team’s
surface area to assess space mobility. One could argue that although the team’s surface is a valid feature
to describe the effective area of play, space mobility actually refers to attackers dynamically creating
depth by moving away from the ball at the right moment. It is questionable whether this dynamic effect
is captured by a collective variable that is aggregated over all timeframes in possession of the ball.

Although capturing performance in easily interpretable KPI’s is popular within the analytics
community as well as the media, the reality of soccer seems much more complex. One likely
explanation for the absence of a strong relationship between most popular KPI’s and match outcome
might be the fact that these KPI’s are typically related to frequent events like passing, that are then
aggregated over the full match. As there is a large match-to-match variability and actual tactics depend
heavily on the interaction with the opponent; features like the Packing-Rate might be more dependent
on the playing style of both teams than the actual match outcome. Soccer is a low-scoring game, and
one could argue that in order to accurately predict match outcome, one should capture the rare events
that lead to offensive success. One such an example is our proposed superiority score. Although highly
discriminative between winning and losing, achieving final 3™ superiority also proved to be a rare event.
The average superiority score of 3.11 in winning teams indicates these teams only achieve a +1
numerical superiority in the final 3™ on 3 occasions during a match, and these occasions seem to have
a big importance for match outcome.

6 Conclusion

With this study, we have shown that although soccer is a complex game that is often considered
highly unpredictable, the outcome of a match can be modelled with a fair accuracy. However, despite
popular belief, soccer is not really a numbers game that can be analyzed based on simple KPI’s of
frequent events aggregated over the full course of a match. Discriminating between winning and losing
teams and understanding tactical performance requires advanced features that can only be derived from
position tracking data and heavily focus on off-the-ball rather than on-the-ball performance.
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Abstract

With the increase of the number of association football matches, at both club and
national team level, professional football players are more exposed to fatigue and injuries
than before. In order to keep players at a satisfactory fitness level, club coaches have a
clear incentive to make player rotations in their starting line-up during the season. They
need to decide in which matches to line-up their key players, and consequently on which
competitions to focus. In this paper, we develop a new measure to quantify the relative
commitment teams show for domestic and the UEFA Champions League. We compare
the value of the starting line-ups to detect whether there is a difference in commitment
between the top 10 UEFA associations, and we study the matches that deviate from the
common strategy. Furthermore, we investigate whether commitment to the Champions
League has implications on the results in the domestic league.

1 Introduction

It is safe to say that Europe is the center of professional association football (i.e. soccer). The
success of European professional football is accompanied by a demand by broadcasters, spon-
sors and even clubs for increasingly more matches. The UEFA Champions League (CL) has
gradually increased its number of participating teams (in the group stage) from 8 since its
inception in 1992 to the current 32 teams. Whereas in 1992-1993, 25 matches sufficed to de-
termine the winner, the 20162017 Champions League season required 125 matches to award
the Champions League crown to Real Madrid (not including the 92 qualification matches).
The UEFA Europa League (EL) has also been reformed several times in the past decades to
include more teams playing more matches. At the same time, several European associations
have expanded the number of teams of their first division leagues (e.g. France in 2002 and Italy
in 2004), or increased the number of matches by redesigning the competition format (e.g. The
Netherlands in 2005, Belgium in 2009). Furthermore, the top teams in Europe eagerly engage
in lucrative summer tours, involving a series of friendly matches, usually in Asia, to prepare for
the new season. On the other hand, the European Club Association (ECA) has been pushing
to reduce the number of international matches and friendlies, since they have to release their
players each time when called upon by their countries [12]. Despite these attempts, professional
football players are potentially exposed to a considerable number of matches over the course of
the competitive season [6, 11].

Confronted with congested match schedules, clubs face a tough task maintaining a satisfac-
tory performance. Empirical evidence shows that it’s almost unfeasible for a football player to
play every minute in every match for his club throughout a season (goalkeepers can be excep-
tions). For instance, Ispirlidis et al. [15] study the effects of a single football match on indices of
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performance, muscle damage, and inflammation during a 6-day recovery period. They find that
anaerobic performance deteriorates for as long as 72 hours after a match. Their results clearly
emphasize the need of sufficient recovery time for elite players after a match. Moreover, con-
gested fixtures lead to fatigue and/or psychological exhaustion, which in turn may increase the
chance of injuries. Dupont et al. [8] monitor 32 players’ physical performance (total distance,
high-intensity distance, sprint distance), injuries, and participation data during seasons 2007—
08 and 2008-09. They find that the recovery time of 72 to 96 hours between 2 matches appears
sufficient to maintain the physical performance level. However, they report that injury rates are
over 6 times higher when players participated in 2 matches per week compared to only 1 match
per week. A study by Bengtsson et al. [1] also demonstrates a strong relation between the re-
covery time available between successive matches and muscle injury rates. On the other hand,
Carling et al. [4] find that injury incidence is not associated to the number of days separating
games, and that an interval of 3 days or less between matches did not result in an increased
injury rate or number of days lost to injury compared to a longer interval. The impact of fixture
congestion on team performance has not so frequently been studied. Bengtsson et al. [1] find
no differences in the distribution of matches won, lost or drawn between matches played with
a preceding short recovery (< 3 days) and matches with long recovery (> 3 days) for domestic
league and Champions League matches, except for Europa League matches where a recovery of
three or less days did make a significant difference compared with four or more. Lago-Penas [106]
indicates that Spanish Champions League teams did not perform below their normal standard
in the domestic league match following their midweek Champions League match. Champions
League debutants even performed above their standard in the weekend matches following a
Champions League midweek match.

Ekstrand et al. [10] demonstrate that the injury rate in professional football is considerable,
amounting to on average 14% of the squad being unavailable due to injury at any point during
the season. Hégglund et al. [14] show that the performance of a team is highly influenced by
the injury situation; teams that can avoid injuries and keep the players on the pitch are more
successful and win more matches. Player rotation has been suggested as a strategy to reducing
injury rates as well as maintaining match performance during periods with a lot of matches
([8, 9]). Player rotation inevitably means that teams will not start each game with their best
line-up. One common strategy is that the coach will not select some of his key players for the
less important match to let them rest for the next, more important match, or let some bench
players start in the less important match just after having played the more important match
as a compensation. However, which matches are considered important can vary from team to
team, or even from country to country. Each country has its own football history, culture and
format, leading to different preferences with respect to certain competitions. As an example,
it’s often conjectured that the English Premier League clubs generally do not treat European
club competitions as seriously as clubs from other associations. An explanation for this would
be that the income from playing the Champions League is not very attractive for English clubs
as they can already earn around £100 million per season on average by just staying in the
English Premier League.

In this paper, we develop a method to measure the relative commitment of teams to the
UEFA Champions League compared to their domestic league. By studying player rotation and
the quality of their starting line-up in the domestic league match before and after the European
match, we investigate on which competition clubs from the ten main associations in Europe
(Spain, Germany, England, Italy, France, Portugal, Russia, Ukraine, The Netherlands and Bel-
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gium) focus. As far as we are aware, no such measure has been described in the literature
before. We discuss the main differences with respect to commitment to the European com-
petitions between these countries, and we study the matches that deviate from the common
strategy. Finally, we also study the impact on performance in the domestic league of the choices
with respect to player rotation. Although some elite professional players also play international
matches for their countries, in this study we ignore the impact of international matches on
domestic league matches. This choice is to some extent supported by work by Carling et al.
[5], who find that in domestic league matches following international matches, the risk injury
is similar for players with or without national team obligations.

The paper is organized as follows. Section 2 gives a brief overview of European club football
competitions and current scheduling practices. Section 3 provides details about the measure
devised to evaluate a club’s relative commitment to the Champions League and the method to
investigate the impact of these competitions on domestic leagues. In Section 4 we discuss the
results, including one-sample t-tests, boxplots, a comparison of associations, and interpretations
of the outliers. We discuss the relative importance and attractiveness of the current club
competitions and make some concluding remarks in Section 5.

2 European club football competitions

Club football competitions in Europe can be divided into two categories: domestic (national)
competitions and European competitions. Domestic competitions include domestic leagues,
domestic cups, and the domestic super cups. European club competitions organized by UEFA
are the UEFA Champions League, the UEFA Europa League, and the UEFA Super Cup. In
this paper, we focus on the domestic leagues and the UEFA Champions League.

2.1 Domestic leagues

Each UEFA national association has its own professional league, which usually consists of
several divisions. For the top 10 countries according to the UEFA Country Ranking at the
end of the 201415 season, the highest division leagues are played by 16 (Belgium, Russia and
Ukraine!), 18 (Germany, Portugal and The Netherlands), or 20 clubs (Spain, England, France
and TItaly). Each of these divisions are played according to a so-called double round robin
tournament, i.e. each team faces each other team twice, possibly followed by play-offs. All of
the leagues are played cross-year, except for the seasons in Russia before 2012-13, which were
played within a year. Usually, one domestic league match is scheduled per weekend, which
includes Friday and/or Monday matches in several cases. Most league schedules feature a few
midweek matchdays (i.e. on Tuesdays, Wednesdays and Thursdays) on top of that, though only
when no Champions League or Europa League matches are scheduled. We refer to Goossens
and Spieksma [13] for a detailed overview of scheduling practices in Europe’s most prominent
domestic leagues.

2.2 The UEFA Champions League

The UEFA Champions League is the most prestigious club competition in European football,
contested yearly by top European clubs. The number of teams each national association can

n seasons 2014-15 and 2015-16, Ukraine only had 14 clubs playing the first division league due to political
issues
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delegate to the UEFA Champions League is determined by the UEFA Country Ranking. The
higher an association’s ranking, the more of its clubs can compete in the Champions League,
and the fewer qualification rounds they face. Currently, the UEFA Champions League consists
of a group stage and a knock-out stage. At the group stage, 32 qualified clubs are divided
into 8 groups, playing in a double round robin tournament. The first and second ranked teams
from each group qualify for the knock-out stage; the third placed team in a group enters the
UEFA Europa League (round of 32). In the knock-out stage, 3 two-legged rounds remain before
the final, which is contested in a single match. Champions League matches are scheduled to
be played on Tuesday and Wednesday evening. Since 2010, the final match has been held on
weekend, usually in the final two weeks of May.

3 Material and methods

3.1 Estimating the strength of a starting line-up

A team’s starting line-up consists of 11 players (during the match each team can substitute at
most 3 players). We assume that the strength of a line-up is determined by the cumulative
strength of the players. This is clearly a simplification, as there are indications that player in-
teractions play an important role in team performance (see e.g. [18]). However, the assumption
that players do not affect each other’s performance is not uncommon in modelling (e.g. [2], [3],
[17]). There are many ways to assess the strength (or quality) of a player. One could observe the
playing minutes each player obtained, and assume that the better players will be the ones that
collect the more playing minutes. However, this quality measure cause a problem when a player
has been sustaining a long-time injury, a suspension, or has been transferred in or out during a
season. Another measure of player quality would be his salary. Indeed, not surprisingly, there
is evidence of a positive pay-performance relationship of soccer players (see e.g. [19]). However,
clubs almost never publish data on their individual player’s salaries for confidentiality reasons,
making the collection of the reliable salary data for all clubs infeasible. Furthermore, a player’s
salary typically only changes with the closing of a renewed contract with his current team or
a transfer to a new team, and consequently, may lag behind on his performance. We opted
to use the market value of a player, as published by Transfermarkt, as his current strength or
contribution to his club. Transfermarkt is a German company estimating each active soccer
player’s market value, which they publish on their website?. This estimation is based on an
undisclosed algorithm, which includes expert opinions as well as data analysis based on the
player’s age, position, nationality, past and current performance, injury history, etc. Note that,
even though this market value is updated several times per year, it may still not be able to
capture a player’s form, confidence, fatigue, or other short-term influences.

We assume that a team’s strength in a match is reflected by the average market value of its
starting 11 players. Given this consideration, the strength of team ¢ in match j can be modeled
as:

11
1 Mg
Si’ — k=1 J 1
Lozt Mgt )

where M;jy, is the market value as estimated by Transfermarkt of the k-th player in the starting
line-up of team ¢ in its match against team 7.

2See https://www.transfermarkt.de/
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3.2 Measuring commitment and performance

As part of the UEFA Home Grown Player Rule (see e.g. [7]), teams can have no more than
25 players in their squad. Which 11 of these players make up the starting line-up of a match
is up to the manager/coach. We assume that a coach will select his strongest team for those
matches he wants to win most, and give his key players some rest for those matches that are
less important, or that may be won with a weaker starting line-up as well. In this way, the
strength of the starting line-up reflects the determination a team has to win the game, and the
commitment it has towards performing at its best in a competition.

To measure a team’s relative commitment towards two competitions, we compare the
strength of this team’s starting line-ups in two consecutive matches from both competitions.
More precisely, we compute the ratio of a team’s starting line-up’s strength in the Champi-
ons League match to the starting line-up’s strength in its domestic league match immediately
preceding or succeeding this match. We call a club’s domestic league match immediately pre-
ceding (succeeding) its Champions League match if it is played at most 6 days before (after)
the Champions League match. It is important to restrict the analysis to comparing line-ups
for matches that are closely followed by each other, because this reflects player rotation, i.e. a
deliberate choice by the coach to give rest for one or more key players and to give a playing
opportunity to a less valuable player. A ratio larger than 1 indicates that the team has been
lining up its stronger players for the Champions League match, rather than for the domestic
league match; a ratio smaller than 1 reflects a stronger relative commitment to the domestic
league. A one sample t-test is performed to find out whether these ratio’s differ significantly
from one for each country.

Our method of measuring relative commitment includes a few limitations and assumptions.
First of all, we ignore the impact of substitutions with respect to commitment, i.e. we make
no distinction between a key player coming on to the pitch for the final half an hour compared
to being left out of the selection. We believe commitment is reflected mainly in the starting
line-up, and that the impact of substitutes is limited: at most 3 can be done, and usually a
substitute plays far less than one third of the match. Second, we largely ignore the impact of
injuries, which may have an impact on the measured commitment even though the coach did
not make a deliberate choice not to play with his strongest line-up. To some extent, this can
be explained by the fact that we don’t have data on injuries. In fact, one might question the
reliability of any injury, as it regularly happens that a mildly injured player is deemed unfit
to play a match of low interest, and seriously injured players are patched together to play (as
much as possible) of a highly important match. However, by comparing only matches that
are at most 6 days apart, we reduce the impact of injuries on our analysis. Indeed, a team
can be forced to use a weaker line-up if a key player is injured, but with this approach, it is
likely that this player will still be injured for the next game as well and have no impact on
the relative commitment. Thirdly, the strength of a team’s starting line-up is clearly impacted
by player transfers. A club can considerably enhance its team strength by signing a highly
gifted player (which is usually expensive), or oppositely, see their team strength reduced when
selling out their best players. The fact that transfers happen only during a pre-season window
ending in August, and a mid-season window in January, combined with the fact that we are
only comparing matches that are played within 7 days, make that the impact of transfers on
our approach is minimal. Finally, we would like to point out that our measure is strictly speak-
ing not a measure for player rotation. Indeed, a team consisting of 25 players with the same
market value could rotate maximally after each match, and have a ratio that never deviates
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from 1. From the perspective of commitment, this seems fair, as this teams starts each match
with a team of equal strength. In practice however, teams have players with very different mar-
ket values, and we expect our commitment measure to be highly correlated with player rotation.

To assess the impact of commitment on match results, we compare for each team its av-
erage points obtained in the league matches that were immediately followed (preceded) by a
Champions League match with the average points in league matches that were not immediately
followed (preceded) by a Champions League match. We perform a t-test to verify whether these
differences differ significantly from zero. Note that we opted not to use any advanced model
to predict expected match outcomes; instead we assume that home advantage and opponent
strength do not differ between matches played before or after a Champions League confrontation
and other matches.

3.3 Data collection

We are interested in the commitment that teams show for the European competitions relative
to their domestic league, and whether there are differences between countries. We study the 10
major European associations with respect to club football according to the 2016 UEFA Country
Ranking: Spain, Germany, England, Italy, France, Portugal, Russia, Ukraine, Netherlands and
Belgium. We have collected the average market value of each side’s starting line-up, the date,
and the final score for all matches in these 10 domestic leagues and the UEFA Champions
League in seasons 2010-11 to 2014-15 from the Transfermarkt website.

4 Results

4.1 Relative commitment to UEFA Champions League

In this section, we compare the quality of the starting line-up of a team in the Champions
league and in its domestic league. More precisely, we compute the ratio of a team’s strength
(i.e. average market value of the team’s starting players) in its Champions League match to
its team strength in the domestic league match immediately preceding this Champions League
match (Table 1, left part). We compute a similar ratio for the Champions League match with
the domestic league match immediately succeeding it (Table 1, right part). The data has been
grouped per country, and a one sample t-test for these ratio’s has been performed to find out
whether they differ significantly from one.

Looking at the domestic game preceding the European match, Table 1 shows that teams
from France, Germany, Italy, The Netherlands, Russia, Spain, and Ukraine in general give their
key players some rest before the Champions League match. On the other hand, England is the
only country with a ratio smaller than one (though not significantly). Also when comparing
the starting line-up between the Champions League match and the subsequent domestic league
match, England is the only association with a ratio significantly smaller than 1. This is a
clear indication that the commitment of English teams for the Champions League is lower than
their commitment to the Premier League. Teams from from Germany, Italy, The Netherlands,
Russia, Spain, and Ukraine tend to give their better players some rest after a Champions
League match. Although teams from France do not use their best team line-up in the domestic
league match before the Champions League, they do line-up their key players in the domestic
match following the Champions League. Recall that Champions League matches are played on
Tuesdays and Wednesdays, which are typically closer to the domestic league matches preceding
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Table 1: One sample t-test of the ratios of team strength in the UEFA Champions League
match to team strength in the domestic league match played before (left) or after (right) it
for 10 countries. We test the null hypothesis that the mean ratio is 1 against a two-tailed
alternative.

Before UEFA CL After UEFA CL
Country mean st.dev. #obs t-value p-value mean st.dev. #obs t-value p-value
Belgium 1.030 0.124 24 1.17 0.255 1.009 0.122 24 0.36 0.721
England 0.981 0.185 156 -1.28 0.204 | 0.964 0.162 155 -2.77 0.006
France 1.094 0.220 101 4.29 <0.001 1.016 0.149 103 1.09 0.278
Germany 1.098 0.363 158 3.40 0.001 1.100 0.385 158 3.26 0.001
Italy 1.060 0.201 108 3.10 0.003 1.064 0.189 105 3.44 0.001
Netherlands 1.050 0.127 36 2.37 0.023 1.077 0.140 36 3.30 0.002
Portugal 1.026 0.201 52 0.92 0.362 1.014 0.206 78 0.62 0.538
Russia 1.061 0.195 49 2.12 0.033 1.046 0.128 43 2.36 0.023
Spain 1.073 0.273 185 3.65 <0.001 1.035 0.242 190 1.98 0.049
Ukraine 1.113 0.153 38 4.55 <0.001 1.120 0.189 33 3.66 0.001

than succeeding them. Hence, the impact of player rotation and rest may be larger for the match
preceding the Champions League match; the impact on fatigue of the Champions League match
on the following domestic league match would be less pronounced. Finally, for Belgium and
Portugal, we find no significant differences in commitment: they appear to start all matches
with a team of similar strength.

For a better illustration, we present boxplots of the commitment ratios for each country
in Figure 1 (domestic match preceding CL match) and in Figure 2 (domestic match following
CL match). Each observation corresponds to a particular Champions League match. Germany
and Spain show a lot of dispersion in both boxplots, while several other countries also have
some upper/lower outliers. A full list of these outliers is provided in Table 2 and Table 3. Both
tables show that the upper outliers are for the most part semifinals and quarterfinals (finals are
missing, as they don’t have a preceding or succeeding domestic league match). Giving players
some rest in the domestic league games before and after these matches makes perfect sense, as
these matches are crucial for winning the Champions League, at a stage where hopes of winning
it are substantial. The state of affairs in the domestic league also matters. For instance, the two
largest upper outliers in Table 2 and Table 3 are both corresponding to semi-finals in season
2012-13. In this season, Bayern managed to secure their Bundesliga championship already
after 28 matchdays. Dortmund also had already booked a Champions League group stage
position in the next season with a huge advantage in points over the 4*" ranking team in the
Bundesliga before the first leg semifinal match against Real Madrid. Therefore, both Bayern
and Dortmund could fully focus on the CL semifinals without any worry about their situations in
the Bundesliga at all. Spanish clubs also appear a lot in the table, and most of their appearances
can be explained in a similar way as Germany. However, in the 2011-12 La Liga season, an
encounter between Real Madrid and Barcelona was scheduled exactly between the two legs of
the semi-finals against Bayern and Chelsea respectively. Given the high importance of all the
three successive matches, neither Real Madrid nor Barcelona managed to rotate their starting
line-up (which is reflected in commitment ratio’s close to 1). Finally, both sides were eliminated
in the semi-finals. Most of the knock-out entries in Table 2 are second leg matches, which is
the more decisive match. UEFA schedules the two legs of the quarterfinals and semifinals in
two successive weeks. Hence, the domestic league match right in between both legs is a highly
interesting opportunity to give key players rest. This then leads to entries in Table 3 for the
first leg match as well as entries for the second leg match in Table 2. The group stage matches
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Figure 1: Boxplots of the ratios of the strength of the starting line-up in the UEFA Champions
League compared to the domestic league match played before it. Results for the 10 countries.

appearing in Table 2 and Table 3 nearly all concern matches that were crucial for qualification.
Table 2 even contains 3 matches from the same group in season 2013-14, which was particularly
tough featuring Barcelona, Milan and Ajax.

The second part of Tables 2 and 3 represents the matches where very little relative commit-
ment was displayed. Not surprisingly, nearly all these matches are group stage matches played
on the final two matchdays, which concern a team that had already qualified for the next stage
or a team that had already been eliminated for the next round. The only match not from the
group stage is the match between Juventus and Celtic Glasgow in the round of 16. However,
having defeated Celtic 0-3 in the first leg, Juventus preferred to rotate their starting line-up,
as their spot in the quarterfinals seems beyond doubt.

4.2 Impact of UEFA Champions League on performance in domestic
league

Since we found clear indications of differences in commitment to the Champions League com-
pared to the domestic league, the question arises whether player rotation has an impact on the
results in the domestic league. There is some anecdotal evidence of teams underestimating their
opponents in the group stage, with serious consequences. For instance, Arsenal faced Shaktar
Donetsk in season 2010-11 with a starting line-up which was considerably weaker than in its
last domestic league match. They lost the game and with that the group winning position,
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Table 2: Outlier ratios of the market value in the Champions League match to the market value

in the domestic league match played before it.

Season Round Home team Away team Ratio
2012-13 Semifinal - second leg Real Madrid Borussia Dortmund 3.61
2012-13 Semifinal - second leg FC Barcelona FC Bayern Miinchen 3.31
2012-13 Quarterfinal - second leg Borussia Dortmund FC Malaga 2.69
2012-13 Quarterfinal - second leg Borussia Dortmund FC Malaga 2.59
2012-13 Semifinal - second leg Real Madrid Borussia Dortmund 1.99
2011-12 Semifinal - second leg Real Madrid FC Bayern Miinchen 1.97
2010-11 Semifinal - second leg FC Barcelona Real Madrid 1.93
2012-13 Round of 16 - second leg FC Barcelona AC Milan 1.90
2010-11 Semifinal - first leg Real Madrid FC Barcelona 1.89
2014-15 Quarterfinal - second leg FC Bayern Miinchen FC Porto 1.88
2014-15 Round of 16 - second leg FC Chelsea FC Paris Saint-Germain 1.85
2012-13 Group stage Zenit Sint-Petersburg FC Malaga 1.84
2013-14 Quarterfinal - second leg FC Bayern Miinchen Manchester United 1.84
2014-15 Semifinal - second leg Real Madrid Juventus FC 1.75
2013-14 Group stage Ajax AC Milan 1.75
2014-15 Group stage Benfica Lissabon AS Monaco 1.73
2010-11 Semifinal - first leg Real Madrid FC Barcelona 1.72
2014-15 Quarterfinal - second leg AS Monaco Juventus FC 1.68
2011-12 Group stage Otelul Galati Manchester United 1.68
2013-14 Quarterfinal - first leg Manchester United FC Bayern Miinchen 1.68
2011-12 Group stage Real Madrid Olympique Lyon 1.66
2010-11 Group stage AS Roma FC Bayern Miinchen 1.64
2014-15 Semifinal - first leg FC Barcelona FC Bayern Miinchen 1.61
2013-14 Group stage Shakhtar Donetsk Bayer 04 Leverkusen 1.59
2014-15 Group stage BATE Borisov Shakhtar Donetsk 1.59
2012-13 Round of 16 - second leg FC Maialaga FC Porto 1.59
2012-13 Group stage Manchester United Galatasaray Istanbul 1.59
2012-13 Quarterfinal - second leg FC Barcelona FC Paris Saint-Germain 1.58
2014-15 Round of 16 - second leg Borussia Dortmund Juventus FC 1.58
2012-13 Semifinal - first leg FC Bayern Miinchen FC Barcelona 1.57
2013-14 Semifinal - second leg FC Chelsea Atlético Madrid 1.57
2012-13 Round of 16 - second leg Manchester United Real Madrid 1.55
2013-14 Round of 16 - first leg FC Schalke 04 Real Madrid 1.55
2010-11 Semifinal - second leg FC Barcelona Real Madrid 1.54
2012-13 Group stage FC Barcelona Spartak Moskou 1.54
2010-11 Quarterfinal - first leg Real Madrid Tottenham Hotspur 1.52
2011-12 Group stage FC Porto Shakhtar Donetsk 1.50
2011-12 Semifinal - first leg FC Bayern Miinchen Real Madrid 1.49
2012-13 Group stage FC Valencia FC Bayern Miinchen 1.49
2011-12 Group stage FC Barcelona AC Milan 1.48
2010-11 Quarterfinal - second leg Shakhtar Donetsk FC Barcelona 1.48
2014-15 Quarterfinal - first leg Atlético Madrid Real Madrid 1.47
2013-14 Round of 16 - first leg FC Schalke 04 Real Madrid 1.47
2010-11 Round of 16 - second leg Real Madrid Olympique Lyon 1.46
2013-14 Group stage AC Milan FC Barcelona 1.46
2012-13 Semifinal - first leg FC Bayern Miinchen FC Barcelona 1.45
2010-11 Quarterfinal - first leg FC Barcelona Shakhtar Donetsk 1.44
2013-14 Group stage Atlético Madrid Zenit Sint-Petersburg 1.44
2012-13 Group stage FC Maiélaga Zenit Sint-Petersburg 1.42
2013-14 Group stage CSKA Moskou Manchester City 1.41
2014-15 Round of 16 - first leg FC Paris Saint-Germain FC Chelsea 1.39
2014-15 Group stage CSKA Moskou Manchester City 1.38
2010-11 Round of 16 - second leg FC Barcelona FC Arsenal 1.36
2013-14 Group stage FC Barcelona Ajax 1.35
2010-11 Group stage AC Milan Ajax 1.35
2014-15 Quarterfinal - first leg FC Porto FC Bayern Miinchen 1.31
2014-15 Round of 16 - first leg FC Basel 1893 FC Porto 1.30
2011-12 Group stage Ajax GNK Dinamo Zagreb 1.28
2010-11 Group stage FC Arsenal SC Braga 1.28
2010-11 Group stage Real Madrid Ajax 0.71
2010-11 Group stage Shakhtar Donetsk SC Braga 0.70
2013-14 Group stage Steaua Boekarest FC Schalke 04 0.69
2014-15 Group stage Benfica Lissabon Bayer 04 Leverkusen 0.69
2011-12 Group stage Real Madrid GNK Dinamo Zagreb 0.66
2012-13 Group stage Real Madrid Ajax 0.64
2012-13 Group stage Borussia Dortmund Manchester City 0.59
2014-15 Group stage FC Porto Shakhtar Donetsk 0.59
2012-13 Group stage HSC Montpellier FC Schalke 04 0.58
2011-12 Group stage Olympiakos Piraeus FC Arsenal 0.56
2012-13 Group stage BATE Borisov LOSC Lille 0.56
2012-13 Group stage Olympiakos Piraeus FC Arsenal 0.53
2011-12 Group stage Ajax Real Madrid 0.51
2010-11 Group stage Shakhtar Donetsk FC Arsenal 0.48
2014-15 Group stage Benfica Lissabon Bayer 04 Leverkusen 0.48
2010-11 Group stage FC Chelsea MSK Zilina 0.45
2011-12 Group stage Manchester City FC Bayern Miinchen 0.35
2010-11 Group stage FC Barcelona Roebin Kazan 0.32
2012-13 Group stage FC Barcelona Benfica Lissabon 0.26
2011-12 Group stage FC Barcelona BATE Borisov 0.17
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Figure 2: Boxplots of the ratios of the strength of the starting line-up in the UEFA Champions
League compared to the domestic league match played after it. Results for the 10 countries.

resulting in a confrontation with Barcelona in the round of 16, and a subsequent elimination.

Table 4 (left part) shows the difference between the average points obtained in domestic
league matches played before a Champions League match and the average points obtained in
domestic league matches that were not followed by a Champions League confrontation, for
teams from each of the 10 major European football leagues. Table 4 (right part) does the same
for domestic league matches following a Champions League match. Table 4 shows that most
countries where teams start the domestic match after their Champions League confrontation
with a weaker line-up get away with this in term of domestic league performance. Teams
from Germany and Spain, however, generally perform significantly worse in domestic league
matches following a Champions League®. Several countries (e.g. The Netherlands, Russia) also
show a negative, however not significant, impact of the Champions League on domestic league
performance. The impact on the domestic league match preceding the Champions League is
much less pronounced, and even significantly positive in the case of Spain. No significant impact
on the domestic results is found in countries where the commitment towards the Champions
League is not different from (i.e. Belgium, Portugal), or even falls behind (i.e. England) the
commitment the domestic league receives.

3Notice that for a one-sided alternative, the p-value has to be divided by 2
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Table 3: Outlier ratios of the market value in the Champions League match to the market value

in the domestic league match played after it.

Season Round Home team Away team Ratio
2012-13 Semifinal - first leg Borussia Dortmund Real Madrid 3.61
2012-13 Semifinal - first leg FC Bayern Miinchen FC Barcelona 3.59
2012-13 Quarterfinal - first leg FC Malaga Borussia Dortmund 2.53
2012-13 Quarterfinal - first leg FC Malaga Borussia Dortmund 2.42
2014-15 Quarterfinal - first leg FC Porto FC Bayern Miinchen 2.35
2012-13 Quarterfinal - second leg Juventus FC FC Bayern Miinchen 2.20
2011-12 Semifinal - second leg Real Madrid FC Bayern Miinchen 2.14
2012-13 Semifinal - first leg Borussia Dortmund Real Madrid 1.98
2011-12 Semifinal - first leg FC Bayern Miinchen Real Madrid 1.97
2012-13 Semifinal - second leg FC Barcelona FC Bayern Miinchen 1.88
2014-15 Semifinal - second leg Real Madrid Juventus FC 1.86
2010-11 Quarterfinal - first leg FC Barcelona Shakhtar Donetsk 1.85
2012-13 Semifinal - second leg Real Madrid Borussia Dortmund 1.80
2013-14 Quarterfinal - first leg Manchester United FC Bayern Miinchen 1.76
2010-11 Semifinal - first leg Real Madrid FC Barcelona 1.73
2010-11 Group stage AC Milan Real Madrid 1.59
2012-13 Quarterfinal - second leg FC Barcelona FC Paris Saint-Germain 1.57
2010-11 Semifinal - first leg Real Madrid FC Barcelona 1.57
2010-11 Round of 16 - first leg AS Roma Shakhtar Donetsk 1.55
2014-15 Round of 16 - first leg FC Basel 1893 FC Porto 1.55
2013-14 Group stage SSC Napoli Borussia Dortmund 1.53
2014-15 Group stage AS Monaco Benfica Lissabon 1.53
2013-14 Group stage FC Schalke 04 FC Basel 1893 1.52
2012-13 Quarterfinal - first leg FC Paris Saint-Germain FC Barcelona 1.51
2011-12 Round of 16 - first leg AC Milan FC Arsenal 1.51
2011-12 Semifinal - second leg FC Barcelona FC Chelsea 1.51
2013-14 Group stage RSC Anderlecht FC Paris Saint-Germain 1.50
2012-13 Semifinal - first leg FC Bayern Miinchen FC Barcelona 1.50
2012-13 Quarterfinal - first leg FC Paris Saint-Germain FC Barcelona 1.49
2014-15 Round of 16 - second leg Atlético Madrid Bayer 04 Leverkusen 1.49
2013-14 Semifinal - second leg FC Chelsea Atlético Madrid 1.44
2014-15 Quarterfinal - first leg Juventus FC AS Monaco 1.44
2012-13 Group stage Zenit Sint-Petersburg RSC Anderlecht 1.42
2010-11 Round of 16 - second leg FC Schalke 04 FC Valencia 1.42
2010-11 Group stage FC Valencia Manchester United 1.41
2010-11 Group stage AC Milan Ajax 1.41
2013-14 Semifinal - first leg Atlético Madrid FC Chelsea 1.40
2013-14 Quarterfinal - first leg FC Paris Saint-Germain FC Chelsea 1.39
2014-15 Group stage FC Bayern Miinchen Manchester City 1.39
2011-12 Group stage Zenit Sint-Petersburg Shakhtar Donetsk 1.33
2011-12 Group stage Trabzonspor CSKA Moskou 1.33
2011-12 Group stage FC Porto Shakhtar Donetsk 1.30
2010-11 Group stage FC Arsenal SC Braga 1.28
2014-15 Group stage FC Porto BATE Borisov 1.27
2014-15 Group stage Borussia Dortmund RSC Anderlecht 0.79
2013-14 Group stage FC Porto Zenit Sint-Petersburg 0.78
2014-15 Group stage Benfica Lissabon Bayer 04 Leverkusen 0.69
2012-13 Group stage HSC Montpellier FC Schalke 04 0.68
2011-12 Group stage FC Viktoria Pilsen AC Milan 0.68
2012-13 Group stage Borussia Dortmund Manchester City 0.67
2011-12 Group stage FC Internazionale CSKA Moskou 0.67
2013-14 Group stage Steaua Boekarest FC Schalke 04 0.65
2012-13 Round of 16 - second leg Juventus FC Celtic Glasgow 0.64
2011-12 Group stage Real Madrid GNK Dinamo Zagreb 0.64
2014-15 Group stage FC Porto Shakhtar Donetsk 0.59
2012-13 Group stage Galatasaray Istanbul Manchester United 0.58
2011-12 Group stage Olympiakos Piraeus FC Arsenal 0.56
2010-11 Group stage Shakhtar Donetsk FC Arsenal 0.53
2012-13 Group stage Olympiakos Piraeus FC Arsenal 0.52
2011-12 Group stage Ajax Real Madrid 0.49
2012-13 Group stage BATE Borisov LOSC Lille 0.49
2014-15 Group stage Benfica Lissabon Bayer 04 Leverkusen 0.47
2010-11 Group stage FC Chelsea MSK Zilina 0.41
2010-11 Group stage FC Barcelona Roebin Kazan 0.34
2011-12 Group stage Manchester City FC Bayern Miinchen 0.33
2012-13 Group stage FC Barcelona Benfica Lissabon 0.28
2011-12 Group stage FC Barcelona BATE Borisov 0.15

5 Conclusion

In this paper, we devised a new measure to compare the commitment of a football club to
various competitions. This measure is based on a comparison of the value of the starting line-
up in two successive matches. We analyzed the commitment to the UEFA Champions League
matches relative to the matches from the domestic league for teams from the 10 major Euro-
pean associations in seasons 2010-11 to 2014-15. At the same time, we studied the impact of
the Champions League competition on the results in the domestic leagues.

We found that the UEFA Champions League is clearly the most attractive club football
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Table 4: Paired-sample t-test for the difference between the average points obtained in domestic
league matches played before (left)/after (right) a Champions League match and the average
points obtained in domestic league matches not followed/preceded by a Champions League
match for 10 countries. We test the null hypothesis that the mean difference is zero against a
two-tailed alternative.

Before UEFA CL After UEFA CL
Country mean st.dev. #obs t-value p-value mean st.dev. #obs t-value p-value
Belgium 0.105 0.789 4 0.267 0.807 | -0.091 0.190 4 -0.953 0.411
England -0.061 0.697 20 -0.393 0.699 0.063 0.528 20 0.531 0.602
France 0.018 0.534 13 0.124 0.903 0.050 0.304 13 0.592 0.565
Germany 0.059 0.442 17 0.554 0.587 | -0.206 0.287 17 -2.948 0.009
Italy -0.075 0.375 13 -0.725 0.482 0.006 0.373 13 0.062 0.951
Netherlands 0.058 0.350 6 0.403 0.704 | -0.246 0.522 6 -1.153 0.301
Portugal -0.160 0.575 12 -0.964 0.356 0.030 0.285 12 0.370 0.719
Russia -0.324 0.339 6 -2.339 0.066 | -0.286 0.538 6 -1.305 0.249
Spain 0.216 0.354 19 2.657 0.016 | -0.207 0.468 19 -1.923 0.070
Ukraine -0.176 0.338 6 -1.277 0.258 | -0.002 0.531 6 -0.008 0.994

competition for all the main UEFA associations, except England. This can be explained by the
fact that the Premier League is the richest domestic league in the world, and at the same time
a highly contested competition. For English clubs, the earnings from the Champions League
are not as attractive as for clubs in other countries. Teams from the other countries (apart from
Belgium and Portugal) in general side-line their key players in the domestic league in order to
have them fully rested at the start of the Champions League, although there is a lot of variation
between clubs and seasons. This decision is rewarding, since these teams generally do not suffer
from worse results in their domestic league, Germany excepted.
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Abstract

The sports analytics literature regarding basketball is vast but the analyses based on
disaggregated data, such as the play-by-play match data, are not very common. The anal-
ysis of the whole sequence of play-by-play match events has an undeveloped potential, yet
most of the available methods focus on the final match results. The present work illustrates
a model-based strategy for the analysis of the match progress, built upon the literature
of Adjusted Plus Minus for the evaluation of player efficiency. This approach is extended
in two main directions. The first extension consists in the adoption of a response variable
which considers the most relevant events in the game, and not only the number of scored
points. This offers some useful advantages, including the possibility of obtaining separate
estimates about different complementary aspects. Further, next to player efficiency ef-
fects, the efficiency of five-man lineups is estimated. The model fitting procedure follows
an empirical Bayes approach, which provides a suitable regularization. For the empirical
analysis, we consider a dataset regarding the Italian Basketball League (Serie Al), focus-
ing on the matches of the first round of the current championship 2018/2019. The dataset
collects the play-by-play information along with the matches box scores, which are made
available by the league website (www.legabasket.it). The results of the analysis could
support the decision-making process of team management, and some illustrations on this
point are provided.

Keywords: Basketball Analytics, Statistical Model, Play-by-play data, Web-crawling,
Data-driven decision process.

1 Introduction

Basketball has a long history of describing the performance of players using statistics. Box scores
data, such as points, assists and rebounds, are regularly provided by newspapers and websites
in order to highlight the impact of a player in a match or during a full season. Nowadays, data
are collected in real time during the game and play-by-play outcomes are readably available
on the web. Team managers and coaches use such information to build effective lineups, and
from this point of view, the need for more specialized measures arises. In the first decade of our
century, regression-based player performance indices were proposed, e.g. Adjusted Plus-Minus
(APM) method [9] and Regularized versions of it (RAPM) [see 10, 4]. These kind of metrics
are also our starting point. These measures are computed using play-by-play data aggregated
in shifts, where a shift is defined as a period of playing time without any substitution for either
team. The APM is obtained by fitting a linear regression model where the response variable
is the point differential for each shift, computed as the difference between the average points
scored by the home team and the away team. In either case, the average is with respect to
the number of possessions for each team. The regressors are instead given by signed dummy
variables for every player involved in the shift. This usually gives a large number of terms,
a typical setting where regularization is called for. To this end, RAPM performs regularized
estimation of the model parameters using ridge regression, providing estimates with better
properties. A useful feature of the method is that the estimated coefficients can be interpreted
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as net player efficiency measures, i.e. they are adjusted for the other players on the field for
both teams.

The overall aim of the work is to deepen the analysis of play-by-play data, providing some
useful information for team management. In particular, we build upon the RAPM setting,
and we extend it to encompass the analysis of the performance of entire lineups, defined as
five-man units on the field for a given team. The idea underlying this extension is that player
performances may depend on the interaction with teammates and on the counteraction of the
opposite lineup on the field. From a statistical viewpoint, regularization is even more crucial for
the estimation of lineup efficiency than for individual players, since the dimensions involved are
higher. Beyond ridge regression, other approaches may be used for the task, such as empirical
Bayes, boosting or full Bayes; see, for instance, [3]. Here we adopt an empirical Bayes approach,
which turns out to be quite convenient.

Another distinctive feature of our proposal is the adoption of a more general and complete
index rating, called score hereafter. This is the response variable that will be used in the
regression models for player and lineup efficiency, and it is obtained as a suitable modification
of the efficiency index commonly used in basketball; details are given in Section 2. A further
aspect investigated in this paper is the multi-dimensionality of such score measure, which may be
usefully disentangled in three distinct contributions. In particular, the contributions pertain to
outside scoring capacity (three-pointers and mid-range shots), inside scoring capacity (lay-ups,
dunks and free shots) and complementary abilities (such as assists, rebounds, blocks, steals),
respectively.

The paper is organized as follows. Section 2 illustrates the data used for the analysis
along with a few details about the data wrangling process. Some data exploration is also
given. Section 3 introduces the model adopted for the estimation of lineup and player efficiency,
together with possible usages of the results. Applications to the case study of interest are also
provided. Finally, Section 4 contains a brief discussion and some concluding remarks.

2 Data wrangling and data exploration

In this section, the data wrangling process is briefly described and the results of a preliminary
data analysis are presented. The data analyzed concern the matches of the first round of
the championship 2018/2019 of the Italian Basketball League (Serie A1l). The league website
provides the play-by-play information along with the box scores.

2.1 Data wrangling

In order to gather the required data from the Italian Basketball League website (www.
legabasket.it), we use the R statistical software [7] and, in particular, some specific add-
on packages such as rvest [11], scrapeR [1] and Rcrawler [6]. For every single match, both the
box scores data and the play-by-play information are collected. A play is defined as an event
during the possession involving a positive or negative value for the attacking team, and deemed
as the most relevant for the outcome of the game. In particular, as introduced in [5], the values
of the events used in the computation of the outcome measure are (numeric contribution to
the score in brackets): missed free-throw, turnover or offensive foul (-1); missed shot (-0.5);
assist (0.5); steal, offensive or defensive rebound, block, scored free-throw or received foul (1);
scored shot (2); scored three-pointer (3). The score is assigned to the offensive team, and the
opposite score is assigned to the defensive team. The more traditional outcome given by the
points scored in each play is also gathered. Moreover, other features are collected, such as
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information concerning the time of the event and game status. In particular, the last piece of
information has been employed to remove all the garbage time plays from the data, referred
to game instances with a point gap larger than 20. Finally, the box score information has
been used to identify the five-man unit involved in each play. This information is essential to
aggregate the plays in shifts, as required for subsequent analyses.

2.2 Data exploration

The cleansed dataset consists of 3849 shifts and 19943 possessions, from 120 matches played
by the 16 teams of the Italian Serie A. The total number of lineups in the dataset is 1886 and
the players involved in the games are 212. A few players changed team during the season. The
effect of these changes is negligible, hence they were considered as different players.

The following preliminary analyses aim at describing the characteristics of the different
teams in terms of lineup and players usage. Table 1 shows that some teams present a ho-
mogeneous distribution for the number of possessions at the lineup level, such as Milano and
Reggio Emilia. For other teams, such as Varese and Pesaro, the number of possessions varies
substantially among different lineups.

Table 1: Summary statistics for the number of possessions by lineups.

No. of 15t 3rd
Team Lineups Min. quart. Mean Median S.D. quart. Max.
Avellino 91 1 4.00 25.10 12.00  50.65  23.50 374
Bologna 121 1 5.00 20.56 12.00  30.67  25.00 252
Brescia 115 1 5.00 21.61 11.00  32.02  25.50 238
Brindisi 73 1 6.00 37.58 14.00  69.73  39.00 431
Cantu 100 1 5.00 24.78 9.50  55.23  18.25 459
Cremona 80 1 7.00 33.67 13.00  54.73  37.00 369
Milano 172 1 4.00 14.90 9.50  15.82  18.00 89
Pesaro 60 1 5.75  40.63 10.50 116.91  33.00 888
Pistoia 99 1 6.50 24.00 11.00  62.07  21.00 603
R. Emilia 155 1 5.00 15.04 9.00 18.05  18.50 124
Sassari 180 1 3.00 14.17 7.00 2747  15.00 224
Torino 137 1 6.00 19.19 11.00  26.03  21.00 214
Trentino 128 1 5.00 19.52 13.00 22.15  29.25 171
Trieste 139 1 5.00 18.22 10.00  23.59  20.50 140
Varese 65 1 5.00 39.35 16.00 118.83  42.00 957
Venezia 171 1 3.50 13.09 7.00 24.85 12.50 244

Table 2 shows that teams generally use their players in different ways, so that the team-
specific distributions of the number of player possessions vary greatly. For instance, the min-
imum number of possessions exceeds 100 possessions for some teams, otherwise, this number
is much lower. The teams presenting the largest variability in the number of possessions are
Brindisi, Pesaro and Varese, which exhibit the same behaviour also for what concerns lineup
usage.

Figure 1 displays the average performance of players and lineups for three teams, measured
as the average score differential between home and away teams, as already defined in Section
1. The averages are represented as a function of the number of possessions played, and they
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Table 2: Summary statistics for the number of possessions by players.

No. of
Team Players Min. Mean Median S.D. Max.
Avellino 14 3 815.71  657.50 666.79 1927
Bologna 13 21 956.92  880.00 608.99 1761
Brescia 13 2 955.77 1001.00 505.51 1730
Brindisi 12 3 114292 1128.50 805.88 2223
Cantu 12 117 1032.50  879.00 791.59 2010
Cremona 12 5 112250 1307.00 742.83 2055
Milano 16 5 800.62  922.50 461.15 1539
Pesaro 10 98 1219.00 1383.00 845.07 2188
Pistoia 11 6 1080.00 1100.00 668.12 1897
R. Emilia 18 1 64750  652.50 430.69 1276
Sassari 13 105  981.15 1122.00 606.12 1830
Torino 14 104 938.93  883.50 498.43 1911
Trentino 12 135 1041.25 1219.00 505.45 1648
Trieste 16 18 791.25  769.00 602.47 1620
Varese 12 1 1065.83  821.50 810.66 2224
Venezia 14 17 799.29  745.00 501.91 1482

are multiplied by 100. This is customary in the APM literature, since an NBA game is roughly
made of 100 possessions.

Figure 1: Average score of each lineup (left panels) and each player (right panel) for three
teams as a function of the number of possessions.
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A further interesting visualization, given in Figure 2, is about the relationship between the
overall score and its three components, corresponding to outside shooting, inside shooting and
complementary skills. While the linear relationship between these score contributions and the
total measure is apparent, the pairwise relationship among the three components is weak. This
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suggests that the different kinds of contributions may actually correspond to different aspects
of player (lineup) performances.

Figure 2: Relationship between the overall score and its three components; pairwise correlations
below the main diagonal.
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3 Model-based analysis

The regression models for lineup and player effects are defined as follows. For the case of
lineups, the starting point is a linear model for the score y; of shift ¢, with t =1,...,T,

Yt = Po + Hnfs) — Hal] + €t (1)
being ¢; a normal error term. Here we consider the data with all the matches of the first round,
for which 7' = 3849, as stated in Section 2.2. The response in (1) is the aforementioned overall
score, given by the difference between the mean outcome of the home team and the mean
outcome of the away time for each shift. Where only one team produces a score in a given shift,
the mean outcome of the other team is replaced by the grand mean over the entire sample,
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as customary in the APM analysis. The vector of lineup effects pu has length N, equal to the
total number of lineups (N = 1886 in the data at hand). The notation h[t] and a[t] defines the
lineup for the home and away team for shift ¢, respectively, i.e. h[t] and a[t] take a value in the
set {1,...,N}.

The model for player effects is very similar, with the difference that each shift entails ten
different players, five for each team, rather than just two teams. Equation (1) is then replaced
by

5 5
v = o +Z%,m —Z%j[t] + ¢, (2)
=1 =1

with 7; denoting a normal error term, and where « is the vector of player effects, with length
M (with M = 212 in the data at hand). Here the two functions h;[t] and a;[t] identify the j-th
player involved in shift ¢, for home and away team respectively, so that each of these functions
takes value in the set {1,..., M}. This model specification is very similar to the one adopted
by [2] in a different framework.

3.1 Estimation of lineup and player effects

The estimation of two vectors p and - requires a regularization technique, due to their large
dimensions. Moreover, it should be noted that in either model each shift is computed over
a certain number of possessions, with the implication that the actual sample size is much
larger than the number of shifts, so that suitable observation weights must be employed in the
estimation procedure.

The RAPM method of [10] is based on the estimation of « based on ridge regression, but
here we adopt instead an empirical Bayes approach, which achieves regularization by treating
the lineup (or player) effects as normal random effects. The two methods are indeed related
(e.g. [3]) and essentially differ only in the approach used to select the regularization parameter.
Whereas for ridge regression the tuning parameter is usually estimated by cross-validation, in
the empirical Bayes approach the variance of random effects is estimated by REML. For the
data at hand, the two methods give very similar results, with REML providing slightly less
shrinkage. At the same time, the empirical Bayes approach allows for straightforward inclusion
of additional covariates, which seems a useful possibility worth considering. The results that
follow have been obtained by means of the hglm R package [8].

Figure 3 is the estimated counterpart of Figure 1 since it reports the estimated effects for
lineups and players concerning the same three teams. Some adjustments are apparent since the
estimates take into account the different players and lineups which are simultaneously present
on the field. The shrinkage provided by regularization is also noteworthy, resulting in effects
for small number of possessions shrunk towards zero.

3.2 Choice of response variable

The entire analysis has been developed considering the overall score, which seems more com-
prehensive and informative than the number of points used in the original APM and RAPM
methodology. Figure 4, left panel, visualizes the relationship between the two variables. A
strong linear relationship is apparent (correlation around 0.9), but the marginal distribution of
the score variable is less discrete, thus better suited for linear regression analyses. The right
panel of Figure 4 displays instead the estimated fitted values for model (1) with respect to the
same quantity computed considering the response as given only by the number of points, as in
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the classic RAPM. Linearity is again very strong, confirming that the two choices are largely
comparable in terms of fit.

Figure 3: Estimated effects of each lineup (left panels) and each player (right panel) for three
teams as a function of the number of possessions.
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Figure 4: Observed points and scores for the shift data (left panel), and fitted points and values
based on the estimated model for lineup effects (right panel).
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3.3 Analysis of estimated lineup and player effects

The estimates of the lineup effects result in a correlation between observed and fitted values

which is higher then that one related to the estimated player effects.
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correlation between the observed and the fitted values for the lineup model (1) is 0.34, very
similar to the value 0.33 obtained by replacing the overall score by the number of points. The
corresponding correlations related to model (2) are instead lower, since they are based on a
much smaller number of regressors, and they are equal to 0.17 and 0.14, respectively. The
latter corresponds to the original RAPM result.

Furthermore, it is of interest to investigate the connection between the two sets of estimates,
n and 7, considering the response given by the overall score, since it is slightly preferable. The
information content of the latter is partially embodied in the former, so that a two-step analysis,
where the estimated lineup effects i are employed as the response variable to estimate the player
effect, leads to results very similar to those of model (2). At the same time, the lineup effects
are able to extract more information, since they quantify also the interaction effects among
different players, and not only their main effects.

These two facts are supported by the plots in Figure 5. The left panel compares the player
effects estimated on shifts data using model (2) and those ones given by a two-step approach. For
the latter case, the estimated lineup effects of model (1) are considered as response variables in
order to get an indirect estimate of player effects. The plot suggests that the two approaches are
largely equivalent, differing only by a change of scale. The right panel compares the estimated
lineup effects i with the sum of the estimated effects for the players entering that lineup. The
observed correlation is positive, as suggested by the smoother, yet only a limited portion of the
lineup effect variability is explained by the sum of the player effects.

Figure 5: Indirect (two-step) and direct estimation of player effects (left panel) and estimated
lineup effects and sum of the player effects of each lineup, with a robust smoother added (right
panel).
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3.4 Disentangling the score-based effects

With the objective of enhancing the preliminary analysis on the overall score reported in Section
2.2, further considerations could be made on the separate estimated effects associated with the
three components of the score shown in Figure 2. This can be done for either the lineup
effects model (1) and the player effects model (2). The relationships between the lineup effects
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estimated when the response variable equals the overall score and the corresponding measures
obtained when the response variable is replaced in turn by the three components lead to some
plots very similar to those in Figure 2. In particular, the correlation coefficients between the
estimates based on the overall score and those based on the three components are 0.60, 0.53,
and 0.87, for outside shooting, inside shooting and other skills, respectively. The correlation
between the estimated lineup effects based on outside shooting and inside shooting is negative
(—0.25), whereas for the case of outside shooting and other skills the correlation is 0.34. Finally,
for the case of inside shooting and other skills it corresponds to 0.48.

The estimation of player or lineup effects for the different classes of responses is summarized
at the team level in Table 3. It reports the averages of the four different estimated lineup
effects, together with the corresponding team ranking obtained from the averages. The results
reported in Table 4 show how the general player effects can be described by considering different
features of the game. For instance, Milano presents a positive global effect which is split into the
three components, suggesting that outside shooting and other skills are the main components
of it. Instead, Trieste presents a moderate negative global evaluation, but exploring the specific
effects we can distinguish between a positive average effect for outside shooting and negative
ones for the other two aspects.

Table 3: Averages of estimated lineup effects for the overall score and its components and the
corresponding team rankings.

Score-based Outside Inside Other
Teams lineup effect Rank shooting Rank shooting Rank  skills Rank
Avellino 0.232 7 0.648 2 -0.290 13 0.029 7
Bologna -0.217 11 0.204 7 -0.020 8 -0.154 15
Brescia -0.115 10 -0.582 13 0.136 6 0.053 6
Brindisi 0.336 5 0.415 5 -0.449 16 0.227 1
Cantu -0.592 13 -0.985 16 0.218 3 -0.075 11
Cremona 0.782 1 0.540 4 -0.058 10 0.226 2
Milano 0.646 2 0.564 3 0.163 4 0.086 5
Pesaro -1.199 16 -0.600 14 -0.335 15 -0.279 16
Pistoia -0.655 14 -0.381 12 -0.239 12 -0.128 14
R. Emilia -0.107 9 -0.106 8 -0.016 7 -0.012 8
Sassari 0.477 3 -0.303 10 0.432 1 0.157 3
Torino -0.527 12 -0.704 15 0.146 5 -0.101 12
Trento -0.674 15 -0.259 9 -0.330 14 -0.125 13
Trieste 0.030 8 0.346 6 -0.213 11 -0.018 9
Varese 0.302 6 -0.314 11 0.410 2 0.105 4
Venezia 0.477 4 0.924 1 -0.032 9 -0.022 10

It seems worth noticing that the results of the two analyses are not the same, suggesting
once again that the analyses of lineups and players supply a different kind of information.
4 Conclusions
The literature on basketball analytics considers the RAPM measures as an important tool for

the evaluation of single players. This article extends the RAPM methodology by considering
in the model specification a response variable which is more comprehensive than the points
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Table 4: Averages of estimated player effects for the overall score and its components and the
corresponding team rankings.

Score-based Outside Inside Other
Teams player effect Rank shooting Rank shooting Rank  skills Rank
Avellino 0.300 7 0.569 4 -0.149 11 0.056 7
Bologna -0.378 11 0.459 5 -0.042 7 -0.572 15
Brescia -0.237 10 -0.763 14 0.129 6 0.192 6
Brindisi 0.382 6 0.351 6 -0.337 14 0.498 3
Cantu -1.099 13 -1.316 16 0.264 4 -0.234 11
Cremona 1.241 4 0.644 3 -0.065 10  0.618 2
Milano 1.747 1 0.854 2 0.269 3 0.467 4
Pesaro -1.803 16 -0.575 11 -0.332 13 -0.688 16
Pistoia -1.694 15 -0.728 13 -0.423 16 -0.530 13
R. Emilia -0.137 8 -0.000 8 -0.051 8 -0.024 8
Sassari 1.476 2 -0.687 12 0.695 1 0.895 1
Torino -1.078 12 -1.086 15 0.176 5 -0.344 12
Trento -1.468 14 -0.291 10 -0.412 15  -0.562 14
Trieste -0.170 9 0.305 7 -0.205 12 -0.127 10
Varese 0.436 5 -0.262 9 0.398 2 0.233 5
Venezia 1.408 3 1.845 1 -0.063 9 -0.114 9

scored, and includes further important features. Moreover, the estimation of lineup effects is
developed in addition to that of player effects.

Figure 6: Bubble plots for the sorted estimated lineup effects, with color scaling denoting the
sum of estimated player effects (green for higher values, red for lower ones). The bubble size is
proportional to the number of possessions played by lineups.
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These two advances further exploit the information carried in the play-by-play data, defining
new tools, potentially useful for team management.

As a final instance of the kind of output related to the play-by-play data analyses illustrated
in this paper, we present a graphical summary of both kinds of estimated effects, namely
for lineups and players. This is given in Figure 6, where the lineups of three teams already
considered are sorted by the estimated lineup effects. Each lineup is represented by a bubble,
with a color scale defined by the sum of estimated effects of all the players of the lineup. In
particular, green bubbles correspond to higher sums, while red bubbles to lower values. The size
of each bubble is scaled by the total number of possessions. The plot reveals the tendency that
the most used lineups correspond to the players with higher performance, but some remarkable
exceptions occur.
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Abstract

In 2026, and maybe even as soon as 2022, the FIFA World Cup will for the first time
gather 48 men’s national teams. It will consist of a group stage made of 16 groups of
three, with the best two teams in each group advancing to the knockout stage. Using
groups of three raises several fairness issues, including risk of match fixing and schedule
imbalance. In this article we examine the risk of collusion. The two teams who play the
last game in the group know exactly what results will let them advance to the knockout
stage. Suspicion of match fixing occurs when a result qualifies both of them at the expense
of the third team of the group, and can seriously tarnish the tournament. We quantify
how often this is expected to happen and explain how to build the match schedule so as
to minimize the risk of collusion. We also quantify how the risk of collusion depends on
competitive balance. Moreover, we show that forbidding draws during the group stage (a
rule considered by FIFA) does not eliminate the risk of match fixing, and that surprisingly
when draws are forbidden the 3-2-1-0 point system does not do a better job at decreasing
the risk of collusion than the 3-0 point system.

1 Introduction

The soccer World Cup is the most popular sporting event in the world, even more widely viewed
and followed than the Olympic Games. It is organized every four years by FIFA (Fédération
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Internationale de Football Association), the sport’s world governing body. In 2026, and maybe
even as soon as 2022, for the first time 48 senior men’s national teams will participate in the
final tournament, based on their results in the two-year qualification process—except for the
host nation(s), who may automatically qualify.

The final tournament will consist of a group stage followed by a knockout stage. For the
group stage, the 48 finalists will be divided into 16 groups of three. Each group will play a
single round-robin tournament, and the winner and runner-up will advance to the knockout
stage.

Using groups of three may look harmless, but it actually raises several fairness issues. A first
obvious issue is schedule imbalance. Let us denote by A the team that will play the first two
group games, B the team that will play the first and last group matches, and C the remaining
team, which will play the last two group games (see Table 1). Team B will enjoy more rest
days between their two group matches than Teams A and C; Team A, if they advance to the
knockout round, will enjoy more rest days than the other advancing team; Team C will have
none of these benefits.

A more serious issue is the subject of this article: the suspicion of match fixing (or collusion).
As soon as Match 2 is finished (see Table 1), Teams B and C will know what results of Match
3 will let them advance to the knockout stage. Suspicion of collusion occurs when a result
lets both of them advance, at the expense of Team A. It can badly harm the tournament and
more globally the game of soccer, whether the match is actually fized or not, since outcome
uncertainty is at the very root of sport’s popularity. The “disgrace of Gijén” is certainly the
most famous example of match fixing in the history of soccer. It refers to the match between
West Germany and Austria who refused to attack each other during 80 minutes, satisfied by
the 1-0 Germany win that would let both teams advance to the second round of the 1982 FIFA
World Cup, at the expense of Algeria, who had played its last group game the day before. To
prevent this to happen again, FIFA decided that all teams in a given group would play their
last group match at the same time, which of course is not possible with groups that have an
odd number of teams, in particular with groups of three.

Even in traditional groups of four, playing the last two group games at the exact same time
does not fully prevent collusion. Denmark-France (0-0 on June 26, 2018 during the 2018 FIFA
World Cup) is a recent example of tacit collusion in this context: both teams knew that a
draw would let them both advance to the knockout stage whatever the result of the other game
in the group, Australia-Peru. They did very little to attack each other, which resulted in a
very boring game and the only goalless match of the 2018 World Cup. The crowd made its
displeasure known, as well as football fans around the world on social media [11]. Denmark’s
manager Age Hareide said after the game: “We just needed one point, we were up against one
of the best teams in the world at counterattacks, so we would have been stupid to open up a
lot of space. We stood back and got the result we needed, it was a 0-0 and we’re very pleased
with that” [10]. Denmark-Sweden at UEFA Euro 2004 is another example of a tacit collusion
situation: a 2-2 tie would qualify both teams at the expense of Italy, whatever the result of
Ttaly against Bulgaria. The game indeed ended as a 2-2 draw, raising complaints from the
Italian team and fans, even though Sweden and Denmark seemed to attack each other without
restraint and try to win the game.

Kendall and Lenten [7] provide other examples of tacit collusion in sports, and more generally
examples where the rules of sports have led to unforeseen and/or unwanted consequences. Csaté
[1] also investigates an example of tacit collusion in soccer.

In this article, we quantify the risk of suspicion of match fixing in groups of three, when two
teams advance to the next phase. Section 2 describes the situations in which collusion will be
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Match 1 | Match 2 | Match 3
A-B A-C B-C

Table 1: Match schedule of a group

suspected. In Section 3 we compute the probability of occurrence of those situations, first at
the level of a group, then at the level of the tournament, which is made of 16 groups. Section
4 investigates the impact of the match schedule on the risk of collusion. In particular, we show
that in order to minimize this risk, the team that plays the first two group games should be
the a priori strongest team in the group. In Section 5 we measure the impact of competitive
balance on the risk of collusion. Section 6 and 7 quantify by how much the risk of collusion
would decrease if FIFA does not use the traditional 3-1-0 point system but adopts alternate
point systems that forbid draws, the 3-0 and 3-2-1-0 point systems. Finally, we discuss our
results in Section 8.

2  Occurrences of suspicion of match fixing

We use the notation of Table 1. In a group of three, suspicion of match fixing occurs when it is
known after Match 2 if there exists a result of Match 3 (B vs C) which lets both Teams B and
C advance at the expense of Team A. We assume that teams have an incentive to finish first
of the group. For instance, this happens when group winners play the runners-up of another
group in the first round of the knockout stage, as it has been the case since World Cup 1998.
FIFA is likely to continue to implement this rule. We say that the suspicion of match fixing is
aggravated when Team B or C can win the group even after losing its last game.

We assume that, like for the most recent World Cups, wins are worth 3 points, draws 1
point, losses 0 point, and that ties in the ranking table of the group are decided using the
following ordered criteria: (1) overall goal difference, (2) overall goals scored; for the purpose of
this study we only need to consider the further criterion (3): if exactly two teams are still even
after criteria (1) and (2) are applied, the winner (if any) of the match between these two teams
is ranked higher. The following proposition describes all the possible situations after Match 2
raising suspicion of match fixing. We denote by GD 4 the goal difference of Team A after Match
2.

Proposition 1. Suspicion of match fizing occurs exactly in the following cases:

1. Team A has one draw and one loss.
2. Team A has two draws.

3. Team A has one win and one loss and GD4 < 0.

Aggravated suspicion of match fixing occurs if and only if Team A has one win and one loss
and GDjy < 0.

Proof. See [0]. O

3 Probability of suspicion of match fixing

Here we consider a simple model to estimate the probability of the situations where collusion
will be suspected. We assume that the result of Match 2 is independent of the result of Match
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Win prob. | A B C
A paB | paC
B PBA PBC
C PcA | PoB

Table 2: Win probabilities: pxy is the probability that Team X wins against Team Y.

Situation of Team A after Match 2 Probability SMF | SMF*
Two wins PABPAC
One win and one draw papdac +dappac
One win and one loss, GD4 > 0 p>o(paBPCA + DBADAC)
One win and one loss, GD4 =0 po(PaBPCA + PBADAC) v
One win and one loss, GD4 < 0 p<o(paABPCA + DBADAC) v v
Two draws dapdac v
One draw and one loss pBadac +dappoa v
Two losses PBAPCA

Table 3: Summary of all the possible situations of Team A after Match 2, their probabilities,
and whether they lead to suspicion of match fixing (SMF) and aggravated suspicion of match
fixing (SMF*)

1. We denote by pxy the probability that Team X wins against Team Y (see Table 2) and
by p<o (resp. po, p=o) the probability that Team A has negative (resp. null, positive) goal
difference, i.e., GD4 < 0 (resp. = 0, > 0) given that Team A has one win and one loss in the
group stage.! For simplicity, we denote by

dxy =1—pxy —pvx

the probability that Teams X and Y draw and by p<g = p<o + po. Table 3 summarizes all
the possible situations of Team A after Match 2, their probabilities, and whether they lead
to suspicion of match fixing (SMF) and aggravated suspicion of match fixing (SMF*). The
following proposition gives the probability of suspicion of match fixing for a given group of
three in this model. It immediately follows from Proposition 1 and Table 3.

Proposition 2. The probability of suspicion of match fizing in a given group of three is
psMmF = dappca +ppadac + dapdac + p<o (PaBPcA +DPBAPAC) - (1)

The probability of aggravated suspicion of match fizing in a given group of three is

PSMF ‘= P<0 (PABPCA + PBAPAC) - (2)
In the case of perfect competitive balance, pap = ppa = Pac = pca = Pc = poB < %
which we denote by p, and p<¢ > %, typically close to % Then dap = dac = dpc =1-2p

and

psur = 2p(1 — 2p) + (1 — 2p)? + 2p<op® = 1 — 2p + 2p<p?

INote that, ignoring collusion issues, Krumer and Lechner [8] have examined the role of the schedule in
round-robin tournaments with sequential games between three and four contestants. A more complicated model
could have the probabilities pxy depend on the match schedule.
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When p = %, PSMF = % + %pgo. Assuming p_ = 0.6, we get psyp = % For a slightly more
reasonable value p = %, then psyr = i + %pgo = %70 ~ 42%. Both values are very close to
50%! In the situation of perfect competitive balance, the risk of suspicion of match fixing is
very high.

The next two corollaries, which are easy consequences of Proposition 2, give sufficient con-
ditions under which the risk of collusion is maximal or minimal.

Corollary 3. The probability of suspicion of match fixing is mazimum, equal to 1, in the case
where dap = dac = 1.

This corollary somewhat explains why it has been reported that FIFA has considered ban-
ning draws during the group stage [2, 12]. All group stage matches would have a winner and
a loser, possibly decided by a penalty shootout in the case where two teams are tied after 90
minutes. When draws are forbidden for Matches 1 and 2, then the first three terms in psyp
are zero and

PSMF = P<o (PABPCA + pBAPAC) s ngF = P<o (pABPCA + pBApAC) .

However, the values of pap, pBa, Pac, pca are inflated, compared with the case where draws
are allowed, since the probability of a draw between Teams X and Y is redistributed to both
win probabilities pxy and py x. For instance, if we assume perfect competitive balance, then
PsMF = P<o/2 is typically greater than i, while p&yp = P<o/2 is typically close to i. Hence
forbidding draws does not eliminate the risk of collusion. The situations where A has one win

and one loss and a nonpositive goal difference will still be prone to match fixing.

Corollary 4. The probability of suspicion of match fixzing is minimum, equal to 0, if one of
those three conditions holds:

(1) pap =1 and (pca =0 or p<g =0): A surely wins against B, and it cannot lose against
C, or if it loses against C its global goal difference GD4 can only be positive.

(i) pac =1 and (ppa =0 or p<g =0): A surely wins against C, and it cannot lose against
B, orif it loses against B its global goal difference GD4 can only be positive.

(i1i) ppa = pea = 1: A surely loses against B and C.

This corollary indicates that in order to minimize the probability of suspicion of match
fixing, Team A should be the a priori strongest team in the group (so it is close to satisfy one
of the first two conditions above) or the a priori weakest team in the group, if very weak (so it
is close to satisfy the last condition above). Team A should not be the middle team. However,
conditions (i), (ii), or (iii) are never satisfied in practice: even when a soccer powerhouse meets
an underdog, there is always a positive probability that the underdog draws or wins, even if it is
small. This means that in practice suspicion of match fixing cannot be avoided. In particular,
we have:

Corollary 5. Assume one of the following conditions:
(1) All the probabilities pap, PBA, PAC, DA, D<o are strictly positive.
(i) The probabilities dap and dac are strictly positive.

Then the risk of collusion cannot be avoided: psymp > 0.
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Finally, this last proposition is also an immediate consequence of Proposition 2. It quantifies
the risk that collusion be suspected in at least one of the 16 groups.

Proposition 6. Let us assume that the same values of pap, PBA, PAC, PcA, P<o, and p<o
apply to all 16 groups of the World Cup, and that the results in the 16 groups are all independent.
Let psmr and péyp be given by (1) and (2). Let Nsmp (resp. Nyg) be the number of groups
in which suspicion of match fizing (resp. aggravated suspicion of match fizing) occurs. Then

for all k € {0,1,...,16},

16! _
P(Nsmr = k) = (16— B)1 k)!ngF(l — psur) 0 *
* 16! * k * 16—k
P(Nsup = k) = 7]“(16 —&)! (Psmr)” (1 — PSmr) :

In particular, the probability that there is suspicion of match fizing for at least one group is

psmr(16) =1 — (1 — psur)*®

and the probability that there is aggravated suspicion of match fixing for at least one group is
Pinr(16) = 1 — (1 — péyp) '
There are on average
]E[NSMF] = 16pSMF (resp, ]E[NgMF] = 16p§Mp)

groups in which suspicion of match fizing (resp. aggravated suspicion of match fixing) occurs.

4 Impact of the match schedule on the risk of collusion

Let us consider the realistic example of a 2026 World Cup group given in Table 4, with a strong
team S, a middle team M, and a weak team W. There are three possible choices for Team A:
S, M, and W, corresponding to three possible match schedules.? We naturally assume that the
stronger Team A is, the smaller p<p and p.o are (see Table 5). The corresponding values of
psmr and pgyp are given in Table 5. For this plausible example, it is apparent that in order to
minimize the risk of collusion, Team A (the team that plays the first two group games) should
be the a priori strongest team in the group: the risk of collusion is about 15% in any given
group, if Team A is the a prior: strongest in the group, but it climbs to around 50% otherwise.
Indeed, if Team A is the a priori strongest in the group, it would likely be already qualified after
Match 2 (first three lines of Table 3). However, arbitrarily deciding which team will play the
first two games in a group is unfair, as it is the only team that may be the victim of collusion.
Note that if this schedule (A = S) is implemented:

e The a priori strongest team in the group, if it is not already qualified after Match 2,
might be the victim of a collusion between the two other teams.

e The a priori strongest team in the group, if it advances to the knockout stage, will enjoy
more rest days than the other qualified team before the round of 32.

e In all groups, the third match will oppose the two a priori weakest teams in the group.

2The order of the first two games is irrelevent as regards the risk of collusion.
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Win prob. S M W

S (Strong) psy = 50% | psw = 80%
M (Mlddle) PMS = 20% PMw = 50%
W (Weak) | pws =5% | pwu = 20%

Table 4: Win probabilities: pxy is the probability that Team X wins against Team Y.

A S M W
P<0 30% | 60% 90%
P=o 10% | 40% 80%

psmr | 14.6% | 47.4% | 527%
Do | 19% | 11.6% | 14.8%
psmr(16) | 91.9% | 99.997% | 99.999%
Pive(16) | 25.8% | 86.1% | 92.3%

E[Nswr] | 2.3 7.6 8.4
E[Niye | 0.3 1.9 2.4

Table 5: Probabilities of suspicion of match fixing psyp, probabilities of suspicion of match
fixing psmr(16) in at least one of the 16 groups, and average number E[Ngyr| of groups with
suspicion of match fixing for the example of Table 4, depending on the order of matches (A =
S, M, or W). Aggravated suspicion of match fixing is denoted with a * superscript

The probabilities pgyr(16) (resp. piyp(16)) that there is suspicion of match fixing (resp.
aggravated suspicion of match fixing) for at least one of the 16 groups, as well as the expected
numbers of groups in which suspicion of match fixing will occur, are also given in Table 5.
Note how large pgmr(16) is, even in the most favorable case where in all groups Team A is the
strongest team (more than 90%!). It is almost certain that there will be a risk of collusion for
at least one group. Even in this most favorable case, it is actually expected that suspicion of
match fixing will occur in 2.3 groups. For the other schedules (A = M or W), match fixing
will be suspected in eight groups on average! The “disgrace of Gijén” will not only be made
possible again, the risk of its repetition will be very high, which is a terrible step back in the
history of the World Cup.

5 Impact of competitive balance on the risk of collusion

Tables 6 and 7 compare three situations of competitive balance within a group: perfect balance
(the three teams are equally skilled), imbalance (there is a strong team, a middle team, and a
weak team), and strong imbalance (the strong team is much stronger than the weak team). Of
course, only the last two cases are realistic for the World Cup.

As can be seen from these tables, when Team A is the strongest team in the group, the
stronger the imbalance, the smaller the risk of collusion. This is because A is more likely to be
already qualified after Match 2. However, when Team A is the weakest team in the group, the
risk of collusion is not a monotonic function of imbalance.

Note that, even in the most favorable case where all groups are highly imbalanced and in
all groups Team A is the strongest team, the risk of a collusion in at least one of the 16 groups
is still very high, larger than 60%, and match fixing will be suspected in 0.9 group on average.
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Perfect balance Imbalance Strong imbalance
Win prob. S M W S M W S M W
S (Strong) 37.5% | 37.5% 50% | 80% 70% | 90%
M (Middle) || 37.5% 37.5% || 20% 50% || 10% 70%
W (Weak) || 37.5% | 37.5% 5% | 20% 2% | 10%

Table 6: Win probabilities: pxy is the probability that Team X wins against Team Y.

Perfect balance Imbalance Strong imbalance
A S/M/W S M W S M w

P<o 60% 30% 60% 90% 30% 60% 90%

P<o 40% 10% 40% 80% 10% 40% 80%

PSMF 41.9% 14.6% | 47.4% | 52.7% 5.9% | 50.0% | 34.6%

DPEME 11.3% 1.9% | 11.6% | 14.8% 1.0% | 20.0% | 8.3%
psmr(16) 100.0% 91.9% | 100.0% | 100.0% || 62.3% | 100.0% | 99.9%
DPénr (16) 85.2% 25.8% | 86.1% | 92.3% || 15.4% | 97.2% | 75.1%
E[Nsur] 6.7 2.3 7.6 8.4 0.9 8.0 5.3
E[N&vr) 1.8 0.3 1.9 2.4 0.2 3.2 1.3

Table 7: Probabilities of suspicion of match fixing pgyr, probabilities of suspicion of match
fixing psmr(16) in at least one of the 16 groups, and average number E[Ngyr| of groups with
suspicion of match fixing for the three examples of Table 6, depending on the order of matches
(A =S, M, or W). Aggravated suspicion of match fixing is denoted with a * superscript

6 Impact of forbidding draws on the risk of collusion

Like in the previous section, Tables 8 and 9 compare the three situations of competitive balance
within a group, but now in the case where draws are forbidden: pxy + pyx = 1. Assuming
that in the case of a draw both teams have equal chances to win the penalty shootout, we have
equally reallocated the draw probabilities of Table 6 to both teams.

Let us compare Tables 7 and 9. Banning draws would indeed decrease the risk of collusion,
but not much: for a reasonably unbalanced group, the risk of collusion would be around 10%
(down from 15%) if the strongest team plays the first two group games, around 30% (down
from 50%) otherwise. For a strongly unbalanced group, the risk of collusion would be around
7% (up from 6%) if the strongest team plays the first two group games, around 20% (down
from 35%) if the weakest team plays the first two group games, and around 40% (down from
50%) if the middle team plays the first two group games. The probability that at least one
group faces suspicion of collusion would still be very high, at about 69% (up from 62%) in the
most favorable case (strong imbalance, A = S), and close to 100% in many cases. Even in the
most favorable case, match fixing will be suspected in at least one group.

Moreover, note that while forbidding draws decreases the risk of collusion, it actually in-
creases the risk of aggravated collusion, the most dangerous form of match fixing, since aggra-
vated collusion can only occur when Team A has one win and one loss, even when draws are
allowed. When draws are forbidden, all the win probabilities pxy are larger, and as a conse-
quence so is the probability that Team A has one draw and one loss. In the most favorable case
(strong imbalance, A = S), the probability that at least one group faces aggravated suspicion
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Perfect balance Imbalance Strong imbalance
Win prob. S M W S M W S M W
S (Strong) 50% | 50% 65% | 87.5% 80% | 94%
M (Middle) || 50% 50% || 35% 65% || 20% 80%
W (Weak) || 50% | 50% 12.5% | 35% 6% | 20%

Table 8: Win probabilities: pxy is the probability that Team X wins against Team Y. Here,
draws are forbidden, so pxy + pyx =1

Perfect balance Imbalance Strong imbalance

A S/M/W S M W S M w

D<o 60% 30% 60% 90% 30% 60% 90%

P<o 40% 10% 40% 80% 10% 40% 80%
PSMF 30.0% 11.6% | 32.7% | 30.6% || 7.1% | 40.8% | 21.2%
Dénmp 20.0% 3.9% | 21.8% | 27.2% || 2.4% | 27.2% | 18.9%
psmr(16) 99.7% 86.2% | 99.8% | 99.7% || 69.1% | 100.0% | 97.8%
Pénr (16) 97.2% 46.9% | 98.0% | 99.4% || 31.8% | 99.4% | 96.5%

E[Nsmr 4.8 1.9 5.2 4.9 1.1 6.5 3.4

E[Ndyur 3.2 0.6 3.5 44 0.4 4.4 3.0

Table 9: Probabilities of suspicion of match fixing psypr, probabilities of suspicion of match
fixing psmr(16) in at least one of the 16 groups, and average number E[Ngyr| of groups with
suspicion of match fixing for the three examples of Table 8 (draws forbidden), depending on
the order of matches (A = S, M, or W). Aggravated suspicion of match fixing is denoted with
a * superscript

of collusion would be around 32% (up from 15%).

7 Impact of the point system on the risk of collusion

Let us assume that draws are forbidden, and that the winner of a tied game decided by a
penalty shootout wins 2 points, instead of 3 points, while the loser wins 1 point, instead of 0
point. In this case, in all group matches, 3 points are distributed to the teams: either 3 4 0,
if there is a winner at the end of the 90 minutes of play, or 2 + 1 if the game is tied and is
decided by a penalty shootout. At first sight it seems that this new 3-2-1-0 point system, which
is very natural and plausible, would significantly reduce the risk of collusion by increasing the
number of possible point scenarios after Match 2. This was in particular argued by Ignacio
Palacios-Huerta in [9] after we published two articles in The New York Times [3, 4] based on a
first version of this work. Let us check to what extent this is true. To ease comparisons with
the 3-0 point system, we still speak of draw for a match that is tied after 90 minutes and is
decided by a penalty shootout, and of win and loss for games whose result is decided after 90
minutes. We recall that we say that the suspicion of match fixing is aggravated when Team B or
C can win the group even after losing its last game. In the 3-2-1-0 point system, we introduce
another notion of aggravated suspicion of match fixing: we say that the suspicion of match
fixing is aggravated of type II when Team B or C can win the group and eliminate Team A even
after drawing its last game and losing on penalties. In such a case, Teams B and C may agree
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(explicitly or not) on a draw, say 0-0, and the team leading in the rankings can at no expense
decide to eliminate Team A by losing the penalty shootout — a situation FIFA surely wants to
avoid by all means.

Proposition 7. In the 3-2-1-0 point system, suspicion of match fizing occurs ezxactly in the
following cases:

1. Team A has one draw and one loss, and wins the penalty shootout.
2. Team A has two draws, and loses at least one of the two penalty shootouts.

3. Team A has one win and one loss and a goal differential GD4 < 0.

Aggravated suspicion of match fixing occurs if and only if Team A has one win and one loss
and GDy < 0. Aggravated suspicion of match fixing of type II occurs if and only if Team A has
one draw and one loss and wins the penalty shootout.

Proof. See [6]. O

Table 10 summarizes all the possible situations of Team A after Match 2 in the 3-2-1-0
point system, their probabilities, and whether they lead to suspicion of match fixing (SMF),
aggravated suspicion of match fixing (SMF*), and aggravated suspicion of match fixing of type
II (SMF};). Compared with the traditional 3-1-0 point system (Table 3), two situations that
always led to suspicion of match fixing are now split into two:

e Team A has two draws. There is no more suspicion of match fixing if A wins both
penalty shootouts — in this case A is already qualified. This decreases the probability of
match fixing by idABdAC“

e Team A has one draw and one loss. There is no more suspicion of match fixing if A
loses on penalties — in this case A is already eliminated. This decreases the probability of
match fixing by 3(ppadac + dappca)-

This makes suspicion of match fixing a little less likely compared with the traditional 3-1-0
point system. However, there is no change regarding aggravated suspicion of match fixing: it
still occurs if and only A has one win and one loss, and GD 4 < 0. Moreover, the 3-2-1-0 point
system introduces a new, problematic aggravated suspicion of match fixing (type II), in which
a team can decide to eliminate Team A at no cost by losing the penalty shootout if the last
group game ends in a draw after 90 minutes. This happens if and only if Team A has one loss
and one draw won on penalties. As a consequence we have

Proposition 8. In the 3-2-1-0 point system, the probability of suspicion of match fixing in a
given group of three is

1 3
PSMF = i(dABpCA + ppadac) + ZdABdAC + p<o (PaBPCA + PBAPAC) ;
the probability of aggravated suspicion of match fizing in a given group of three is

Pénr = P<o (PABPCcA +DPBAPAC) ;

and the probability of aggravated suspicion of match fizing of type II in a given group of three
18

. 1
PSMF 1T = i(dABpCA +pBadac).

The various probabilities of suspicion of match fixing and average number of groups with
suspicion of match fixing in the 3-2-1-0 system are reported in Table 11.
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Situation of Team A after Match 2 Probability SMF | SMF* | SMF};
Two wins PABPAC
One win and one draw paBdac + dappac
One win and one loss, GD4 >0 p>0(PABPCA + PBAPAC)
One win and one loss, GD4 =0 po(PABDPCA + PBADAC) v
One win and one loss, GD4 < 0 p<o(PABDCA + PBADPAC) v
Two draws, two wins on penalties id ABdac
Two draws, at least 1 loss on penalties %d ABdac v
One draw and one loss, win on penalties %(pBAdAC +dappca) v v
One draw and one loss, loss on penalties %(pBAd Ac +dappca)
Two losses PBAPCA

Table 10: Summary of all the possible situations of Team A after Match 2 in the 3-2-1-0
point system, their probabilities, and whether they lead to suspicion of match fixing (SMF),
aggravated suspicion of match fixing (SMF*), and aggravated suspicion of match fixing of type
IT (SMF;))

Perfect balance Imbalance Strong imbalance

A S/M/W S M W S M W

b<o 60% 30% 60% 90% 30% 60% 90%
P<o 40% 10% 40% 80% 10% 40% 80%
PSMF 30.9% 11.2% | 34.7% | 35.8% || 4.9% | 41.0% | 22.4%
D 11.3% 1.9% | 11.6% | 14.8% || 1.0% | 20.0% | 8.3%
DEMP.IT 9.4% 9.3% | 10.5% | 15.8% || 5.2% 8.0% | 11.8%
psmr(16) 99.7% 85.0% | 99.9% | 99.9% || 55.4% | 99.98% | 98.7%
Pénr (16) 85.2% 25.8% | 86.1% | 92.3% || 15.4% | 97.2% | 75.1%
Pénr 11(16) 79.4% 78.8% | 83.0% | 93.6% || 57.5% | 73.7% | 86.6%

E[Nsmr 5.0 1.8 5.6 5.7 7.9 6.6 3.6

E[Ndyur 1.8 0.3 1.9 24 0.2 3.2 1.3

E[Néur n1l 1.5 1.5 1.7 2.5 0.8 1.3 1.9

Table 11: Probabilities of suspicion of match fixing psmr, probabilities of suspicion of match
fixing psmr(16) in at least one of the 16 groups, and average number E[Ngyr| of groups with
suspicion of match fixing for the three examples of Table 6 in the 3-2-1-0 system, depending on
the order of matches (A = S, M, or W). Aggravated suspicion of match fixing is denoted with
a * superscript; aggravated suspicion of match fixing of type II is denoted with a II subscript

8 Discussion

Figure 1 compares the probability of (a) suspicion of match fixing for a given group; (b) aggra-
vated suspicion of match fixing for a given group; (c) suspicion of match fixing in at least one of
the 16 groups; (d) aggravated suspicion of match fixing in at least one of the 16 groups, in the
three different point systems 3-1-0, 3-0, 3-2-1-0, for the three competitive balance assumptions

of Tables 6 and 8, and the three schedules A = S, M, or W. It shows that:

e Clearly the most important factor impacting suspicion of match fixing is the schedule:
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- Probability of suspicion of match fixing for a given group (in %)
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Figure 1: Comparison of probability (in %) of (a) suspicion of match fixing for a given group;
(b) aggravated suspicion of match fixing for a given group; (c) suspicion of match fixing in at
least one of the 16 groups; (d) aggravated suspicion of match fixing in at least one of the 16

groups, in three different point systems, for three competitive balance assumptions, and the
thrao crhadnloe A — Q@ M Ae W
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Probability of aggravated suspicion of match fixing for a given group (in %) in the 3-2-1-0 system
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Figure 2: Comparison of probability (in %) of (a) aggravated suspicion of match fixing for a
given group; and (b) aggravated suspicion of match fixing in at least one of the 16 groups, in
the 3-2-1-0 point system, including type II, for three competitive balance assumptions, and the
three schedules A = S, M, or W.

the probability of suspicion of match fixing is minimized when it is the a priori strongest
team that plays the first two games in the group.

e Forbidding draws (3-0 point system) decreases the probability of suspicion of match fixing,
but increases the probability of aggravated suspicion of match fixing. Note however that
in the case of strong imbalance and Team A being the a priori strongest team, forbidding
draws actually increases the probability of suspicion of match fixing.

e Surprisingly, compared to the 3-0 point system, the probability of suspicion of match
fixing is usually slightly larger in the 3-2-1-0 point system, except when Team A is the a
priori strongest team.

The probability of aggravated suspicion of match fixing in the 3-2-1-0 point system is exactly
the same as in the classical 3-1-0 point system. However, when we include aggravated suspicion
of match fixing of type II, among the three point systems, it is the 3-2-1-0 point system that
has the largest probability of aggravated suspicion of match fixing, in all cases (see Figure 3).
In particular, the probability of aggravated suspicion of match fixing of type II is much larger
than its “type I” equivalent when Team A is the a priori strongest team (see Figure 2).
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a5 Probability of aggravated suspicion of match fixing for a given group (in %)
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Figure 3: Comparison of probability (in %) of (a) aggravated suspicion of match fixing for a
given group; (b) aggravated suspicion of match fixing in at least one of the 16 groups, in three
different point systems, for three competitive balance assumptions, and the three schedules A
=S, M, or W. The fourth bar represents aggravated suspicion of match fixing of both types
(including type II) in the 3-2-1-0 point system

9 Conclusion

We have quantified the risk of collusion in a group of three teams playing a single round-robin
tournament, where two teams advance to the next phase. We have shown that the best way to
minimze the risk of collusion is to enforce that the team that plays the first two group matches
is the a priori strongest team in the group, especially if the group is strongly imbalanced.
However this may be deemed unfair to that team as it would be the only one vulnerable to
collusion. This would also mean that Match Day 3 of the World Cup would feature none of the
seeded teams.

We have quantified how competitive imbalance within a group impacts the risk of collusion.
We have also quantified by how much the risk of collusion would decrease if FIFA does not use
the traditional 3-1-0 point system but adopts alternate point systems that forbid draws, the 3-0
and 3-2-1-0 point systems. Even though it looks appealing on paper, the 3-2-1-0 point system
does not in general do a better job at decreasing the risk of collusion than the 3-0 point system.

Actually, whatever the rule that FIFA will use to rank the teams in a group of three, where
only the group winner and the runner-up advance to the next phase, there will always be
situations where Team A, the team that plays the first two group games, is neither qualified
nor eliminated after Match 2, e.g., if A has one 1-0 win and one 2-0 loss. In these situations,
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some results of Match 3 will qualify Team A and others will eliminate it, raising the risk of
collusion between Teams B and C to eliminate Team A. As a consequence, if FIFA wants to
keep groups of three with the best two teams advancing, Format 5 of [6, Section 9] seems the
best solution to minimize the risk of collusion, where the knockout bracket is seeded based on
performance across groups (see also [5]).

The fact that there will be 16 groups of three makes the risk of collusion in at least one
group very high, even in the most favorable case where all groups are strongly imbalanced
and in every group Team A is the a priori strongest team in the group. This proves, by the
numbers, that the introduction of groups of three is a terrible step back in the history of the
World Cup. Not only it makes the “disgrace of Gijén” possible again, but it makes the risk of
its repetition very high. Of course, not all teams would collude if given the opportunity, but
even suspicion of match fixing may seriously tarnish the World Cup, as unpredictability of the
outcome is fundamental to its popularity, and to sport’s popularity in general.

It is FIFA’s responsibility to build a fair World Cup. It is not too late for FIFA to review
the format of the 2022 and 2026 World Cups. Let us encourage the FIFA Council to realize the
danger posed by groups of three, and, if it really wants a 48 team World Cup, opt for one of
the formats described in [6, Section 9].
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Abstract

In this paper, we use a Markov process model of a football match to analyse the effect
of a change of transition probabilities related to possession on scoring a goal. In the model,
we divide the pitch into 9 areas, and collect the data in terms of the change of location of
the ball, together with the change of possession of the ball. Annual data from J League
Division 1 in the 2015 season is used to estimate the transition rates between the states.
Using these transition rates, we calculate the probability distribution of scoring goals and
the probability of winning under the Markov process model. Using the model, we make
a change of the transition rate of a team and calculate the effect of the change. We provide
a numerical example of the effect of the change of transition data based on the averaged
data of the league.

1 Introduction

Modelling an association football match is a topic of interest for evaluating teams’ characteristics,
predicting the outcome of a match, or analysing optimal tactical changes. For evaluating teams’
characteristics, the factors of teams’ offensive and defensive strengths are estimated by Maher (1982).
He analysed three consecutive season from four English soccer league divisions starting with the 1971-
72 season, and estimated the factors in a Poisson regression model using the maximum likelihood
method. Lee (1997) similarly estimated teams’ strengths in the 1995-96 season of the English Premier
League. Hirotsu and Wright (2003a) estimated the factors relating to not only the transition rates of
scoring and conceding goals but also the rates of gaining and losing possession. For predicting the
outcome of a match, Dixon and Coles (1997) estimated teams’ strengths to earn profits in the betting
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market using English league and cup data from 1992 to 1995. They introduced a time-dependent effect
to a Poisson regression model based on Maher’s model. Dixon and Robinson (1998) proposed a more
complicated statistical model that incorporated the goal scoring rate given the game’s current time and
score using English league and cup data from 1993 to 1996. For analysing the optimal tactical changes
in a match, Hirotsu and Wright (2003b) applied a Markov process model together with the log-linear
model, and discussed the optimal formulation changes of a team. More recently, Liu and Hohmann
(2013) used a Markov chain model in which the state is determined by the player who is in possession
of the ball and analysed the impact of changes in the transition probability on the attack in the front 35
meters, using data from the 2011 European Champions League final between FC Barcelona and
Manchester United.

In a previous paper (Hirotsu et al., 2017), we extended the model of Hirotsu and Wright (2002,
2003a, 2003b), by considering the location of the ball on the pitch, in order to analyse teams’
characteristics. Hirotsu et al.(2017) divided the pitch up to 9 areas, and collected the data in terms of
the change of location of the ball, together with the change of possession of the ball.

In this paper, we use their Markov process model in which the pitch is divided to 9 areas, and analyse
the effect of a change of transition probabilities related to possession on scoring a goal or winning a
game. We use the annual data from the J League Division 1 in the 2015 season. Using these transition
rates, we calculate the probability distribution of scoring goals and the probability of winning under the
Markov process model. We make a change of the transition rates of a team in the model, and measure
the effect of the change. We provide a numerical example of the effect of the change of transition data
based on the averaged data of the league.

2 The Markov Process Model

A football match can be seen as progressing through a set of stochastic transitions occurring due to
a change of possession of the ball or the scoring of a goal. Hirotsu and Wright (2002, 2003a, 2003b)
assumed a Markov property in these transitions and proposed a Markov process model, which seems
appropriate to a football match as an approximation. As a level of division of the pitch, we use a Markov
process model in which the pitch divided into 9 areas as follows:

State Hg: Home team scores a goal;
State H;: Home team is in possession of the ball and the ball is located in the “I” area (I=1,..., 9);
State A;: Away team is in possession of the ball and the ball is located in the “T” area (I=1,..., 9);
State Ag: Away team scores a goal.

The “T1” area (I=1,....9) on the pitch is also defined in Figure 1. There are two states for the goal
scoring (states Hg and Ag) and 18 states relating to the location and team’s possession of the ball. We
make the following definitions, and show them in Figure 2:

Tiis the total time for which the game is in state i in a game (i=H1,Ha,...,A1);

Nig is the total number of goals scored by home team from state i in a game ( i=H1,H>,...,Hs);
Nij is the total number of transitions from state i to state j in a game (i,j=H1,Ha,...,A1);

Nic is the total number of goals scored by for away team from state i in a game (i=A1,As,...,As).
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Figure 1: The areas on the pitch.
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Figure 2: The Markov process model of a football match

In Figure 2, Nuic represents the total number of goals scored by the home team in a game from state
Hi. Nuine represents the total number of the transition from the “1” area to the “2” area without the
change of possession by the home team in the game. Here, under the assumption of the Markov property,
NHin2 follows Poisson distributions whose means are proportional to Ty, the total possession time of
the home team in the “1” area. Other total numbers of transitions such as Nuiag are also defined in a
similar manner.

The transition probabilities between them are defined in Table 1. In this table, anc is interpreted as
the transition rate from state H; to Hg (i.e. scoring a goal from the “1” area by home team). The
probability of a transition from H; to Hg and a transition from H; to H, in the next small time dt is
expressed by awic - dt and awinz - dt, respectively. Other transitions are also expressed in a same manner.
The probability of remaining in state H; is thus 1 — (amictaniet - +ama)dt. Similarly, aj (i,j=
Hi,H2,...,A1) is defined as the transition rate from state i to state j. Strictly, it may not be entirely
accurate to describe the states Hg and Ag as “states”, because they instantaneously transit to state As or
state Hs. However, we continue to refer to them as “states”, since this model gives us a clearer image
of the basic idea underlying the model, and equations are formulated accordingly. While this is clearly
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a simple model to represent a very complex process, the model does reflect the most fundamental
aspects of a game (goals and possession) and therefore may nonetheless be useful.

Transition Probability Remarks

i—> He aic dt  Transition from possession to scoring a goal for home team from state i (i=Hz,Ha,...,Hs)
i > ajjdt  Transition from state i to state j (i,j=H1,Hz,...,A1)
i—>Ac aic dt  Transition from possession to scoring a goal for away team from state i (i=A1,Az,...,As)

Table 1: Definition of transition probabilities in a football match

The Markov process model could be expressed as a genuine Markov process model by taking into
account n, the number of goals scored, or r, the number of goals home team leads by, as other states.

Using the transition probabilities shown in Table 1, we can obtain the probability distributions of
the number of goals scored. Let Ri(n|t) be the probabilities of home team scoring n goals in the remaining
time t minutes, starting from state i (i = Hg, Hi,Hz,...,Ag). Then it can be seen that:

Ruc(n|t+dt) = Ras(n|t)
Rui(n|t+dt) = Rue(n —1|t) - anicdt + Ruz(n|t) - aninedt +- -+ + Ra(n | t) - an1acdt

+ RH1(n|t)-{1—aH1(3 —aH1H2—---—aH1A1)dt}
Ruz(n|t+dt) = Ruac(N—1|t) - anzedt + Ruzni(n | t) - anznidt + Rus(n|t) - anznsdt +- - (1)
+ Ra(n|t) - anzadt + Ruz(n | t)'{l—aHZG —AH2H1— @H2H3 —+ - — aHlAZ)dt}

Ras(n |t +dt) = Rus(n|t)

By solving the equations expressed in (1), the probability distribution of goals scored by home team
in the remaining time t can be obtained with the boundary conditions at the end of the game (t = 0),
RH1(n|0) = Ru2(n|0) =...=Ra1(n|0)= 1 if n = 0, zero otherwise.

The above method is also extended to obtain the probability of winning. Let Wi (r]t) be the
probability of home team winning from a position of leading by r goals with time t remaining, starting
fromstate i (i = Hg, H1,H2,...,Ag). Then it can be seen that:

Whis(r |t + dt) =Was(r | 1)
Whi(r |t + dt) =Whe(r +1|t) - anicdt + Wr2(r | t) - anin2dt +-- - + Wa(r | t) - aniadt

+Wh(r |t)- {l— aH1G —aH1H2 — -+ — aHlAl)dt}
Wh2(r |t +dt) =Whe(r +1]|t) - an2cdt + Whi(r |t) - @anznidt + Whs(r |t) - anansdt +--- 2
+Wa(r | t) - anzadt +Wr2(r |t) - {l— aH2G — A@H2H1— @H2H3 — -+ — aH2A1)dt}

Waa(r |t +dt) =Whs(r |t)
In order to obtain the probability of winning, we need to solve this equation with the boundary

conditions at the end of the game such that Wh1(r|0) = Wh2(r|0) = -+ = Waus(r|0) =1 ifr>0and O if r
< 0. In this paper, we set Wn1(r|0) = Wh2(r|0) = --- = Wau(r]0) = 0.5 only if r = 0 in the case of drawing.
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3 Estimation of Transition Rates

By solving Equations (1) or (2), the probability distributions for scoring goals and the probability
of winning the match can be derived using the estimators for the parameters such as awnic and anano. If
appropriate data are available, it is possible to deduce an estimate for these parameters for the game. If
the total numbers of transitions and the time spent in each state are all known, the transition rates can
be estimated thus:

aic = Nig /Ti  (i=H1,Ha,...,Hs)
aij =N /Ti  (i,j=H1,Ha,...,A1) (3)
aic = Nic /T; (i:Al,Az,...,Aﬁ) .

We can obtain the total numbers of transitions between states with the total time spent in each state
for each game from the real data of the 2015 season of the J-League Division 1. In J-League Division
1, there are 18 teams and 306 matches played in a season. For this study, Data Stadium Inc., which
helps to supply official data to the J-League, provided a large amount of data for the 306 games in the
season. We extracted several data for our analysis, in which the events occurred during the game are
recorded with the time. Time is measured from the beginning of the game and the location of the ball
is identified as a x and y coordinate. For each game, around two thousand events are recorded, and we
can use this basic information regarding to goals and possession of the ball with time and location for
our analysis using Markov process models.

Table 2 shows the observed numbers of goals, transitions, and time for each game. We counted the
numbers based on the annual data. For instance, we counted the numbers in the game No.1 in Table 2,
such that V.Sendai scored 2 goals (NH26=2), or Nn1H2 is 13, etc. As there are a lot of transitions between
states, we show a part of them in Table 2.

Home Away  Goal Transtion Time (min,)

No. NHlG NHZG NHXG NAQG NAEG NMG NH]HZ NHIAZ NHiHZ NH5H2 NHSAS NAHAH NABHB NMAH NASAB NASHS TH THZ THi TH4 THS TAS TM TAi TAZ TAI

1VSndi  MYamegta 0 2 0 0 0 0 B 2 10 3 2 21w n 6 6 4132 R W 3 WU NN

IMYavapta VS 0 L 0 0 1 0 B 2 6 5 3 2 W 0 5 6 3 20 1§ 43 20 2l 3 13 37 20
3SHiroshima VSl 0 2 0 0 0 0 1 4 U 3 3 T8 3 29 19 28 3 34 67 64 11 35 12
4VSndei  SHioshim 0 3 0 0 3 L 2 2 19 8 2 T8 9 5 4 42 35 35 66 69 33 28 33 40 2
5SHioshima  MYamapa 0 5 0 0 1 0 B 4 W 9 6 7 18 % 9 4 23 22 14 43 33 48 37 14 28 08
GMYamapta SHioshma 0 L 0 0 2 1 ¥ 4 U 0 2 9 B ¥ 3 5 25 20 26 41 59 41 48 33 67 N

305 ANigta ~ ViKofu 000 0 2 0 % 5 1083 0 % 6 6 2 33 41 17 64 64 3§ 46 20 41 19
306 SShimzu ~ ViKofu 00 0 1 1T 0 8 2 03 § 1 1383 19 ol

<
r~
o
Py
&
o
o
r~
=

Total W 2 o6 % 18 8303 7904 T5L9 14261 12434 12205 13047 5745 11107 5645
Table 2: Observed number of goals, transitions, and time for each game

From Table 2, we can obtain the total number of goals as 818, and total possession time as 16,833
minutes in the season. This total possession time corresponds to 55.2 (=16,833/306) minutes per game.
This is not 90 minutes because in the measurement of possession time, we extracted consecutive
possession time from the data, and did not count the following events toward the time of possession:
Ball-out, Foul, Penalty, Offside, Substitution, and Goal.

Table 3 shows the estimates of the transition rates between states using (3). We present them as the
mean and standard deviation in the season. For example, the transition rate from H, to Hi appears as
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3.3£1.8 times/minute in the third row and second column in Table 3. As we do not use the transition
rates between same states in our calculation, we omit the numbers appearing on the diagonal in Table
3.

/ H; H H H, Hs Hy Hy Hy Hy Ay Ay Ay As As A Ay Ay A

Hy 56 (23 ){05 (04 )31 (15)[05 (05 )00 (01)]01 (02)]00 (01)[00 (00)[31 (13§17 (09))01 (01§02 (03){00 (01)[00 (01)/00 (00 )00 (00 )00 (00)
H [33 (18) 33 (17006 (06))15 (10 )06 (05)[00 (01)[00 (01 )[00 (01)]03 (04 )}68 (20)[03 (03 )01 (02 )06 (05)[00 (01)[00 (01 ){0L (02 )00 (01)
Hy |05 (05)]58 (23 ) 01 102)]05 (05 )] 31 (17)[00 (00)[00 (01)[00 (01)]00 (01§21 (11)[32 (13 )00 (01)00 (01)[02 (03)]00 (00 ){00 (00 )00 (00)
He [41 (14)[07 (05 )02 (02 ) 39 (21 )[04 (04))12 (07)/06 (04)[00 (01)[06 (04 )03 (02)[00 (01 )18 (08){02 (02)00 (01)/01 (01 )00 (00 )00 (00)
Hs [12 (07)[16 (10 )11 (06 )50 125) 46 (23)]03 (03)]10 (07)[03 (03)[01 (02 )04 (03)[02 (02 )02 (02)[12 (06)[01 (02)|00 (00 )00 (01)00 (00)
Hy [03 (03)[08 (05 )[40 (14 )04 104)[38 (20 ), 00 (01)]06 (05)[13 (09)]00 (0103 (03)[07 (04 )00 (01)[02 (02)[19 (09)[00 (00 ){00 (00 )01 (01)
Hy [05 (06)[01 (02 )]00 (02 )65 124)[13 (09 )] 01 (03) 41 (24))02 (04)[02 (03 )01 (02){00 (01 )10 (07)[03 (04)[00 (01)fL3 (L0 )01 (02 f00 (00 )
Hg [03 (04)[03 (04 )03 (04 )22 109)]34 (14)[23 (10)[25 (14) 25 (13)[01 (02402 (03)/01 (02 )03 (03)[05 (04)[03 (03)]01 (01 )02 (02)01 (01)
Hy |00 (02)]02 (04){05 (07 )01 103)[13 (10)[65 (27)[03 (05)]40 (25) 00 (01402 (03)/03 (04 )00 (01)[02 (04)]10 (08)]00 (01 )00 (02 )13 (10)
Ag [15 (11)[01 (02 ){00 (01 )12 (09 )[03 (05){00 (01)[03 (04))01 (03)[00 (01) 37 (23)[03 (04 )63 (24 )12 (08)[01 (03 )[06 (06 )02 (04 )f00 (02)
Ag [01 (01)[03 (03 )01 (01103 (04)[05 (03 )03 (03)[01 (02){02 (02)]01 (02)f24 (11 26 (13 )22 (10)[32 (13)]23 (10))03 (04 )03 (04 103 (04)
A; [00 (00)[01 (02 ){15 (10} 00 (01 )[{03 (04 ){ 11 (08)]00 (01)|01 (02 )[02 (04)[03 (04 )38 (22) 02 (03 )[13 (09 )[66 (25)[00 (0.1 )[01 (02 )04 (05)
As [01 (01)[00 (00 )00 (01)21 (09)[02 (02)[00 (01)[07 (04){03 (03)]01 (01)[13 (08 )06 (05){00 (01 ) 37 (21)[04 (03 )[41 (14 ){08 (05 )02 (03)
As [00 (00)[00 (01){00 (00 )02 02)f13 (05){02 (02)]01 (02)|04 (03)[02 (02)f02 (02 )10 (07)[03 (03 )46 (23) 46 (24)[10 (07 )16 (10 11 (06 )
Ay [00 (00)[00 (00 )[01 (01100 (01)[02 (02)]20 (08)[00 (01)[02 (02)]07 (04)[00 (01 )06 (04)[13 (07 )03 (03)[38 (21) 02 (02 )/07 (05 )38 (14)
A; [00 (00)[00 (00 ){00 (00 )02 (03){00 (01){00 (01)]33 (14)20 (10)[01 (02)[{00 (01 )00 (00)[00 (00§32 (17)[06 (05)01 (02) 55 (23 )05 (05)
A, 100 (01)]02 (03 )00 (0101 102)]06 (05)00 (01){03 (03)[66 (20 )[04 (04)]00 (01 )01 (02)[00 (01 )06 (05)16 (10){05 (05)|33 (16 )| 31 (16)
Ay |00 (00)[00 (00 )[00 (00 )00 01)]00 (01)[02 (03){00 (04)]19 (L0 ){35 (15)][00 (00 J00 (01)[0L (01 )}01 (02)[05 (05)]33 (L7 )[05 (04 )54 (22

Table 3: Transition rates between states (Mean & (SD))

4 Numerical Result

Table 4 represents the summary of the calculation results in terms of the probability distribution of
scoring goals, the expected number of goals scored by home team, and the probability of home team
winning.

+1SD -1SD
HH,  HH,  HA;  HA
Goals  H, Hs He Hs Hs Hs Hs

0 0.244 0250 0.251 0.240 0.247 0.247 0.248
0.346 0.348 0.349 0.344 0.347 0.347 0.348
0.244 0241 0.240 0.245 0.242 0.242 0.242
0.114 0110 0.109 0.116 0.112 0.112 0.111
0.039 0.038  0.037 0.041 0.038 0.038 0.038
Exp. Num. 1.401 1376 1370 1.417 1.388 1.388 1.382

Prob. Win.  0.540  0.535  0.534 0.543 0.538 0.539 0.538

Table 4: Calculation result in terms of the probability distribution of scoring goals, the expected number of
goals, and the probability of winning

B~ oo N

In Table 4, from state H» the probability of the home team scoring no goals is 0.244 in a match. This
probability increases a little in the case from state Hs, and further increases a little from state Hg to 0.251.
That is, when the home team is in possession of the ball, the difference of the location between “2” and
“8” area affects the difference of probability of scoring no goal by 0.007. In the same situation, the
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expected number of goals scored decreases from 1.401 to 1.370, and the probability of winning the
game also decreases from 0.540 to 0.534.

As an advantage of using the Markov process model, we can calculate the probabilities in terms of
scoring or winning, and evaluate the effect of the change of transition rates on them. Concretely to see
the sensitivity of the transition rate, we here look at the transition from the “4” to “1” area and from the
“7” to “4” area. We change the transition rates by the amount of its 1SD. The calculation result of this
effect has been presented in the right side of Table 4.

As shown in Table 4, if we increase the transition rate from Hs to H; from 4.1 to 5.5 (=4.1+1.4,
shown in Table 3) times/minutes (i.e. the increase of 1SD of the transition rate), the probability of
scoring no goals decreases from 0.250 to 0.240 by 0.010, and the expected number of goals scored in a
game increases from 1.376 to 1.388 by 0.012, when home team kick off in state Hs. The probability of
winning the game also increase from 0.535 to 0.543. Similarly, the case of the change of transition rate
from Ha to Ay, is also calculated by changing the transition rate from 0.6 to 0.2 (=0.6-0.4). We note that
Ag is the “1” area from the aspect of the home team (corresponding to the “9” area from aspect of the
away team). Decreasing this transition rate by 1SD results the increase of the expected number of goals
from 1.376 to 1.388 by 0.012. We also present the effect of the change of transition rate from Hz to Ha
and Hy to Ag, as shown in Table 4.

As shown in Table 2, the time spent in state Hs is 1426.1 minutes which corresponds to 4.66
minutes/game, and the change of the transition rate is just 1.4 or 0.4 times/minutes as 1SD. Although
the effect of the changes looks small, we demonstrated how to calculate the effects by this type of
approach, which would be useful for analysis of the match.

5 Further study

In this paper, we have used the Markov process model of a football match to analyse the effect of a
change of transition probabilities on scoring goals and the probability of winning. In the model, we
have divided the pitch into 9 areas, and collected the data in terms of the change of location of the ball,
together with the change of possession of the ball. Annual data from the J League Division 1 in 2015
was used to estimate the transition rates. Using these transition rates, we have calculated the probability
distribution of scoring goals, the expected number of goals, and the probability of winning under the
Markov process model. We also presented how 1SD change of the transition rate affects the probability
distribution of scoring goals and so on.

In this paper, we have just shown the calculation result of the change of transition rate from state Ha
and Hy by 1SD. As this study is still in progress, we plan to present more in the conference. Further, we
plan to estimate the transition rates using log-linear models which explain such factors as home
advantage, offensive and defensive strength, in terms of goals and possession, according to the location,
and discuss the effect quantitatively.
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Abstract

In this experimental work, we propose to investigate the state-of-the-art in score-based
soccer match outcome prediction modeling to identify the top-performing methods across
the diverse classes of existing approaches to the problem. Namely, we bring together sta-
tistical methods based on Poisson distribution, a general ranking algorithm (Elo), domain-
specific rating system (pi-ratings) and a graph-based approach to the problem (PageRank).
We experimentally compare these diverse competitors altogether on a large database of
soccer results to identify the true leaders in the domain.

1 Introduction

Soccer, being arguably the most popular sport in the world, continues to attract researches and
practitioners competing for the design of the most accurate game result forecasting models.
Indeed, there has been a plethora of such models published in the past 20 years. However, due
to a lack of a standardized dataset, it has been difficult to draw conclusive statements about
relative performance of the diverse approaches.

In order to gain more advantage, many of the works utilized detailed granularity of match
and background information. For instance, in the top European leagues, a complete information
about the game, including player-tracking data, can be obtained. However, such data are often
proprietary and rather expensive, rendering them incompatible for use in academic benchmarks.
Moreover, such an approach does not generalize onto the vast amount of the lower leagues, where
merely the results with basic metadata is all that is being stored for each match.

To target the widest possible scope of the domain, we intersect the input information to
the most common subset containing merely the match results. Such a score-based modelling
paradigm allows us to predict virtually all possible matches and, consequently, unify the training
and evaluation protocol across the diverse approaches.

Conveniently, a large dataset containing 218 916 match results from 52 leagues since the
season 2000/01 was released recently by Dubitzky et al., 2019. The records in the dataset consist
merely of the league names, dates, team names and the resulting scores. The availability of
such a large dataset provides an ideal opportunity to finally shed some light onto the relative
performance of the respective score-based state-of-the-art methods. For that purpose, we have
started with reimplementation of the most promising models to analyze their performance under
a unified protocol.

The rest of the paper is organized as follows. In Section 2 we summarize relevant research,
Section 3 provides a brief description of implemented models, Section 4 explains fitting and
evaluating the models, preliminary results are compiled in Section 5, conclusions and next
steps can be found in Section 6.

*Corresponding author’s email: hubacon2@fel.cvut.cz
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2 Related Work

The research in the domain of score-based soccer modelling has traditionally been dominated
by statistical approaches. In his pioneering work, Maher (1982) came up with a double Poi-
son model and bivariate Poisson model. The bivariate Poisson model provided a better fit for
the data. Maher also introduced the notion of teams’ attacking and defensive strengths and
how to use them for forecasting of the match results. This notion is still used in the current
research nowadays. Dixon and Coles (1997) extended Maher’s ideas, as he introduced a depen-
dency between home and away teams’ goals scored for the double Poisson model, increasing
the probabilities of low-scoring draws. While Maher considered the strength of the team to be
time invariant, here the idea of likelihood weighting while fitting the model was introduced.
Particularly, the authors used exponential time weighting to discount the effects of past results.
A different approach to the time evolution was used in Rue and Salvesen (2000), where the
authors used a brownian motion to tie together the teams’ strength parameters in consecutive
rounds. Karlis and Ntzoufras (2003) noticed, that the bivariate Possion models tend to under-
estimate the probabilities of draws and introduced a diagonal-inflated bivariate Possion model.
Karlis and Ntzoufras (2008) eliminated the need to explicitly model the scores dependency via
utilization of Skellam distribution. The evolution of the teams’ strengths was implemented
using Bayesian updates. A static hierarchical model based on double Poisson distribution was
introduced in Baio and Blangiardo (2010), claiming performance not inferior to the bivariate
Possion model (Karlis and Ntzoufras, 2003). Koopman and Lit (2015) introduced time dy-
namics into the bivariate Poisson model using a state space model representation. Authors
pointed out that the dependency between scores had a little effect on out-of-sample forecasting
performance of the model. Angelini and De Angelis (2017) investigated another technique for
implementing the time-dynamics with a PARX model (Agosto et al., 2016). The PARX model
outperformed Dixon and Coles (1997) in forecasting number of scored goals.

The most recent novelty in statistical approaches is the use of bivariate Weibull count model
(Boshnakov et al., 2017). Unlike in the Poisson distribution, where the mean is equal to the
variance, the Weibull count distribution is determined by two parameters, allowing for better
handling of both under and over dispersed data. The bivariate model is constructed using a
copula function. The model provides a better fit for the data than the Poisson model at the
expense of a higher computational time, as the computation of the probability density function
of the Weibull count model is computationally demanding. A great review of the statistical
approaches can be found in Ley et al. (2019).

Another technique to estimate the strength of an individual or a team are the so-called rating
systems. The world’s best known rating system is the Elo rating (Elo, 1978), originally used for
assessing the strength of chess players. The player’s performance is assumed to be drawn from
a Gaussian distribution with fixed variance. The mean of such distribution is then the player’s
rating (skill). An application of Elo rating in the domain of soccer was shown in Hvattum
and Arntzen (2010). While the authors have not provided a sufficient comparison against other
models, a recent work by Robberechts and Davis (2018) demonstrated that the method is sound.
Trueskill (Graepel et al., 2007) enhances the Elo rating as it operates not only with the variance
of the player’s performance but also with the variance of his skill (rating). This variance reflects
the uncertainty about player’s skills, when we have not observed enough data (performances).
The author demonstrated faster convergence and better predictive performance in comparison
with the Elo rating. One of the caveats of the Truskill is that in does not propagate the newly
obtained information backward to correct the ratings. In other words, it does filtering instead
of smoothing. The work by Dangauthier et al. (2008) aimed to fix this issue. Also, the plain
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version of Truskill does not account for the score difference, as it only considers the win-draw-loss
outcome of a match. Guo et al., 2012 proposed an extension to handle the score differences and
claimed superior performance to the vanilla Trueskill, also on a soccer dataset. The current
evolution of the Trueskill rating system is Trueskill2 (Minka et al., 2018), however most of
the improvements are domain specific to matchmaking in online games, which is the primary
focus of the system. A soccer domain-specific rating system called pi-ratings was introduced
in Constantinou and Fenton (2013). The team’s strength is represented by its’ home and away
ratings, that are updated after each match according to manually set learning rates. Another
score-based rating system was developed by Berrar et al. (2019). The rating system parameters
were tuned using particle swarm optimization and fed to a standard off-the-shelf learner.

Machine learning models are not very common in score-based modelling as they usually
leverage on extra features besides the scores or ratings. Some recent exceptions were the
models for the 2017 Soccer Prediction Challenge (Dubitzky et al., 2019), where the dataset
contained merely the historical results with basic metadata on the matches. For the challenge,
Constantinou (2019) extended his pi-ratings model with a Bayesian network to obtain the
probability distribution over possible match outcomes from the rating difference. Tsokos et al.
(2019) tested several variations of Bradley-Terry model and hierarchical Possion model. In the
end, the hierarchical Possion model outperformed all the Bradley-Terry models. The inferiority
of Bradley-Terry model to other methods was further confirmed by Ley et al. (2019).

The relational structure of the data was pointed out by Van Haaren and Van den Broeck
(2015) where the authors achieved promising results. An advanced relational learner (Natarajan
et al., 2012) was also tested in Hubacek et al. (2019), however with a little success. The same
authors later proposed relational team embeddings (Hubécek et al., 2018), implemented in
a framework for combining relational and neural learning (Sourek et al., 2018), with more
promising results. The graph representation of the data was also utilized by Govan, Meyer,
et al. (2008), who used the PageRank (Page et al., 1999) to estimate the teams’ strengths. The
same author later proposed a so-called offense-defense model (Govan, Langville, et al., 2009),
that can be seen as an analogy to the HITS algorithm (Kleinberg, 1999).

3 Models

In this section, we introduce the models we have reimplemented and tested so far. The selected
models are considered to be very competitive in their respective categories. The Double Poisson
model proved to be very competitive in the recent comparison of statistical models (Ley et al.,
2019). Robberechts and Davis (2018) demonstrated effectiveness of the Elo ratings, while
Constantinou and Fenton (2013) proposed their improvement — the pi-ratings. The PageRank
model represents the category of models that utilize the graph structure of the data. This paper
presents a work in progress, and we plan to broaden the portfolio of tested models further.

3.1 Double Poisson Model

Double Poisson model represents one of the earliest (Maher, 1982) and simplest models. How-
ever, as was shown in Ley et al. (2019), it is still very competitive nowadays. The model
assumes the goals scored by the competing teams in a match to be independent. Therefore, the
probability of a home team scoring x goals with the away team scoring y goals is given by

T ,—A Y —Aa
Te H.)\Ae

x! y!

PGy =2,Ga=y|Ag, a) =

)
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where Ay and A4 are the scoring rates of the teams (the means of the underlying Possion
distributions). The scoring rates for a match for the teams can be expressed in terms of
Mabher’s specification as

lOg()\H) = AttH — D(ifA + H
log(Aa) = Atta — Defy

where H represents a home advantage, and Att and Def are respectively the defensive and
offensive strengths of the teams (the actual model parameters).

Later, Ley et al. (2019) demonstrated that the number of the model’s parameters can be
effectively halved by considering only a single strength parameter for each team without any
loss of predictive performance, i.e. reducing to

log(A\g) = Strg — Stra+ H
log(Aa) = Stra — Stry

3.2 Elo Ratings

The Elo (Elo, 1978) is a general rating system the modification of which is still used for evalu-
ation of the strength of chess players. Hvattum and Arntzen (2010) proposed its modification
for soccer and consequently Robberechts and Davis (2018) demonstrated effectiveness of the
method. The modification involves the use of an ordered logit model (McCullagh, 1980) to
obtain the probability distribution over the possible match outcomes. At the core, each the
team’s performance is assumed to be normally distributed around its true strength. The ex-
pected scores for both teams are then calculated as follows

H 1

14 (RA-RM)/d
EA=1-FEH

where RY and R# are the ratings of the home and away teams, and ¢ and d are metaparameters
of the model. The actual outcome of the match is then numerically encoded as

1 if the home team won
SH ={05 if the match was drawn
0 if the home team lost

Finally after the match, the ratings of both the teams are updated w.r.t.
R, = R+ k(1 +6) - (8" — ET)

R =R}~ k(1+0)- (S - EH)

where ¢ is an absolute goal difference, k represent a learning rate and - is a metaparameter
scaling the influence of the goal difference on the rating change.
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3.3 pi-ratings

The pi-ratings (Constantinou and Fenton, 2013) represent a domain-specific rating system.
Each team is assigned two ratings, representing it’s strength when playing home and when
playing away. For each match, expected goal difference is calculated, based on home team’s
home rating and away’s team away rating . After the match is played, the expected score
is compared to the actual outcome. If a team performs better than expected, its ratings are
increased based on the discrepancy of the actual outcome and expected outcome and the learning
rates (metaparameters of the model). Both team’s home and away ratings get updated after a
match, with both updates having a separate learning rate. We refer to the original paper for
more details (Constantinou and Fenton, 2013). Finally, the probability distribution over the
possible mach outcomes is once again determined by an ordered logit model.

3.4 PageRank

The PageRank (Page et al., 1999) algorithm was originally designed for assessing importance of
web pages. In the original algorithm, the directed edge (p;,p;) represents a link from page p; to
pj. The importance of a webpage is proportional to the probability of a random walk over the
webgraph visiting the page. As was shown by Govan, Meyer, et al. (2008) it can be similarly
used for ranking of teams in a competition. The competition can be represented as a graph,
where the nodes represent the teams and the edges represent the matches between them. For
our model, the adjacency matrix M as defined as follows:

2m PTSj(m) - wim
Mij = -
Zm Wm
where PT'S;(m) is the number of points team j got from match m against team ¢ and w,, is

the weight of the match. This model represents a weighted version of the PageRank used by
Hubécek et al. (2019).

4 Validation Framework

All the data used in this review came from the Open International Soccer Database v2 (Dubitzky
et al., 2019). We limited the original database to seasons ranging from 2000/01 to 2005/06 to
prevent data contamination in future experiments. Still, this subset provided us with nearly
60 000 of matches from 38 leagues and 27 countries. The first season of each league was only
used as a warm-up season, omitted from model evaluation. Furthermore, the first 5 rounds of
each season were also used as a burn-in period, omitted from the evaluation, too. We evaluated
the models using ranked probability score (Epstein, 1969) and accuracy.

4.1 Model fitting

For fitting of models’ free parameters we used common optimization routine based on the L-
BFGS-B algorithm (Byrd et al., 1995). The fitting process and hyperparameter settings for
each of the selected models is specified bellow.

Double Poisson Model Model’s parameters are found by maximizing the weighted likeli-
hood of the observed data

L=[I@@ =26 =y A A" - w))
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Table 1: Comparison of the RPS and Accuracy of the tested models.
RPS Accuracy

Double Poisson  0.2082 0.4888

Elo 0.2088 0.4887
pi-ratings 0.2092 0.4897
PageRank 0.2128 0.4775

where w; represents the weight of each observation. Since the first successful application (Dixon
and Coles, 1997), exponential time weighting is being commonly used as

w; = e %t
where ta is the time passed since the match was played and « is a metaparameter. We use

a = 0.0019 as was done in Ley et al. (2019). The parameters are refitted after each league
round to account for the newly obtained information.

Elo & pi-ratings Elo ratings and pi-ratings require 2 and 3 metaparameters respectively,
and 3 parameters for the subsequent ordered logit model. These parameters are optimized
jointly, minimizing the average RPS on previous seasons. The ratings are updated after each
league round, while the (meta)parameters are refitted after each season.

PageRank The PageRank requires a setting of 1 metaparameter — the damping factor (=
0.25), which was tuned manually. The 3 parameters of the subsequent ordered logit model are
optimized by minimizing the average RPS on previous seasons. The weight of each match is
computed in the same way as in the double Poisson model. The ratings are recalculated after
each league round. The parameters of the ordered logit model are refitted after each season.

5 Preliminary Results

The result are summarized in Table 1. The double Possion model outperformed all the models
in terms of RPS. The pi-ratings had a marginally higher accuracy. The PageRank trailed
significantly behind other tested models both in RPS and accuracy.

The inferiority of the PageRank model could have its base in the fact that the other models
leverage the scores of the teams, while the PageRank utilizes only the win/draw /loss outcome of
the match. Here, we proposed a weighted version of the PageRank algorithm, which performed
better than the original unweighted version (RPS of 0.2140). There are still countless ways
how to advance construction of the adjacency matrix for the PageRank approach. For instance,
integrating the scores into the adjacency matrix could lead to further improvements.

6 Conclusion
In this work we compared performance of diverse models for predicting soccer match outcomes
based solely on historical results. Double Poisson model, one of the very oldest models in

soccer forecasting, performed the best in terms of RPS. Pi-ratings, the newest model from
our comparison, on the other hand outperformed the remaining models in terms of predictive
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accuracy. While it was previously shown that the double Possion model is, despite it’s simplicity,
competitive among other statistical models (Ley et al., 2019), we can see it holds its ground
against more diverse competitors as well.

Future work The work described in this paper is still in progress, and we plan to further ex-
tend on this review in various directions. Most importantly, we have merely compared 4 models
so far, however we intend to update the portfolio of methods towards an extensive comparison of
state-of-the-art in the domain. Regarding optimization of the models tested, we have optimized
the metaparameters of the Elo and pi-ratings jointly with the parameters of subsequent ordered
logit model, as was done by Robberechts and Davis (2018). Here we further plan to try out
also a 2-step optimization protocol, where the optimizations of metaparameters and parameters
are handled by two different optimizers. Moreover, we will investigate the influence of using a
multinomial regression instead of the ordered logit model, as well as using more rating features
as input covariates. Finally, with the complete set of models and optimization routines, we will
extend our dataset to the full scope of available data.
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Abstract

It is estimated that over 300 million people worldwide watch eSports events, both live and online.
This viewership shows no sign of slowing down and is expected to grow by 12% each year. The
growing popularity of eSports has thus transformed the industry into an excellent revenue-making
opportunity. According to market research, the global revenue of eSports was over $1.5 billion in
2017 alone. Consequentially, the opportunity for such a growing industry has attracted a wide range
of investment opportunities. For example, applications of eSports within traditional sporting contexts,
such as modelling and betting, are leading such applications and are one of the most prolific areas.
According to Pinnacle Sports, one of the eSports betting leaders, betting on eSports events have
surged from 100 thousand to five million only a five-year period. Given that research in eSports
betting and modelling is still in its infancy, it warrants a promising research potential. This paper will
outline the relatively untapped eSports betting industry and discuss opportunities for researchers to
apply statistical methods and to collaborate within this growing field.

Keywords: eSports, modelling, betting

1 Introduction

[Commentator 1] “oh my god they are going to get control of this, they got to move quick right
now”

[Commentator 2] “it is not over yet, they are going to walk right into a giant trap”

[Commentator 1] “oh man oh my god my headphones I don't even know what just happened...”

The converse above was not from a war zone. It is the commentary one would hear in eSports
tournaments for computer games such as the Counter-Strike: Global Offensive (CS:GO). Competitive
computer gaming, or eSports, has seen unprecedented growth in recent years. Hamari and Sjoblom
(2017) define eSports as: “a form of sport where the primary aspects of the activities are facilitated by
electronic systems, through the inputs from the players and teams; as well as the outputs of the
electronic systems, which are mediated by human-computer interfaces” (p. 213). Historically,
providing competitive computer gaming with the title “sport” has been controversial, and heavily
criticised by the media. Despite this, the growth of eSports shows no sign of slowing down, attracting
a wide range of interests and investments, and cementing its position as one of the top growing
industries of the 21%t century. This paper will discuss the history and the relatively untapped betting
industry of eSports, then conclude with the discussion of possible opportunities for researchers to
collaborate within this field.
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2 A Brief History of eSports

The history of competitive eSports can be traced back to the early 1980s. The Space Invaders
Championship held by Atari in 1980 was the first ever documented official major eSports tournament,
attracting more than 10,000 participants (Crystal & Smith, 2017). Shortly after the success of Space
Invader tournament, Atari announced the $50,000 World Championships tournament. The event,
however, ended up being an unmitigated disaster due to the poor projection of levels of participation
(Ausretrogamer, 2015). Instead of the expected 10,000 to 15,000 of participants, only 138 players
took part. The World Championships was deemed a blight on the history of eSports.

Fortunately, computer gaming took a prosperous turn in the 1990s. Benefiting from the arrival of
new consoles and increasing internet connectivity, more and more people became involved in eSports.
Games with vital contributions to the growth of eSports in the 90s include Starcraft and Quake.
Several tournaments established within these periods, such as the Cyberathlete Professional League
(CPL), QuakeCon, and the Professional Gamers League, became an annual event that attracts
hundreds to thousands of attendees.

The start of the 2000s was when eSports became mainstream. The launch of Xbox Live again
pushed electronic gaming forward, with players being able to compete while remaining in the comfort
of their homes. ESports’ popularity gained its biggest surge with the release of League of Legends
and Dota 2. It was suggested that League of Legends was the most played computer games in the
western countries, with an estimation of over 67 million players per month (lan, 2014). Dota 2, on the
other hand, has the highest competition prize pools amongst eSports, totalling millions of U.S. dollars.
Both of these games contributed substantially to the growth of eSports tournaments and eSports
viewership.

As of October 2017, it was estimated that around 300 million people worldwide watch eSports
(SuperData, 2017). The viewership shows no sign of slowing down and is expected to grow 12% each
year. According to market research by Newzoo (Pannekeet, 2018) the global eSports audience will
reach 380 million by 2018. This influx in viewership can partially be explained by the advances in
technologies and the emergence of online streaming services, such as Twitch, was a crucial
contributor to eSports viewership (Crystal & Smith, 2017). It was reported that as of 2013, Twitch
recorded around 45 million monthly traffic numbers (Popper, 2013).

3 Motivations of eSports Consumptions

As eSports viewership becomes one of the most rapidly growing form of new media, it has
attracted an increasing number of research interests. Although the literature on eSports is still rather
rare up to this day, prior studies in eSports research primarily focused on the motivations of eSports
consumptions. These include questions such as why people watch eSports and what attracts the
participation of competitions. The uses and gratification theory (UGT), a theoretical approach to
understanding the underlying reasons for people use of media, is widely adopted to examine media
viewing (Hamari & Sjoblom, 2017). Based on the UGT, Hamari and Sjoblom measured eSports
consumption motivations and found that escapism was positively correlated with eSports watching
frequency. Escapism refers to the experience of mental distraction provided by use of media. Thus, it
is argued that watching eSports may afford some levels of gratifications.

Wagner (2006) suggests that whether an activity can be considered as a sports changes as the
value system in society changes. In the Industrial Age, physical fitness was considered as one of the
most dominant values in society. Therefore, traditional sports mostly aimed at measuring the physical
abilities of the athletes. The onset of the Information Age, however, indicate that changes are in place.
The mastery of technology by different means is becoming one of the most fundamental values in
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society. In youth culture, particularly, individuals who feel the need to demonstrate this mastery, may
choose to showcase through succeeding in competitions such as computer gaming. The participation
of eSports competition can, thus, be interpreted as one of the logical consequences of the transition
from Industrial- to Information-based societies.

Contributing to the increasing number of eSports players is the surge in earnings (see Figure 1).
When the eSports industry was still in its infancy, it was an incredibly difficult environment for
professional players to make a decent income. Through professionalisation, talented eSports players
can now earn up to millions of U.S. dollars (Statista, 2018). In League of Legends alone, it was
suggested there are around 1,000 professional players worldwide, making an average income of
$320,000 annually (Heitner, 2018). The top earner amongst eSports player, Kuro Takhasomi,
pocketed over three million U.S. dollars (Statista, 2018).

The prize of eSports tournaments has also seen enormous growth in recent years. Prize pools of
The International, the world’s largest Dota 2 tournament, have grown from 11 million U.S. dollars in
2014 to 25 million in 2017 (eSports Earning, 2018). This is equivalent to around 140% of growth in
just a period of three years. Prizes of tournaments are usually funded by sponsorship. As of 2018,
Newzoo (2018) reported 53.2% year-on-year growth in eSports sponsorship, amounted around $350
million of the total revenue. With substantial corporate sponsorships and media coverage, eSports
tournaments prize pools are expected to continue its growth. This indicates there will be more players,
more tournaments, and enormous opportunities in eSports.

3000.00

2436.77
2500.00

1923.67
2000.00 1730.08

1500.00
1112.28

1000.00

In 1,000 U.S. Dollars

320.99
257.50

500.00 13049 g o7 194.92 218.22

0.00

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

Figure 1: Highest earning of eSports players by years.

4 eSports Betting on the Rise

As with any popular sport, mainstream exposure causes money to follow and eSports is no
exception. Betting in eSports began humbly, through a process called skin-betting, where players
would wager in-game cosmetic items (called skins) on the outcome of matches. However, it soon
became clear that the exponential growth from players, viewers, and sponsors alike would transform
this earnest skin-betting process into one based on monetary gains.

Today, cash gambling on eSports occurs through a mixture of traditional sportsbooks (e.g. Bet365,
Pinnacle, and Ladbrokes) and eSports-only sportsbooks (e.g. Unikrn). Market research by Eilers and
Krejcik Gaming (Grove, 2016) has estimated that the amount fans wagered on eSports in 2016 was
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close to $5.58 billion (USD). This figure encapsulates both skin and cash gambling. And despite a
highly controversial decision by game developer, Valve, to crackdown on unregulated skin gambling,
it is expected that the eSports gambling market will reach $12.92 billion (USD) by 2020. However,
this growth (an increase of 234%) is not without challenges, one of which being the availability of
data for bookmakers.

As with traditional sports, the more data a bookmaker has access to, the more reliable and accurate
the odds for eSports can be. Some eSports provide tremendous amounts of data (sometimes so much
so that most of it becomes irrelevant), whereas others are rather limited. The gaming company Valve
is well known for providing vast amounts of data for their respective eSports (CS:GO and Dota 2).
The data is available through Valve’s open Application Program Interface (API), which allows
developers, fans and bookmakers to extract the data they want. With over 430,000 players (both
public and professional) logging in daily to play at least one game of Dota 2 per day (based upon the
Steam April 2018 Charts), the amount of data that can be generated is immense.

On the other hand, there are also big gaming companies that provide very little data on their
competitive games, such as Blizzard Entertainment, who developed several hugely popular eSports
titles, such as StarCraft 2, Hearthstone and Overwatch. Because Blizzard provides minimal data on
their titles, bookmakers are often taking a significant risk by allowing bets to be placed on these
games, before they have had a chance to build an accurate model.

Nonetheless, this has not stopped fans and bookmakers alike from having a go at developing their
own prediction models for Blizzard games. For example, numerous attempts have been made over the
years to model StarCraft 2 using a Glicko ratings system. The Glicko model (Glickman, 2013)
operates in a similar fashion to an Elo model in the sense that both systems are methods for assessing
player (or team) ratings in comparison to how well (or poorly) they performed after a match(s).
Unlike Elo however, Glicko focuses on Ratings Deviations (RD), and can be operationalised as:

RD' = (R;ﬁ+%)_l @)

RD' represents the new ratings deviation after a series of m games and RD represents the old
rating deviation:

RD = min (yRDy” + c7t,350) @)

Where t represents the amount of time (or rating periods) since the last competition or
tournament. Players for whom the RD is unknown (e.g. they are unrated) are provided an RD of 350.
The constant ¢ represents the uncertainty of a player’s skill over a period of time and can usually be
estimated by considering the length t required before a player’s RD changes to that or an unrated

player.

To determine the new rating r, after a series of m games, the following formula can be applied:

r=r1+ ﬁﬂh 9(RD;)(s; — E(s|r,7;,RD;)) 3

RD2 d?
Where:

1

g(RD;) = ST
14247BP) :;Di)
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1
E(s|r, 7, RD;) = DT
1+10 =400
_mao g

400 '

2 _ 1
a? ™, (9(RDY))E(s|r,ry,RD) (1-E(S|T, T, RD;))’

with r; representing the ratings of the individual opponents, and s; represent the outcome of
individual matches (win = 1, draw = 0.5, loss = 0).

To illustrate Glicko via an eSports example, we will use data sourced from the Starcraft 2
Programming and Predictions website, Aligulac, (http://aligulac.com/). The authors utilise a slightly
modified version of the Glickman’s (2013) original system, but the underlying principle is still
comparable. For example, using the Aligulac data, we have compared the Glicko ratings for the
Starcraft 2 player Ty during the Intel Extreme Masters 2017 Championship, to the odds provided
through Pinnacle Sports Betting (see Table 1).

Event Player Opp Playerr Oppr Player Opp Player Odds Opp Odds
Group B M3 Ty Stats 2451 2280 1 2 1.56 245
Group B M5 Ty jjakji 2632 2065 2 1 1.3 3.6
Group B M9 Ty Harstem 2451 1961 2 1 1.16 5.33
Group B M11 Ty aLive 2632 2234 0 2 1.38 3.07
Group B M15 Ty Neeb 2451 2530 2 0 u u

Ro12 Ty Zest 2451 2418 3 1 1.57 2.42
Quarter Finals Ty GuMiho 2632 2340 3 2 1.6 2.37

Semi-finals Ty alLive 2632 2234 3 2 1.62 2.33
Gran Finals Ty Stats 2451 2280 4 3 1.87 1.95

Table 1: Comparing Aligulac Glicko ratings to Pinnacle Sports Betting Odds (IEM championship 2017);
Note: u = unknown

The authors of Aligulac compared the predicted win rate (using the modified Glicko model) to the
actual win rate for over 100,000 historic StarCraft matches. Their analyses suggested that predicted
and actual win rates were quite comparable, up to about a prediction of 80%, after which, the model
tends to overestimate the better rated player (see Figure 2 below).
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Figure 2: Comparing actual to predicted win rates for StarCraft 2 (image sourced from http://aligulac.com)

5 Model Comparison

For a comparison, the Elo rating system has been adopted to model one of the most popular games
in the Multiplayer Online Battle Arena (MOBA) genre - the League of Legends (LoL). A battle in
LoL consists of two teams competing against each other, with five players in each team, and the first
team to destroy the opposing team wins (Gamepedia, 2018a). The authors of Gamepedia suggest that
the number of kills, total teams’ golds and towers taken are often good indicators of which team is
ahead of the game. To verify this, data from a LoL tournament will be collected for analysis. The
present research question is to identify which variables are the most important in predicting the
chance of winning a battle so that the information can be incorporated into the Elo model for teams
rating.

5.1 Methods

The relevant statistics were extracted using Microsoft Excel. This includes data from week
one to week nine of the 2018 Summer Season Challengers Korea tournament (Gamepedia, 2018b).
The data consist of the information of players in each team, number of kills, deaths, assists, golds and
towers taken by each player, and the match outcomes. A decision tree will be produced as a
preliminary approximation to identify the important variables. Decision tree was chosen because the
outcome variable is binary (0 = lose & 1 = win) and it provides relevant parameters that could be
incorporated into the Elo model.
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5.2 Results and Discussion

The data was imported into R Studio and descriptive statistics was produced. On average,
each team has participated in 28 matches. For analysis purpose, the number of kills, deaths, assists,
golds and creep scores were aggregated as team totals (i.e., Team_K, Team_D, Team_A, Team_G,
Team_CS). The first three variables are presented in Figure 3 below.

807

Team_A 602
921

I 7 14 = Winners

H Team BattleComics
253 REVERSE Gaming

Kongdoo Monster

T
380 m GC Busan Rising Star

|
516 ® ES Sharks
357
m APK Prince
Team_K 256
372

0 200 400 600 800 1000

Figure 3: Total of Kills, deaths, and assists by teams.

As shown in Figure 3, Team_K did not differ significantly across teams. However, Team_D has a
quite distinct ranking, especially for the four teams with the highest number of deaths (i.e., APK
Prince, Reverse Gaming, ES Sharks, & GC Busan Rising Star). While Damwon Gaming has the
lowest number of deaths, the other three teams did not differ significantly. For Team_A, GC Busan
Rising Star has the lowest assists, followed by Kongdoo Monster and APK Prince.

On the other hand, Team_G ranged from 1489 to 1705 (M = 1601). Teams Winners,
Damwon Gaming, and Reverse Gaming have the highest Team_G (1705, 1641, & 1641,
respectively). Similarly, teams Winners, Reverse Gaming, and APK Prince have the highest
Team_CS (31535, 31336, & 31173, respectively).

To find out which variables are the most important in predicting the chance of winning a
battle, a decision tree was produced using Rattle in R and is presented in Figure 4 below.
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Figure 4: Decision tree for match outcome

As shown in Figure 4, the most important variables are Team_K, Team, and Team_D. Firstly,
when Team_K is less than 11, there is a 94% chance of losing. Secondly, when the Team is APK
Prince, ES Sharks, and GC Busan Rising Star, there is a 65% chance of losing. Lastly, when Team is
not APK Prince, ES Sharks, and GC Busan Rising Star, but Team_D is greater than or equal to 14,
there is a 62% chance of losing. However, when Team_K is greater than 10.5, Team is other than
APK Prince, ES Sharks, and GC Busan Rising Star, and Team_D is less than 14, there is a 92%
chance of winning. The Out-of-Bag (OOB) error was 10%, indicating when the resulting model is
applied to new data, there will be around 10% errors. That is, the model has around 90% accuracy,
which is reasonably high.

Using the information provided by the decision tree, a modified Elo model is created. The
original Elo model can be operationalized as:

R, = R, + K(W - W) 1)

Where R,, represents the new ratings; R, represents the old ratings; K represents weight index; W
represents match results (win = 1; lose = 0; draw = 0.5); W, represents the expected results and can be
operationalized as:

1
I/Ve' = dif f(ratings) (2)

10 average N games 41

In the modified model, K is assigned with different values based on the information generated by
the decision tree, where:

Condition 1: Team_K >=10
Condition 2: Team = Damwon Gaming, Kongdoo Monster, Reverse Gaming, Team Battlecomics
Condition 3: <=13.5

When all three conditions are fulfilled, K = 30;
When two conditions are fulfilled, K = 20;
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When one condition is fulfilled, K =10;
Otherwise, K=

Therefore, to determine the new ratings for each team (R,,) , the following formula is applied:

1
Rn = Ro + K(W - dif f (ratings) ) (3)

10 average N games 4q

To illustrate the model through the LoL example, the formula was applied to the data
sourced from Gamepedia (2018b). The results for the final week collected in the data (week 9) are
presented in Table 2.

Day Game Team Opp Teamr Oppr Prediction Actual Correct?
1 1 Winners DAMWON 1108 1140 lose lose correct
1 2 DAMWON Winners 1127 1108 win win correct
1 1 APK GC 888 981 lose lose correct
1 2 GC APK 981 888 win win correct
2 1 REVERSE Kongdoo 979 1025 lose lose correct
2 2 Kongdoo REVERSE 1025 979 win win correct
2 1 Team BC ES 1039 981 win win correct
2 2 ES Team BC 981 1039 lose lose correct
3 1 APK Winners 888 1141 lose lose correct
3 2 Winners APK 1116 893 win draw incorrect
3 3 APK Winners 888 1141 lose lose correct
3 1 GC DAMWON 961 1150 lose lose correct
3 2 DAMWON GC 1150 961 win win correct

Table 2: Comparing Elo Rating with Actual Results (2018 Summer Season Challengers Korea Tournament);
Note: DAMWON = Damwon Gaming; APK = APK Prince; GC = GC Busan Rising Star; REVERSE = Reverse
Gaming; Kongdoo = Kongdoo Monster; Team BC = Team BattleComics; ES = ES Sharks.

Based on the results in week nine, the Elo rating correctly predicted the results 92% of the time.
This is in line with the OOB error produced by the decision tree (around 10%). The only incorrect
prediction was when the result was a draw, instead of win or lose. Percentages of correct prediction
were lower and rather inconsistent in the previous weeks and only start to improve around week seven
(see Figure 5 below). This indicates more data are needed to validate and improve the prediction
accuracy.
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Figure 5: Control chart for Elo model prediction rate

As the outcome variable is binary (i.e., either win or lose), it is not possible to accurately identify
all matches correctly, given the results can be “draw” sometime. To improve the model, it might be
beneficial for future study to focus on this area.

6 Conclusions

The opportunity for revenue in eSports has attracted a range of interests and investments. Notably,
applications of eSports, such as modelling, and betting are at the forefront and are one of the most
fruitful areas. Given the research of eSports betting is still in its infancy, it warrants a promising
research potential. A quick search on Scopus returns only 65 eSports related studies, spanning from
the year 2005 to 2018. Further, investigation of prediction models for eSports betting, such as the
examples provided above, is almost non-existence. The accelerating growth of eSports gambling
market and limited research in this area signify exciting opportunities for researchers to collaborate
within this field.
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Abstract

Due to the increasing number of tracking data available for official matches in
different leagues there are new ways to capture the performance of teams. To not rely on
notational data, we previously introduced the D-Def (Goes et. al, 2018), an aggregated
variable to quantify passing solelybased on tracking data. This value captures the change
of organisation by a pass (defensive disruptiveness). In this study, we updated the D-Def
by including an automated classifier for subunits, instead of using starting formations,
and investigated the relation of the D-Def on team success. Position tracking data of all
players and the ball collected during 88 Dutch Premier League matches was used.
Alignment of subunits was automaticallyidentified, using a K-Means classifier, for every
pass. D-Defwas calculated for every pass (N= 63601) as an aggregate in the change in
movement as a result of the pass-based team- and line centroids of subunits and surface
and spread of the defending team. Team success was evaluated via wins and losses. We
excluded 21 matches because they resulted in a draw. The predictive value of the D-Def
for success was calculated using logistic regression analysis. The regression model
achieved a R? 0f 0.69, which is high in comparison to other key performance indicators
inthe literature. This shows that the approach previously introducedas a proofofconcept
is related to match outcome. Therefore, D-Def can be a useful tool to evaluate team
performance. This study highlights that performance is predictable through spatio-
temporal aggregates based on player tracking data and we do not need to rely on
notational data anymore.

* Presenting & Corresponding Author
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1 Introduction

Performance analysis in soccer in general and tactical analysis, in particular, did take great strides
in the last decade due to the availability of player position (tracking) data. The installment of optical
tracking systems allows to capture game performance in different ways and opens up new opportunities
for match analysis (Rein & Memmert, 2016). Previously, match analysis was only based on event data
captured via notational analysis that evaluates performance via on-ball events of teams and players
(Sarmento et al.,2014). However, tactical performance in team sports should not just be seen as a chain
of'events but rather as the management of space, time and individual actions (Garganta, 2009; Rein &
Memmert,2016). Byjustusing event data that does not capture the interactionofplayers, thatis focused
on the player with the ball and gives no insight in the behavior of off ball players, a quantification of
this management is close to impossible. Combining this with the unclear reliability of event data, several
authors advocate for the use of player tracking data to investigate tactical team performance
(Gudmundsson & Horton, 2016; Rein & Memmert, 2016)

The use of tracking data enables approaches to investigate this management process in order to
evaluate match performance. One approach which takes these spatial-temporal constraints into account
is the team centroid method (Folgado, Lemmink, Frencken, & Sampaio, 2014; Frencken, Lemmink,
Delleman, & Visscher, 2011). Here the behavior of the team centroid, the geometric center of the
positions of all players from one team (CX,y), is used to analyze the behavior of the entire team. Results
fromthis line ofresearchindicate a strong coupling between team centroids during gameplay (Frencken
et al,, 2011) and key game events like goals and shots on goal (Frencken, de Poel, Visscher, &
Lemmink, 2012).

Besides the team centroid, aggregates like the line centroid, stretch index, team surface area, team
spread, or regions of dominance are also used frequently to capture the complex spatiotemporal
dynamics of soccer from tracking data (Rein and Memmert 2016; Memmert et al. 2017). In general,
these aggregates have proven to be valid measures of behavior in small-sided games, yet in their current
form, the ability to capture the complex tactical dynamics of full-sized matches can be questioned.

In a previous study, we were able to combine several of those spatio-temporal features in an new
approach to measure pass performance of soccer players (Goes, Kempe, Meerhoff, & Lemmink, 2018).
The evaluation of passes is one of the most common ways to asses’ tactical performance at individual
and team levels in (scientific) performance analysis. Performing a “good” pass is a key skill for
successful performance in team sports (Bush, Barnes, Archer, Hogg, & Bradley, 2015) and a main
predictor for success in soccer (Liuet al. 2016). Multiple authors have already used tracking data in
their analysis to model pass options (Spearman, Basye, Dick, Hotovy, & Pop, 2017), or objectively
quantify pass effectiveness (Link, Lang, & Seidenschwarz, 2016;Rein, Raabe, & Memmert,2017), that
way increasing our insight into passing performance.

However, the aforementioned approaches are all biased in the same way as they overvalue passes
that move the ball towards the goal or directly lead to goals or shots on goal. Our approach, in contrast,
is based on the displacement of defending players (I-Mov) and the disruption of the organization of the
defensive team (D-Def). Both performance indicators value passes higher if the induce a higher amount
of total movement of defending players (I-Mov) or result in a larger change in defensive alignment and
distance and space between team subunits (D-Def). In a validation study we could demonstrate that our
measures are sensitive and valid in the differentiation between effective and less effective passes, as
well as between the effective and less effective players (Goes et al.,2018). In addition, we could show
in a second study that I-Mov relates to classic individual pass performance parameters like passing
accuracy of key passes (passes that create goals or shots on goal) (Kempe, Goes, & Lemmink, 2018).
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As we proved the relationship of our approach on an individual level, we are investigating its
importance on a team level in this study. Therefore, we analyze if this approach is able to correctly
predict wins and losses in official match play.

In addition, we addressed two major issues within our approach. In previous studies, we used a set
time window of three seconds to evaluate passing performance. Although this time window yielded
valid results, it is arbitrary and does not represent the variability of passes performed during a match.
Therefore, we now calculate the effect ofa pass on a normalized per second basis. The second issue we
addressed, concerns the calculation of subunits and the allocation of players to those subunits. In both
previous studies we used team starting formations to calculate subunits and in consequence intra-team
distances and subunit centroids. However, in a fluid game like soccer, formations change often during
a game. Furthermore, teams often implement different formations while attacking or defending. To
tackle this problem, we used the idea to cluster players in formations based on tracking data that showed
promising results in previous research (Bialkowski et al., 2016,2015).

To sum up, this study tries to prove that game outcomes canbe reliably predicted based on pass
performance indicators derived from tracking data quantifying the disruptiveness of a pass.

2 Quantifying Defensive Disruptiveness

To quantify the effect of a pass, we implemented an updated versions of two previously proposed
features that capture the disruption of the defensive organization as result of a pass (D-Def), and the
movement of all opposing players in response to a pass (I-Mov). The theoretical rationale behind these
features is based on the assumption that the attacking team tries to create space between the opposing
lines through destabilization of the links between the opposing attacking, midfield, and defensive lines,
as well as through forcing the opponent to move.

The disruption of the defensive organization as result of a pass was quantified using our previously
published Defensive Disruptiveness (Def-D) feature (Goes et al., 2018). This feature is constructed
based on the change in the average position of the attacking, midfield, and defensive line, the change
in the average team position, and the change in team surface area and team spread. The D-Def measure
is constructed out of three components that are derived from the scaled absolute change on all of the
afore mentioned variables (eq. 1). The first component is related to disruption in the longitudinal
direction of the field (PC1), the second component is related to disruption in the lateral direction of the
field (PC2), and the third component is related to disruption of the team surface and spread area (PC3).
The absolute scores on these three components then make up the total disruption (D-Def) score.

D-Def=| PC1 |+ [PC2 |+ | PC3 | (1)

In our previous publication, the different lines (attack, midfield, defensive line) were manually
determined based on the starting formation of the team, and player roles were constant. However, for
this analysis we improved our approach by using a K-Means clustering (n_clusters = 3) algorithm to
automatically detect the defensive formation. Based on the defensive formation (i.e. [4, 3, 3]), we then
automatically identified, for example, the defensive line based on the 4 last players (excluding the
goalkeeper) in every timeframe, creating a much more robust and representative feature. For further
details we refer to our previous publications (Goes et al.,2018; Kempe et al., 2018).

The movement of all opposing players in response to a pass was measured using our previously
proposed individual movement (I-Mov) feature. This feature is constructed based on the sum of the
absolute displacement along the longitudinal (I-Mov-X) and lateral (I-Mov-Y) axis off all opposing
players in response to a pass (eq. 2). In our previous publication, we used the sum of the displacement
ofall players to make up the I-Mov feature for the team. However, for the current analysis we improved

186



MathSport International 2019 Conference Proceedings

this by using the mean I-Mov per player, as this method is much more reliable in case of possible
missing or erroneous data that occur quite frequently in tracking datasets.

I-Mov = ( | Disp. X |+ |Disp. Y1 |+ ... +| Disp. Xn| +| Disp. Ya | )/n 2)

We computed both the D-Def and I-Mov feature for every pass received by a teammate during the
entire match. This was conducted by computing the change/displacement on all feature components
during the pass window (between the moment of the pass and reception), and then dividing this value
by the duration of the pass window in seconds. This resulted in standardized displacement/disruption
scores/second. In our previous paper, we used a window of 3 seconds after a pass, as we assumed this
should be adequate to detect both the effect of the pass, and prevent the inclusion of effects of the next
pass. However, we experimentally determined that the standardized pass-window as implemented in
the current study was a better fit and therefore improved our feature.

3 Modelling Team Success based on Pass Disruptiveness

To evaluate tactical performance and analyze the relationship between tactical performance and
match outcome, we collected and processed position tracking data on both teams for matches played
during 4 consecutive Dutch Eredivise seasons. Players were tracked with a semi-automatic optical
tracking system (SportVU; STATS LLC, Chigago, IL) that captures the X and Y coordinates of all
players and the ball at 10 Hz. Our dataset contained 118 matches in which 26 unique teams played each
other. As we were only concerned with the differences between winning and losing teams, we excluded
matches that ended in a draw. This resulted in a final dataset that consists of 25 teams that played in 89
matches that resultedina win ora loss and contained98.718 pass attempts of which 60.524 passes were
successful.

The data of every single match were first pre-processed with ImoClient software (Inmotiotec GmbH,
Austria). Pre-processing consisted of filtering the data with a weighted Gaussian algorithm (85%
sensitivity) and automatic detection of ball possessions and ball events based on the tracking data. Both
the tracking data and the ball event data were then imported as individual data frames in Python 3.6 and
automatically processed on a match-by-match basis. We then computed the separate components of
both the D-Def as well as the I-Mov feature for every pass during a match. All features were computed
according to the methods as described in section 2.

Table 1 - Descriptive statistics winning and losing teams (*: p=.05 ¥: p <.05, &:p <.01)

Wins (N = 89) Losses (N=89) Mean Effect Size
Diff. (Cohen’s d)
Individual Movement (I-Mov)
I-Mov-X(Mean) 0.866m=+0.673m 0.515m=0.675m +68.1%  0.52.4%
I-Mov-Y (Mean) 0.772m=0.600m 0.451m+0.591m +71.2% @ 0.544
I-Mov (Mean) 1.638m=+1.268m 0.966m=1.265m +69.6%  0.53.%

I-Mov-X (Total) 261.46m=+222.14m 163.53m=+219.69m +59.9% | 0.44%

I-Mov-Y (Total) 238.85m=+213.81m 142.92m+191.86m +67.1% | 0.47

I-Mov (Total) 500.31m=434.39m 306.45m=+411.12m +63.3% @ 0.46%
Defensive Disruptiveness (D-Def)

PC1 (Mean) 0.018+0.015 0.013+0.022 +34.1% @ 0.24%*
PC2 (Mean) 0.010+£0.013 0.014+0.033 -23.6%  -0.13
PC3 (Mean) -0.026+£0.022 -0.021+£0.022 -25.5%  -0.25%*
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D-Def (Mean) | 0.474+0.048 0.484+0.072 20% | -0.16
PC1 (Total) 4.88+4.17 4.14+357 +17.8%  0.19%
PC2 (Total) 2.99+4.09 3284455 8.9%  -0.07
PC3 (Total) -7.96+6.85 -6.30+6.65 262% | -0.24%
D-Def (Total)  133.60+54.33 130.50 £46.12 +24%  0.06

To compare performance between winning and losing teams, we aggregated all feature scores into
mean (values per pass), and total (sum over a full match) scores. We then took the means and standard
deviations of all winning and losingteams fora between-groupcomparison(Table 1). Effectsizes were
determined based on the Cohen’s d and between group differences were statistically tested using an
independent t-test. For completeness, we not only displayed and tested the composite feature scores,
but also the individual components, as this might provide additional information.

As anext step, we predicted match outcome based on the mean total movement feature (I-Movmean,
as it captures both the movement in longitudinal as well as lateral direction), mean longitudinal
disruption feature (PClmemn), and mean surface disruption feature (PC3meamn). We choose this
combination of features based on their discriminative power and the fact that the combination of these
features yielded the highest accuracy and lowest log loss scores. To do so we first split the data set ina
training set that contained 80% of the data, and a test set that contained 20% of the data, stratified on
match outcome. Furthermore, we scaled (Z-transformed) our features to the same scale using a Min-
Max scaling algorithm. We then fitted a 5-fold cross-validated Logistic Regression model to our
training dataset and predicted winning and losing probability for both teams in every match. Based only
on the mean total movement per pass (I-MoVmean), the mean longitudinal disruption per pass (PC1mem),
and the mean surface disruption per pass (PC3wmean), we were able to predict binary match outcome with
an accuracy 0f69.4% and a log loss 0f 0.65, based on the following regression equation (3):

Outcome =-0.146 + 0.689 I-MoV mean + 0.172 PClmean- 0.592 PC3mean (3)

4 Discussion

The aim of this study was to further validate our approach of using changes in spatio-temporal
features, derived of player tracking data, to evaluate (tactical) match performance. Our findings
illustrate that this approach is capable to reliably distinguish between winning and losing teams.
Therefore, we could prove that our approach is not just valid onan individual but also on a team level.
In previous studies, we already showed that our performance indicators are able to evaluate players and
passes (Goes etal.,2018), as well as relate to individual performance like passing accuracy and assists
(Kempe etal., 2018).

Within this study, we now also showed that the [-Mov clearly differentiates between winning and
losing teams with a difference of mean induced movement of pass of 69,6% in favor of the winning
teams. D-Def, as the more complex performance indicator that registers the changes in defensive
organization, could not differentiate in the same way as the I-Mov. However, two of its three factors
(PC1 & PC3) did yield statistical differences between winning and losing teams. One can assume from
those results that changes in the longitudinal organization of the defending team, creating larger
distances between the different lines of defense, and the surface of the team organization, shape and
spread of the lines and the team in general, represent changes in overall organization while change in
horizontal organization just adds noise to the equation.

In general, it is understandable that the I-Mov is a more sensitive feature as teams are able to
maintain their overall organization while moving. Therefore, changes in the D-Def caused by a pass are
way smaller than in the I-Mov. Following this line of assumption, the I-Mov might be the better Key
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performance Index to evaluate an overall or game performance whereas the D-Def might be more
suitable to identifying the one or two key passes in a chain of events that led to a decrease in structural
organization of the defending team. Therefore, the D-Def might rather be used to study passing or
attacking sequences also referred to as “quality of possession” (Collet, 2013) and the I-Mov as a
measure of overall team performance.

By combining the features of mean player movement (I-Mov), mean longitudinal disruption (PC1),
and the mean surface disruption per pass (PC3) we are able to correctly predict the winning team in
69,4% of our test set. This results are especially promising as previous (pass) performance indicators
just showed a weak relationship with success (Rein et al., 2017). By our knowledge, this is the first
approach that is solely based on player tracking data that is able to predict game outcome better than
pure chance with a prediction power better then previous models based on event data (Collet,2013;
Oberstone, 2009).

In order to achieve this prediction performance, we updated our previous model in two important
ways. First, instead of a three second window, we now normalize the effect ofapass per second. In the
previous model we undervalued longer passes as their effect might not be captured in total with the
three second window. In a second step, we implemented a new way to register team formations which
are the basis to calculate the changes in defensive organization. Therefore, we adapted the idea of
Bialkowski et al. (2015 & 2016). They use a K-Nearst Neibhour like appraoch to cluster players in
different palying positions and formations showing that this appraoch is able to predict palying
formation with a maximal mean variation of 5.5 m. By applying this idea to our appraoch, although in
a differnet form, instead of starting formations of a team, we now differnatiate between offensive and
defensive formation and are able to elvaluate passes by taking the change of palying positions and
formations into acoount. Both of those updates increase the validity of our appraoch by reflecting the
high amount of variation in the game of soccer.

5 Conclusion

In this paper, we could further demonstrate that an approach solely based spatiotemporal variables
is able to capture tactical game performance on a team level and is able to reliable predict game
outcomes. One of our performance indicators (I-Mov) could further highly differentiate between
winning and losing teams. Therefore, the I-Mov might serve a new tool to evaluate team performance
instead of unreliable event data like pass accuracy, percentage of ball possession, or shots on goals.
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Abstract

The three-point rule in association football replaced the two-point rule by awarding
three points to teams that win a match instead of two. The Isthmian league introduced this
rule in 1973 to make football more attractive to watch. Most national football associations
implemented the rule in their competitions after the 1994 World Cup.

The widespread adoption of the three-point rule suggests that the associations are better
off with this rule than they would have been with the two-point rule. We investigate this
suggestion by describing general mechanisms through which we expect an effect of the
introduction of the three-point rule on matches to operate.

We use information on goals to estimate the relation between the introduction of the
three-point rule and match outcomes for matches in the Italian Serie A. The qualita-
tive model and Maher (1982) form the basis of our statistical models. If you belief the
qualitative model then you can interpret the estimated relation as a causal effect of the
introduction of the three-point rule.

1 Introduction

The three-point rule in association football replaced the two-point rule by awarding three points
to teams that win a match instead of two. The Isthmian league introduced this rule in 1973 to
make football more attractive to watch. The English Football Association (FA) introduced it
in its 1981/1982 season.! After the 1994 World Cup the FIFA recommended national football
associations to introduce the three-point rule in their domestic championships. Many national
football associations which did not yet use the three-point rule implemented the rule shortly
after this World Cup.?

Because the associations introduced the three-point rule to increase the attractiveness of
matches, the evaluation task is to estimate its effect on the entertainment value of matches.
Entertainment value is a concept for which statistical information is not available. Instead, we
use the following information that is arguably related to the entertainment value of matches:
the number of goals in a match, whether a match ends in a draw or not and the time that
matches are in an even-scores situation (e.g. 0-0,1-1,2-2 etc.), respectively.

This paper investigates whether it is possible to estimate an effect of the three-point rule.
Its evaluation presents an empirical issue for the following reason. The change from two to three
points for a win is an increase in the reward for teams that win. This has a likely effect on the
incentives of teams in a football match.? However, within a season, the incentives teams have
may change and depend on their opponent from match to match. Teams also change between
two seasons as football clubs hire managers and buy and sell players, respectively. This holds
for any two consecutive seasons.

1In 1980 the FA was worried about the decrease in the number of people watching football.

2By 1994, some national football associations already used the three-point rule. They include associations
from New Zealand, Japan, Greece, Wales, Bulgaria, Norway, Sweden, Cyprus, Turkey, Iceland and Israel.

3For this reason, the introduction of the three-point rule has been adopted as a game theory application.
Game-theoretic studies on the three-point rule predict, for example, how a change from two to three points for
a win affects offensive play and defensive play, respectively.
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The structure of this paper is as follows. In Section 2 we discuss the origins of the three-
point rule in the early 1970s and propose a qualitative model that describes causal effects of
the number of points on the value of entertainment in matches. We discuss measurement issues
in Section 3. Using information on matches of the Italian Serie A we present some descriptive
statistics in Section 4. We present estimation results in Section 5 and discuss our findings in
Section 6.

2 A causal model to investigate the three-point rule

The three-point rule in football assigns three points to a team that wins a match. Both teams
get one point if the match ends in a draw. A team that loses a match does not get points. In
many association football championships the three-point rule in football replaced the two-point
rule. The Isthmian league introduced the three-point rule in its 1973/1974 season. This league
is an English association of teams in the greater London area.’

The reason for the introduction of the three-point rule was to influence the style of play
during matches such that watching matches became more attractive. The purpose of rewarding
three instead of two points for a win was to stimulate attack but more to prevent a match from
ending with a spell of dull play after two teams scored the same amount of goals.

Jimmy Hill, the inventor of the three-point rule, explained the rule as follows: ‘It was
designed to attack, but even more to prevent teams shutting up shop in negative fashion long
before the game’s end, having captured 50 % of the afternoon’s cake’.[1] In 1980, a special report
on the future of footbal quoted an interviewee as follows: ‘It encourages a team to go for goals
instead of sitting back once a draw is on the cards.’

Others noted a potential disadvantage of the rule. Another interviewee expressed ‘Once a
side has got a goal, it could put down a blanket defence and make the game even more stupid
than it is already’.[2] Terry Neill, Arsenal manager from 1976 to 1983, was quoted saying: ‘It
could make a team a goal up want to sit on their lead bit more than at present’.[3]

These comments suggest that the main reasons for introducing the three-point rule were
to stimulate attacks and to dissuade two teams from playing the ball around until the end of
the match once they reached intermediate scores of 1-1, 2-2, 3-3, etc., respectively. They also
suggest that it may lead to more defensive play.

As mentioned in the introduction, other incentives are also at play in each match and,
because teams change between seasons, they may be different between seasons for the same
match.

To deal with these different types of incentives, most unobservable to us, we benefit from
structuring our evaluation. Suppose Figure 1 is a realistic description of how rewards and
incentives have effects on entertainment in matches.

Figure 1 is a Directed-Acyclic-Graph (DAG), a tool which is useful to identify causal rela-
tions that can be estimated.” A graph consists of edges and nodes. The nodes in Figure 1 have

4The Isthmian league introduced the three-point rule after seeking and receiving advice from Jimmy Hill
on how to make the football game more attractive to spectators in the early 1970s. He was a manager of
Coventry City and football commentator after a long professional career as a player for Brentford and Fulham