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CONFERENCE DIRECTOR’S REPORT 
 
 
Welcome to the Northern Territory, Australia, for the tenth Australasian conference on Mathematics and 
Computers in Sport (10M&CS). This is the first time the conference has been hosted in Darwin, Australia’s 
northern most capital city. Being winter, Darwin is the perfect setting for Australia’s southern state delegates 
to escape the depths of winter, and experience some tropical warmth! 
 
Darwin is one of Australia’s fastest growing cities. A vibrant, multicultural and cosmopolitan city, Darwin is 
home to people from over 70 different ethnic backgrounds and 60 nationalities. Located on edge of the Timor 
Sea, it is renowned for its picturesque sunsets and tropical nights. The Northern Territory has a number of 
national parks and attractions, including Litchfield, Uluru, Kakadu and Katherine Gorge.  
 
This year we welcome Professor Ray Stefani (California State University) as the day one keynote speaker, 
speaking on Ratings and Ranking. His topic introduces a strong theme throughout the conference, and we look 
forward to his presentation. 
 
We also welcome Professor John Hammond (Southern Cross University) as the day two keynote speaker, who 
will share with us the history of MathSport. His timely presentation should spark much discussion on the 
future direction of the group, especially as many delegates have connections with sporting bodies such as state 
and national institutions of sport.  
 
In this the tenth conference, we find no shortage of papers on a number of diverse topics. For example, we 
have papers from cricket, tennis, rugby, athletics, AFL, and football, to golf, roulette, badminton, weightlifting 
and karate; there is much to pique our interest, crossing many domains of sport science, mathematics, statistics 
and computing. As well as the strong Australasian presence, we welcome contributions from the USA, Iran, 
India, and England. 
 
It is also notable that, for the first time, the Australasian nations of Australia and New Zealand are both 
represented at the FIFA World Cup, and like 8M&CS, we look forward to early morning semi-finals contests 
during the conference. 
 
To end our conference, this year we introduce the (Emeritus Professor) Neville de Mestre (Bond University) 
Awards for Best Student Presentation and Best Student Publication. 
 
All full papers in these proceedings have been peer refereed, and I thank all the reviewers for their swift 
returns given the tight time frame. For assistance in the organisation of 10M&CS, we are very grateful to co-
editor Matthew Ovens (RMIT University) who has contributed a significant amount of effort in both 
compiling and reviewing papers, along with our outstanding scientific committee members. I also thank 
Monique Ladds (RMIT University) for her significant contribution in preparing those little things like emails 
and reviewers. 
 
On behalf of Co-Director Associate Professor Tim Heazlewood (Charles Darwin University), and the 
MathSport executive, I welcome you to Darwin and hope you will enjoy the presentations, social outings, 
networking opportunities and wonderful sights of Darwin and the Northern Territory. 
 
Dr Anthony Bedford 
RMIT University 
Conference Co-Director, 10M&CS. 
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Abstract 
 
As the result of a three-year effort, a comprehensive, definitive and comparative survey is elucidated for 
internationally recognized federations, for the sports organized by those federations and for the rating systems 
employed by those federations to rate those sports. Mind sports and physical sports are both included.  As of 
December 2009, 106 Olympic and non-Olympic sports are recognized by the IOC, an additional 25 sports are 
recognized by AGFIS and an additional 25 sports are organized by additional federations listed by Wikipedia 
under “List of International Sports Federations”. Of the 156 sports, 17 are combat sports, in which opponents 
are in direct physical contact (as in boxing), 73 are independent sports in which contact is not allowed (as in 
swimming and archery) and 66 are object sports in which indirect contact is allowed while opponents attempt 
to control an object (as in basketball and chess). A few of the lesser known sports are the combat sports Wushu 
and Kabbadi; the independent sports Apnea and Dragon Boats and the object sports Underwater Rugby and 
Sepak Takraw.  Of the 156 sports, 59 sports have no rating system, two sports have subjective rating systems, 
82 sports have accumulative systems in which points accrue monotonically over some window of time, and 13 
sports have adjustive systems in which the a rating adjusts in any direction by a factor times the difference 
between some result and a predictions of that result.  For accumulative rating systems, features discussed 
including converting results to points, ageing results more than one year old, and adjusting points for 
performance quality. The adjustive systems include Elo, probit and averaging methods. This study provides 
reference material of general interest and trade-offs for rating system developers. 
 

Keywords: Sports, rating systems, Olympics, international sports federations, ELO, probit 
 

 
1. INTRODUCTION 
 
This paper intends to offer a comprehensive 
overview of officially recognized international 
sports and the various rating systems for those same 
sports, as published by the sports federations which 
organize competition. It is well beyond the scope of 
this paper to survey previous contributions spanning 
the agenda. There are many excellent reference 
books and almanacs listing various types of sports, 
the history of each, rules and past results. Similarly, 
many specific types of rating systems have been 
offered in the literature from simple to complex, 
operating only on game score or applying regression 
to many game statistics. A selected list of important 
international sports ratings systems appears in 
Stefani (1997). In Stefani (1998), 83 widely played 
sports are selected based on International Olympic 
Committee recognition and on additional personally-

selected sports that appeared to be widely played. A 
taxonomy of some of those sports is offered in 
Stefani (1999), using systems methods for 
categorization. In this paper, the number of analysed 
sports will be almost doubled. The 156 selected 
sports are those for which competition is organized 
by international federations, which are recognized 
by three definitive agencies.    
The rest of this paper is organized as follows. 
Section 2 covers 156 sports of the world, providing a 
unifying taxonomy. It will be noted that many of the 
categorizations will be in sets of three. Section 3 
provides a critical survey of the three basic types of 
ratings systems, provided by governing sports 
federations. This section is intended to be a resource 
for those wanting to create a rating system. The 
reader will have guidance into the basics of creating 
each type of system. Section 4 will provide 
conclusions.  
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2. SPORTS OF THE WORLD 
 
To begin, what is a sport? I will generalize the usual 
dictionary definition; so as to be inclusive, not 
having to disqualify some widely recognized 
competitions. I define a sport as a competition using 
established rules for determining the winner. Sports 
so defined fall into two classes. In a mind sport, a 
surrogate (human, mechanical or computer) can 
make a play for the competitor as in chess and 
bridge. No physical action is need. For example, 
chess has been contested with moves sent via 
computer or by mail. In a physical sport, the 
competitor must make each play, requiring physical 
prowess as in running and soccer. What I call a 
physical sport follows the more widely used 
dictionary definition of a sport. It should be noted 
that the first Mind Sports Games were contested in 
Beijing following the Beijing Olympics for chess, 
bridge, draughts (checkers), Go and Xianggi 
(Chinese Checkers). I suggest that the world of 
sports has plenty of room for both mind and physical 
sports. 
 
Categories of Sports 
 
The Official World Encyclopedia of Sports and 
Games (1979) lists 15 categories of what are therein 
called games (mind sports here) and 13 categories of 
what are called sports therein (physical sports here). 
For example, some physical sport categories are 
court sports, team sports, water sports and stick and 
ball sports. Note that those categories are hardly 
mutually exclusive. For compactness henceforth, 
physical sports will not be distinguished from mind 
sports. I suggest with the certainty of physics, that 
there are three categories of sports following the 
three ways that two objects (competitors) can 
interact in three dimensional space without merging.  
First, in a combat sport competitors are in direct 
contact: the goal of a competitor is to control the 
opponent as in wrestling and boxing. Second, in an 
independent sport no significant contact between 
competitors is allowed as in running swimming and 
shooting: the goal is for the competitor to control his 
or her own self. Third, in an object sport the 
competitors interact indirectly as in soccer, chess 
and rugby: the goal is to control an object.   
Each activity within each sport also falls into one of 
those three categories. Consider the corner kick in 
soccer. As the ball is being readied for play, players 

may jostle for position (a combat activity). As the 
ball is centred, some players try to control the ball 
(an object activity). The goalkeeper may not be 
interfered with in the six yard box (an independent 
activity). 
 
Determining the Outcome 
 
The outcome of each sport is determined by one of 
three methods: by subjective decision, by 
measurement or by scoring. The outcomes of most 
combat sports are determined subjectively; the 
outcomes of most independent sports are determined 
by scoring or direct measurement whilst the 
outcomes of most object sports are determined by 
scoring. The rating systems that follow are best 
selected taking into account the method by which 
the outcome of that sport is determined.  
 
Recognized International Sports 
 
As mentioned earlier, the purpose of this paper is to 
select sports with wide international recognition and 
to survey the rating systems published by the 
relevant sports federations. Three sources of 
recognition are chosen herein. It was necessary to 
visit the website of each recognized federation to 
locate all sports organized by each federation. It was 
necessary to distinguish a sport (swimming, 
athletics) from a discipline within that sport 
(butterfly, pole vault) and only count sports. First, 
the International Olympic Committee, IOC, is 
obviously a world leader in sport; however, the IOC 
uses non-standard terminology as to the term “sport” 
in that “sport” and “international sports federation” 
are used interchangeably. (Due to the very large 
number of federation abbreviations to follow, the 
reader is directed to the appropriate website for each 
definition.) For example, aquatics is considered to be 
one sport due to the one federation, FINA, which 
organizes competition in what the IOC calls four 
“disciplines”, swimming, diving, water polo and 
synchronized swimming, which in common 
terminology would be considered to be four sports. 
Henceforth, this paper will use the term “sports 
federation” for what the IOC calls a sport and will 
use the term “sport” for what the IOC calls a 
discipline. As of December 2009, the IOC website 
www.olympic.org recognized the numbers of sports 
federations and sports for Summer Olympic, Winter 
Olympic non-Olympic competitions as shown in 
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Recognition Sports 

Federations 
Sports  Combat Independent Object 

IOC Summer   26   37   6 21 10 
IOC Winter     7   15   0 13   2 
IOC Recognized   34   54   3 23 28 
Total IOC    67 106   9 57 40 
      
AGFIS (additional)   21   25   6 10   9 
Other (Wikipedia)   24   25   2   6 17 
Total Additional    45   50   8 16 26 
      
Total 112 156 17 73 66 
 

Table 1: International Sports Federations and Sports 
 

  Type of Sports Rating System 
Sport Number Accumulative Adjustive Subjective None 
      
Table 4 Combat Sports   17   3  1 2 11 
Table 5 Independent  Sports   73 51  3  0 19 
Table 6  Object Sports   66 28  9 0 29 
       
Total 156 82 13 2 59 

 
Table 2: Types of Sports Rating Systems 

 
Sport  Int. Fed. Recognition Type of Rating 

System 
Years for 

Accumulative 
System 

Aikido IAF AGFIS Recognized  None   
Boxing AIBA IOC Summer Accumulative 4 
Fencing FIE IOC Summer Accumulative 1 
Judo IJF IOC Summer Accumulative 2 
Ju-Jitsu JJIF AGFIS Recognized None  
Kabbadi WFK Other None  
Karate WKF IOC Recognized None  
Kendo FIK AGFIS Recognized None  
Kickboxing WIKF, 

WAKO 
AGFIS Recognized Subjective  

Mixed Martial Arts ISCF Other Subjective  
Muay Thai IFMA AGFIS Recognized None  
Sambo FIAS AGFIS Recognized None  
Sumo Wrestling ISF IOC Recognized Adjustive ELO  
Taekwondo WTF IOC Summer None  
Wrestling-Freestyle FILA IOC Summer None  
Wresting- Greco Roman FILA IOC Summer None  
Wushu IWUF, IKF IOC Recognized None  

 
Table 3: International Rating Systems for 17 Combat Sports 
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Table 1. The sports are broken down into combat, 
independent and object categories. The Vancouver 
Olympic website provided 15 icons, one each for the 
15 recognized sports whilst it would be expected 
that a website for the upcoming London Games of 
2012 would have 37 icons. In addition to the 52 
Olympic sports, another 54 non-Olympic sports are 
recognized. Table 2 will be discussed in relation to 
rating systems. Tables 3-5 contain the combat, 
independent and object sports respectively, showing 
the source of recognition for each sport and details 
to follow about rating systems. 
The second source of recognition is the international 
organization AGFIS,  also known under the English 
abbreviation GAISF, which recognizes all IOC-
recognized federations as well as an additional 21 
federations organizing 25 additional sports, See the 
References section for the web link. 
The third source or recognition is Wikipedia. As of 
December 2009, Wikipedia had organized coverage 
of international sports federations (as in this paper) 
into IOC-recognized federations, additional 
AGFIS/GAISF recognized federations and another 
24 federations organizing 25 sports. The Wikipedia 
website provides convenient links to all sports 
included here, although some links do not work and 
some sports are not in the correct branch of the IOC-
AGFIS-Wikipedia trilogy. See the References 
section for the web link.  Table 1 includes 156 
sports, 2/3 of which are IOC recognized. About 10% 
(17) of these are combat sports whilst the remaining 
90% of the sports are about evenly distributed 
among 73 independent sports and 66 object sports.  
AGFIS and Wikipedia also include a number of 
federations that organize social meetings, organize 
international competitions for the other sports and 
organize sports for separately-abled athletes. Such 
sports are not included here.  
Among the 156 sports in Tables 3-5, are well known 
combat sports such as boxing and fencing, 
independent sport such as archery and swimming 
and object sport such as basketball and soccer. Many 
other less well-known sports are well worth 
exploring. 
 
Some Lesser-Known Sports 
 
Wushu is a combat sport with an odd name to the 
Western ear. Better known as Kung Fu, the Wushsu 
athlete must make breathtaking in-air movement and 

work with a variety of martial-arts weapons. Muay 
Thai (boxing, Thai-style) requires skill at hitting 
with the feet from various positions. Sambo is an 
Eastern-European combination of wrestling and 
boxing, requiring significant upper-body strength. 
Kabbadi is an Asian Indian sport, involving a raiding 
run onto the opponent’s half of a field.  The raider 
must contact an opponent and return to the raider’s 
field half in one breath, proven by repeatedly saying 
“Kabbadi-kabbadi” or ‘Kit-kit”. 
Among lesser-known independent sports is Apnea, 
an underwater breath-holding sport. Events include 
Free-dive Apnea and Dynamic Apnea, where the 
athlete swims horizontally with long fins, going as 
far as possible in one breath. In the 2009 World 
Championships, Goran Colak of Croatia broke the 
world record in Dynamic Apnea with a distance of 
244 m, almost five lengths of a 50 m pool on one 
breath. The female winner, Lidija Lijic of Croatia, 
completed 182 m on one breath. Other independent 
sports include rowing huge ornamental boats 
(Dragon Boats), Frisbee Golf and a simulated 
combat shooting sport called Practical Shooting. 
Underwater Rugby is an unusual object sport with a 
water-filled ball which must be stuffed into an 
underwater basket to score a “try”. Underwater 
hockey involves flipping a lead puck along the pool 
bottom with a small stick. Bandy (on ice) and Shinty 
(on grass) are Gaelic stick and ball sports with 
similar rules and equipment. Hurling is another 
Gaelic stick and ball sport wherein the ball can be 
carried on the end of the stick and then hit in midair 
toward the goal with remarkable accuracy. Gaelic 
football has the same rules as for Hurling. Gaelic 
Football and its cousin Australian Rules Football 
preserve football as it was played in the early 1800s. 
Although there is a World Cup of American 
Football, that fact was apparently unknown to the 
Americans who did not field a team in the first two 
competitions (1999 and 2003), both won by Japan. 
The Americans redeemed themselves somewhat by 
defeating Japan in the 2007 final. Rugby Fives (a 
form of court handball), Guts Frisbee (where the 
Frisbee is made purposely hard to catch) and a foot-
volleyball sport called Sepak Takrow (literally kick 
ball) are other lesser-known object sports. 
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Sport  Int. Fed. Recognition Type of Rating 

System 
Years for 

Accumulative 
System 

       
Aerobatics FAI IOC Recognized None  
Airsoft Practical Shooting IAPS Other Accumulative 2 
Alpine Skiing FIS IOC Winter Accumulative 1 
Apnea CMAS IOC Recognized None  
Archery FITA IOC Summer Adjustive  
Artistic Roller Skating FIRS IOC Recognized None  
Athletics(Track and Field) IAAF IOC Summer Accumulative 1 
Auto Racing FIA Other Accumulative 1 
Ballooning FIA IOC Recognized None  
Biathlon IBU IOC Winter Accumulative 1 
BMX cycling ICU IOC Summer Accumulative 1 
Bobsled FIBT IOC Winter Accumulative 1 
Bodybuilding IFBB AGFIS Recognized None  
Bowling FIQ IOC Recognized Accumulative 1 
Canoe ICF IOC Summer Accumulative 1 
Casting ICSF AGFIS Recognized None   
Cross County Skiing FIS IOC Winter Accumulative 1 
Cycling-road ICU IOC Summer Accumulative 1 
Cycling-Track ICU IOC Summer Accumulative 1 
Dance Sport IDSF IOC Recognized Accumulative 1 
Darts WDF AGFIS Recognized Accumulative 2 
Diving FINA IOC Summer Accumulative 1 
Dragon Boats IBSF AGFIS Recognized None  
Equestrian FEI IOC Summer Accumulative 1 
Figure Skating ISU IOC Winter Accumulative 2 
Finswimming CMAS IOC Recognized None  
Fishing CIPS AGFIS Recognized None  
Freestyle Frisebee WFDF AGFIS Recognized Accumulative 1 
Freestyle Skiing FIS IOC Winter Accumulative 1 
Frisbee Golf WFDF AGFIS Recognized Adjustive  
Glider Racing FAI IOC Recognized Accumulative 3 
Golf IGF IOC Recognized Adjustive  
Gymnastics FIG IOC Summer Accumulative 1 
Hang Gliding FAI IOC Recognized Accumulative 3 
Horseshoes NHPA Other None  
Ice Climbing UIAA IOC Recognized Accumulative 1 
Kayak ICF IOC Summer Accumulative 1 
Life Saving ILSF IOC Recognized None  
Luge FIL IOC Winter Accumulative 1 
Minigolf WMF AGFIS Recognized Accumulative 3 
Modern Pentathlon UIPM IOC Summer Accumulative 1 
Motorcycle Racing FIM IOC Recognized Accumulative 1 
Mountain Bike Cycling ICU IOC Summer Accumulative 1 
Mountain Running WMRA Other None  
Nordic Combined FIS IOC Winter Accumulative 1 
Orienteering IOF IOC Recognized Accumulative 1 
Power Boating UIM IOC Recognized Accumulative 1 
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Powerlifting IPF AGFIS Recognized Accumulative 1 
Practical Shooting IPSC Other None  
Rhythmic Gymnastics FIG IOC Summer Accumulative 4 
Rowing FISA IOC Summer Accumulative 1 
Sailing ISAF IOC Summer Accumulative 2 
Shooting ISSF IOC Summer Accumulative 2 
Short Track Speed Skating ISU IOC Winter Accumulative 1 
Skeleton Sled FIBT IOC Winter Accumulative 1 
Ski Jumping FIS IOC Winter Accumulative 1 
Ski mountaineering UIAA IOC Recognized Accumulative 2 
Skibobbing FISB Other None  
Skydiving FAI IOC Recognized None  
Sled Dog Racing IFSS AGFIS Recognized Accumulative 1 
Snowboarding FIS IOC Winter Accumulative 1 
Speed Roller Skating FIRS IOC Recognized None  
Speed Skating ISU IOC Winter Accumulative 1 
Sport Climbing UIAA IOC Recognized Accumulative 1 
Surfing ISA IOC Recognized Accumulative 1 
Swimming FINA IOC Summer Accumulative 1 
Synchronized Swimming FINA IOC Summer None  
Trampoline FIG IOC Summer Accumulative 4 
Triathlon ITU IOC Summer Accumulative 2 
Ultra-light Aircraft FAI IOC Recognized None  
Underwater Orienteering CMAS IOC Recognized None  
Water Skiing IWSF IOC Recognized Accumulative 1 
Weightlifting IWF IOC Summer Accumulative 1 
 

Table 4: International Rating Systems for 73 Independent Sports 
 
 
3. SPORTS RATING SYSTEMS FOR THE 
WORLD SPORTS 
 
It is important to distinguish a rating from a ranking. 
A rating is a numerical value assigned to a 
competitor, based on results and other factors whilst 
a ranking is the ordinal placement based on the 
ratings. The federation websites for all 156 sports 
were carefully searched for rating systems. In many 
cases, an existing system was not easily located by 
information on the home page; however, a 
subsequent search via Google did locate an existing 
system. In each case, data over some fixed period 
are analysed sequentially to establish the ratings. As 
has been true of other taxonomies, sports rating 
systems may be separated into three mutually 
exclusive types, depending on how new ratings are 
arrived at for each update over the data window. 
Ratings are either subjective; objective-non-
decreasing (called accumulative here) or objective-
able to increase, decrease or remain the same (called 
adjustive here). The adjustive rating systems usually 

tend to be the best predictors of future performance 
since each adjustment follows from a predictor-
corrector action; hence predictability is  
built in. Accumulative systems are preferred by 
many tournament-rich sports because the 
accumulation of points requires top athletes to enter 
as many tournaments as possible, which encourages 
ticket sales and TV revenue.  
Table 2 contains the result of the survey of sports 
rating systems. Federations for 59 sports do not 
publish ratings. Of the 97 published rating systems, 
only two are subjective, 82 are accumulative and 13 
are adjustive. It is clear that accumulative systems 
are favoured. 
Table 3 (for the 17 combat sports), Table 4 (for the 
73 independent sports) and Table 5 (for the 66 object 
sports) show the federation for each sport, the source 
of recognition, the type of rating system if any and 
the number of years in the data window used by 
each accumulative system. Table 5 identifies true 
team sports among the object sports. Each type of 
rating system is now covered in detail. 
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Sport Int. Fed. Recognition Team 
Sport  

Type of Rating 
System 

Years for 
Accumulative 
System 

American Football IFAF AGFIS Recognized   Team None  
Badminton BWF IOC Summer  Accumulative 1 
Bandy FIB IOC Recognized  Team None  
Baseball IBAF IOC Recognized Team Accumulative 4 
Basketball FIBA IOC Summer Team Accumulative 8 
Beach Volleyball FIVB IOC Summer Team Accumulative 1 
Bocci CBI IOC Recognized  None  
Bridge WBF IOC Recognized  Accumulative 8 
Broomball IFBA Other Team None  
Carom Billiards WCBS,UMB IOC Recognized  Accumulative 2 
Chess FIDE IOC Recognized  Adjustive ELO  
Court Handball USHA Other  Accumulative 1 
Cricket ICC IOC Recognized  Team Adjustive  
Croquet WCF Other  Adjustive ELO  
Curling WCF IOC Winter  Accumulative 7 
Double Disc Court 
Frisbee 

WFDF AGFIS Recognized    Accumulative 1 

Draughts FMJD AGFIS Recognized    Adjustive ELO  
English Billiards WCBS 

IBSF 
IOC Recognized  None  

Field Hockey FIH IOC Summer Team Accumulative 4 
Fistball IFA AGFIS Recognized   Team None  
Floorball IFF IOC Recognized   Team None  
Gaelic Football GAA Other Team None  
Go IGF, EGF AGFIS Recognized    Adjustive ELO  
Guts Frisbee WFDF AGFIS Recognized  Team Accumulative 1 
Handball IHF IOC Summer  None (Ind & 

All-Time Best) 
 

Hurling GAA Other Team None  
Ice Hockey IIHF IOC Winter Team Accumulative 4 
Inline Roller Hockey FIRS IOC Recognized Team None  
Korfball IKF IOC Recognized  Team Accumulative 4 
Lacrosse FIL, IFWLA, 

ELF 
Other Team None  

Lawn Bowls CMSB, World 
Bowls LTD 

IOC Recognized  Accumulative 4 

Netball IFNA IOC Recognized  Team Adjustive, 
similar to ICC  

 

Pelota Vasca  FIPV IOC Recognized  None  
Pesapallo PESIS Other Team None  
Petanque CMSB, FIFJP IOC Recognized  None  
Polo FIP IOC Recognized  Team None  
Pool WCBS,WPW IOC Recognized  Accumulative 1 
Racketlon FIT Other  Accumulative 2 
Racquetball IRF, IRT IOC Recognized  Accumulative 1 
Real Tennis IRTPA Other  Accumulative 1 
Rock it Ball IRIBF Other Team None  
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Roller Hockey FIRS IOC Recognized  Team None  
Rounders NRA Other Team None  
Rugby Fives RFA Other   Accumulative 1 
Rugby League RLIF, RLEF Other Team None  
Rugby Sevens IRB IOC Recognized Team Accumulative 1 
Rugby Union IRB IOC Recognized  Team Adjustive  
Sepak Takrow ISTAF AGFIS Recognized    None  
Shinty CA Other Team None  
Snooker WCBS 

WPSBA 
IOC Recognized  Accumulative 2 

Soccer FIFA IOC Summer Team Adjustive  (M) 
Adjustive ELO 
(W)  

 
 
 

Soft Tennis ISTF AGFIS Recognized    Accumulative 1 
Softball ISF IOC Recognized Team None  
Sport Bowls CMSB, FIB IOC Recognized  None  
Squash WSF 

PSA(M) 
WISPA(W) 

IOC Recognized   
Adjustive 

 

Table Hockey ITHF Other  Accumulative 2 
Table Soccer ITSF Other  Accumulative 1 
Table Tennis ITTF IOC Summer  Accumulative 4 
Tennis ITF,  

ATP(M) 
WTA(W) 

IOC Summer  Accumulative 4 
1 
1 

Throwball ITF Other Team None  
Tug of War TWIF IOC Recognized Team None  
Ultimate Fisbee WFDF AGFIS Recognized   Team Accumulative 1 
Underwater Hockey CMAS IOC Recognized  Team None  
Underwater Rugby CMAS IOC Recognized  Team None  
Volleyball FIVB IOC Summer Team Accumulative 4 
Water Polo FINA IOC Summer Team None (World 

League Only) 
 

 
Table 5: International Rating Systems for 66 Object Sports 

Year = the number of years included for an accumulative system 
 

 
Subjective Rating Systems 
 
The only two subjective systems are for WACO 
Kickboxing and the ICSF Mixed Martial Arts. A 
panel of experts ranks competitors and those 
individual rankings are combined for the overall 
ranking. There are also non-internationally 
recognized systems in boxing published by the 
WBC, WBA, IBF and WBO organizations and in 
UFC mixed martial arts, each of which employs a 
champion-challenger system rather than 
international tournaments.  
There is one anomaly of this accounting system in 
that the word “None” describes the fact that the 

IFNA Muay Thai federation does not publish Muay 
Thai ratings. The WIKF Kickboxing federation 
publishes ratings for the Kickboxing events that 
WIKF organizes and WIKF also publishes Muay 
Thai ratings as a service to Muay Thai, although 
Muay Thai competition is organized by IFNA.  
 
Accumulative Rating Systems 
 
An accumulative rating system for competitor i 
follows the form shown in (1), where summation is 
over a window of past results for competitor i. 
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New rating for i =  
Σ fi (results, weights, ageing, old ratings, 

other factors) (1) 
 
The function f i  in (1) includes converting results for 
competitor i to points, weighting points by 
importance, ageing data from previous years, 
including old ratings and other factors. The term 
“accumulative” follows from the fact that all            
fi (..) ≥ 0, hence ratings for each i are non-decreasing 
as summation moves over the data window. A 
particularly simple accumulative system employs the 
“best” operator for the function fi . For example, the 
current year’s best result is used by IAAF athletics 
and FINA swimming whilst the three best results of 
the current year are used by FINA diving. 
Two distinctly different methods are employed to 
convert results to points weighted by importance. In 
FIVB Basketball, the various championships held 
over the eight-year window are each given a vector 
of weights varying from 5 to 0.1. Placement in each 
championship is given a common set of points from 
50-1. It is necessary to multiply the weight by the 
placement points for a given competition. 
Conversely, for ATP (men’s professional) Tennis 
and WTA (women’s professional) Tennis, a matrix 
is published where each row contain result-scores 
for a given championship (say for Wimbledon) 
whilst each column contains the placement scores 
(for say, being eliminated in the quarter-finals). The 
matrix approach is recommended since both athlete 
and sports follower can easily denote the points to be 
accumulated for a given placement in a given 
championship. 
Table 6 shows the number of data-window years 
used by the 83 accumulative systems. Notice that a 
one year window is the most frequent data window, 
clearly favoured by the independent sports in Table 
4 and by the individual (non-team) object sports in 
Table 5, where the skill of an individual can change 
rather dramatically from year to year. The number of 
systems drops for two and three year windows and 
increases for four year windows, which usually 
include one world cup and/or Olympic cycle. 
Multiple-year windows are favoured by the team 
object sports in Table 5, where a team may play a 
limited number of international matches in a given 
year requiring a number of years for valid 
comparisons.  
 
 

 
Systems Number of Years  
53 1 
12 2 
  3 3 
11 4 
  1 (Curling) 7 
  2 (Basketball, Bridge) 8 

 
Table 6: Number of Years for the 83 Accumulative 

Systems.  
 
When there is a multiple-year window, the previous 
year’s results (relative to the current year) may be 
“aged” by multiplying the current year’s results by 
100% and by multiplying each previous year’s 
results by a lower value.  
 
Year Uniform 

Ageing 
Non Uniform Ageing 
FIVB Volleyball 

 All Points 4 year events 2 year 
events 

1  100% 100% 100% 

2 75% 75% 50% 

3 50% 50% 0 

4 25% 25%  

5 0 0  

 
Table 7: Ageing of Data 

Uniform ageing: IIHF Ice Hockey, IKF Korfball, 
 ITF Tennis, FIH Field Hockey, ITFF Table Tennis.  

 Non uniform ageing: FIVB Volleyball  
 
Table 7 shows two methods used to age data. 
Ageing occurs over a four-year window for five 
sports with all events in a given year being aged 
exactly the same way, with a graduated ageing that 
drops by the same fraction each year. Conversely, 
FIVB volleyball employs non-uniform ageing in that 
some event results are aged differently than others 
contested in the same year, depending on the 
frequency of the event. 
IDF Darts is the only accumulative system using 
money won. In some sports, the final position value 
is multiplied by values dependent on other factors 
for that sport. In FAI Hang Gliding and Paragliding, 
other factors include the quality of entrants, the 
number of entrants, the relative time and the number 
of skills used. In ISAF Sailing, other factors include 
the importance of the race and the quality of 
entrants. In ISSF Shooting, other factors include the 
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importance of the match, the score relative to the 
world record and the score relative to minimum 
standards. In IFSS Sled Dog racing, points are 
earned based on the length of race, the importance of 
the race and relative time. In ITU Triathlon, a bonus 
is given based on the number of top 20 entrants; 
however, no points are earned if the final time is 
worse than a cut off time.  
 
Adjustive Rating Systems 
 
An adjustive rating system for competitor i has the 
form shown in (2).  
 

new rating for i = old rating for i + 
 K [ new result -  

prediction (old results, weights, old ratings)] 
(2) 

 
This type of rating system follows the format of a 
predictor-corrector in which a rating for i can 
increase, stay the same or decrease as each new 
result is compared to each prediction based on 
information available prior to the competition. The 
value of K must be chosen carefully. Too large of a 
value for K would make the ratings respond too 
forcefully to the error term in the square brackets 
[...] , probably making ratings oscillate thereafter 
whilst too small of a value for K would make the 
ratings unresponsive to [...] . 
 
Type New Result Prediction 

Elo  (1, .5, 0) P(d) 

Probit  (1, 0, -1) k d with limiting 
 

Averaging Chosen values Past average of 
chosen values 

 
Table 8: Types of Adjustive Systems 

 
According to Table 2, there are 13 adjustive systems 
published by the federations listed in Tables 3-5. In 
Table 8, these adjustive systems fall into another 
trilogy of categories, based on how the new result is 
used to make adjustments vis-a-vis the method used 
to predict each result. Let team i ’s most recent 
opponent be designated j. Let d represent the rating 
difference between the ratings of competitors i and j 
prior to the most recent competition, as given by (3). 

 
d = old rating for i - old rating for j (3) 

 
Six sports are rated using the Elo system, three are 
rated using Probit systems whilst four sports employ 
averaging methods. Each type is now covered in 
order. 
 
Elo Rating Systems 
 
A strong point of the Elo system is simplicity, in that 
the system depends more on theory than on ad-hoc 
parameter selection. For the Elo System   
 

P(d) = 1 / (1 + 10 –d / [ 2 σ 
t   

] )    (4) 
 

Here σt
 denotes the standard deviation of team 

performance, usually set at 200 arbitrarily whilst the 
mean is also set arbitrarily. The adjustive 
mechanism causes the rating distribution to follow 
whatever mean and standard deviation are selected. 
Only K must be selected purposely. It may seem 
illogical to use a base 10 exponent rather than a base 
e exponent. Actually, (4) is an approximation to a 
base e function.  
The “new result” for the Elo system follows the 
scale (1 = a win, .5 = a draw and 0 = a loss) for 
competitor i against opponent j, which is compared 
to the a prior probability P(d). The rightmost 
adjustment term in (2) becomes K [w – P(d)] where 
w is the new result. The maximum positive 
adjustment is K [1-0]  or K. The ELO system was 
developed by Chess Master Arpad Elo. That system 
is used for six very diverse sports: FIDE Chess, 
FMJD Draughts (Checkers), WCF Croquet, IGF Go, 
FIFA Women’s Soccer and ISF Sumo Wrestling. 
Three applications are to mind sports and three are 
to physical sports.  
For each of the six Elo applications, Table 9 shows 
the value of assumed team standard deviation and 
the range of K values. In order to compare the 
systems, the rightmost column shows the maximum 
rating change divided by the team standard 
deviation, which equals K divided by σ t . The last 
column of Table 9 thus measures the sensitivity of 
the rating system. Where K has a range of values, 
the maximum rating change also has a range of 
values.   
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Sport σ t K [Max. rating change 
 K  ] / σ t  

FIDE Chess, 
FMJD 
Draughts 

200 10-25 .05 - .12 

IGF Go 70-200 10 - 116  .14-.58 

ISF Sumo 
Wrestling 

≥ 200 ≥ 50 .25 - .45 

    
FIFA 
Women’s 
Soccer 
 

200 10 – 40  .05 - .20 

WCF 
Croquet 

250 50 .20 

 
Table 9: Six Elo Rating Systems   

 
For the mind sports of Chess, Draughts and Go as 
well as for the physical sport of Sumo Wrestling, the 
smallest maximum rating change is for a grand 
master whilst the largest maximum rating change is 
for a beginner. In such sports, it is logical that a 
newcomer wants to move up quickly whilst a grand 
master wants to remain highly rated; hence such 
rating sensitivities appeal to both competitors and 
meet directors. Conversely for Women’s Soccer, the 
smallest maximum rating change is for a friendly 
whilst the largest maximum rating change is for a 
World Cup final, as is reasonable for that sport.  For 
croquet all competitors are subject to the same 
maximum rating adjustment.  The most sophisticated 
selection of K is done for arguably the least 
sophisticated sport, Sumo Wrestling, in that the 
other sports employ ad-hoc values of K whilst Sumo 
Wrestling employs a theoretically-derived formula. 
Note that a rating system designed to facilitate 
accurate predictions whilst not being beholding to 
competitors or meet directors would most likely treat 
highly-rated and lower-rated competitors with the 
same adjustment mechanism. 
 
Probit Rating Systems 
 
For the three Probit adjustive systems in Table 10, 
the predicted probability of a win is a linear function 
k d, limited to a range such as +1 to -1. The new 
result is then evaluated for competitor i as (1 = a 
win, 0 = a draw and -1 = a loss). The adjustment 
term in Equation 2 become K [w – k d] where w is 
the new result. The maximum positive adjustment is     
K [1- (-1)]  or 2 K. For each Probit system, Table 10 

summarizes the value of the match prediction k d, 
the ratings smoother K, home advantage and the 
maximum change in terms of team standard 
deviations so as to compare with the Elo systems of 
Table 9.  
The ICC Cricket and IFNA Netball systems are 
identical, both having been developed by David 
Kendix. Here prediction is given by d/50 and K 
depends on the number of games played.  
For IRB Rugby, prediction is given by d/10 and 3 
rating points are added to d for a home advantage if i 
plays at home. As compared to FIFA Elo Women’s 
Soccer which adds uses 100 rating points to d as 
home advantage, the assumed fraction of home wins 
for d = 0 is about the same (65% for Rugby and 64% 
for soccer). The maximum change for Cricket is the 
same as the maximum rating change for Rugby 
using a window n of about 10. 
The IRB Rugby system is at the upper range of 
sensitivities compare to the Elo systems of Table 9. 
Note that the IRB Rugby system is the only one 
using score difference as a factor in determing K, 
which also depends on match importance. Since the 
inclusion of score provides more information than 
just winning, this IRB Rugby is recommended as an 
excellent example of a Probit system. 
 
Averaging Systems 
 
In an averaging system, a new result is compared 
with a past average of that same result, causing 
rating adjustment in (2). Five sports use averaging 
systems. In FIJA Archery, each score is adjusted for 
the cohort tournament average compared with the 
last cohort World Cup average and the scores are 
averaged over one year (minimum of 3) matches. In 
WFDF Frisbee Golf, a score more than two standard 
deviations from the mean is not used. The last eight 
scores are averaged. In IGF Golf, points are accrued 
depending on tournament placement and a two-year 
average is used (minimum of 40 tournaments). In 
WSF Squash tournament points are averaged over 
one year (minimum of 10 matches). For a Men’s 
Soccer match, FIFA multiplies factors which depend 
on importance, continent, outcome and opponent 
rating, Ratings follow using a four-year weighted 
average.  
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Sport Prediction k d K Home 
Adv.  

Home 
Wins  

[Max rating 
change  

2 K  ] / σ t  
ICC Cricket 
IFNA Netball 
(David Kendix) 

d/50  
with limiting  

50/n 
n = games 
played  

0  3.4 / n  

IRB Rugby d/10 
With limiting  

1-3  
(win margin,  
importance) 

3 65% .13 - .38  

      
(FIFA Elo Wom. 
Soccer) 

  100 64%  

 
          Table 10: Three Probit Rating Systems (FIFA Elo is shown for comparative purposes)   

 
4. CONCLUSIONS 
 
Based on three sources of recognition, 156 widely 
played international sports were identified, 17 of 
which are combat sports, 73 are independent sports 
and 66 are object sports. The organizing sports 
federations published rating systems for 97 of those 
sports, only two of which are subjective. Among the 
83 accumulative systems, several convert 
performance points via a very compact and useful 
placement-importance matrix. A one year window is 
commonly used for individual independent and 
object sports; a four-year window is commonly used 
for team object sports and ageing is may be done 
uniformly in equal steps for all points earned in a  
given year. Of the adjustive systems, the Elo system 
is noted for its simplicity whilst the IRB Rugby 
Probit system is particularly well structured.  The 
nine Elo and Probit adjustive systems had a 
maximum rating adjustment that varied from about 
0.1 to 0.6 team standard deviations.  
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Abstract

Typically the binary integer linear program (BILP) formulation of the minimum violations ranking (MVR)
problem and related rank aggregation problem is the preferred way to find a ranking that minimizes the
number of violations to hillside form. However, for very large ranking problems, the BILP formulation is
limited by the O(n3) number of constraints. Even when constraint relaxation techniques are employed, there
are practical limits on the size of n, the number of items being ranked. One goal of this paper is to demon-
strate these limits on several ranking problems drawn from a wide range of application areas. Another goal
is to overcome these limitations by using a evolutionary optimization (EO) algorithm to solve large MVR
ranking problems. Our EO algorithm uses many features of the BILP formulation to improve its speed
and convergence. Though EO, unlike BILP, is not guaranteed to produce the global optimum, its speed,
scalability, and flexibility make it the method of choice for solving very large-scale linear ordering problems.

Key words: evolutionary optimization, binary integer linear program, minimum violations, ranking,
hillside form, March Madness

1. Introduction

In this paper, we present a rating method that,
given information on the pairwise comparisons of n
items, minimizes the number of inconsistencies in
the ranking of those items. Though Minimum Vi-
olations Ranking (MVR) methods have many ap-
plications (Reinelt et al., 1984), we use exam-
ples from sports to explain our new MVR meth-
ods. There are two algorithms discussed in this pa-
per that both use MVR. The binary integer linear
program (BILP) shown in this paper always gives
the optimal solution to the optimization problem.
The evolutionary optimization (EO) gives a heuris-
tic solution. In order to understand the methods, we
must define terms that will be used throughout the
paper.

The matrix D below, which we call a point dif-

ferential matrix, contains pairwise comparison data
and is commonly and easily produced for many
sports.

D =



1 2 3 4 5
1 0 0 0 0 0
2 9 0 4 0 2
3 5 0 0 0 0
4 15 3 8 0 5
5 6 0 3 0 0


The (2, 3)-entry means that team 2 beat team 3 by 4
points in their matchup. We will analyze this point
differential matrix in order to produce a ranking of
these five teams. At this point we introduce a defi-
nition.
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A matrix D is in hillside form if

di j ≤ dik , ∀ i and ∀ j ≤ k

di j ≥ dk j , ∀ j and ∀ i ≤ k.

The name is suggestive as a cityplot of a matrix
in hillside form looks like a sloping hillside as in
figure 2. As an illustrative example, consider two
point differential matrices from two different sea-
sons. Since this represents seasonal data, it is pos-
sible that some of the teams played multiple match-
ups. For instance, one possible scenario for matrix
B is that teams 1 and 3 played two times during the
season, the first time team 1 beat team 3 by 5 points
(B(1,3)=5) and the second time team 3 beat team 1
by 7 points (B(3,1)=7). The matrix given in A is
in hillside form and the season represented in B is
not.

A =


0 3 5 8 15
0 0 2 4 9
0 0 0 3 6
0 0 0 0 5
0 0 0 0 0


and

B =


0 3 5 8 15
0 0 2 4 9
7 0 0 3 4
0 0 0 0 5
0 0 0 0 0

 .

For n × n matrices in hillside form, the ranking r
of the items is clear: r = ( 1 2 · · · n ). For
non-hillside matrices, we can count the number of
violations of the hillside conditions. In the above
example, B has 7 violations. Often a matrix that
appears to be non-hillside can be symmetrically re-
ordered so that it is in hillside or near hillside form.
In fact, the non-hillside matrix D when reordered
according to the vector ( 5 2 4 1 3 ) forms
the hillside matrix A. Finding such a hidden hill-
side structure is exactly the aim of both the EO and
BILP methods. Our MVR methods find a reorder-
ing of the items that when applied to the item-item
matrix of differential data forms a matrix that is as
close to hillside form as possible. We will discuss
our measure of closeness to hillside form as viola-
tions which are defined in the next paragraph.

Hillside form gives a great deal of information
about the difference in the strengths of teams. For

example, matrix A says that not only is team 1
ranked above teams 2, 3, 4, and 5, but we expect
team 1 to beat team 2 by some margin of victory,
then team 3 by an even greater margin, and so on.
Sometimes a data matrix has been reordered to be
as close to hillside form as possible, yet violations
remain. These violations are of two types: upsets
and weak wins. Nonzero entries in the lower tri-
angular part of the reordered matrix correspond to
upsets, i.e., when a lower ranked team beat a higher
ranked team. Weak wins manifest as violations of
the hillside conditions that occur in the upper trian-
gular part of the matrix. This is when a high ranked
team beats a low ranked team but by a smaller mar-
gin of victory than expected. Our MVR paper in-
herently weights upsets more than weak wins. The
example matrix B above demonstrates this well.
Notice that the presence of the 7 in the lower tri-
angular part of the matrix accounted for 6 of the 7
violations. Looking across the third row, the 7 is to
the left of four number which are smaller in mag-
nitude, giving 4 of the violations. Down the first
column, 7 is below two zeroes giving the final 2 of
the violations. The last of the 7 violations can be
seen in the fifth column since the 5 falls below the
4.

Although we have not experimented with alternate
ways to weight the data, it is possible. The user
could weight the seriousness of the upset. For ex-
ample, a 12th ranked team beating a 4th ranked team
would be weighted more heavily than a 9th ranked
team beating an 8th ranked team. This would be im-
plemented by simply doing a Hadamard product of
the data matrix with a weight matrix where the val-
ues in the lower, left-hand corner would be larger
than those around the rest of the matrix. A sec-
ond idea is to weight the input data by date. If the
ranking is used as a predictive method for a tourna-
ment, then games closer to the tournament would
be weighted more heavily. Many different weights
could be used here. Other methods such as Colley
and Massey use linear, exponential, logarithmic, or
step functions to weight the games.

There are many types of data that can be used as
input to create MVR rankings. Below are four
common data matrices that can be used for sports
teams.
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1. Point Matrices:

(a) Psumi, j = sum of all the points scored by
team i against team j

(b) Pavgi, j = average of all points scored by
team i against team j

2. Point Differential Matrices:

(a) Dsumi, j = sum of all the positive point
differences scored by team i against team
j

(b) Davgi, j = average of all positive point
differences scored by team i against team
j

3. Difference Matrices:

(a) Diffsumi, j = sum of the points scored by
team i minus points scored by team j

(b) Diffavgi, j = average of the points scored
by team i minus points scored by team j

4. Rank Aggregation Matrices:

(a) For rank aggregation, we use rankings
from other models and combine the data.
We combine the data in the following
way:

(b) RankAggi, j = # lists having i above j

It is important to note that our algorithms have
been tested with data from entire seasons to use as
prediction models for tournaments. However, this
does not necessarily mean that we have informa-
tion on every head to head match-up between the
teams. The rankings can still be computed using
the indirect relationships in the data. Future work
needs to be done to determine whether there is a
warm up period needed for the algorithms to run
successfully.

This paper is outlined as follows. First, in Section
2, we summarize the major findings from our prior
MVR solution technique, which uses mathemati-
cal programming to find MVR rankings. Then in
Section 3, we propose our new MVR solution tech-
nique, which uses the very intuitive method of EO.
Section 4 gives results on data from the Southern
Conference region of NCAA Division I basketball
in the United States. The paper ends with some ex-
periments from NCAA basketball and thoughts on
future work for this topic.

2. Findings from Prior Work in Mathematical
Programming

Other researchers have proposed various methods
for solving the MVR problem (Ali et al., 1986;
Cassady et al., 2005; Coleman, 2005; Park, 2005)
and in another paper (Langville et al., 2009), we
formulated a binary integer linear program (BILP)
to solve the MVR problem described above. In that
paper, our MVR methods used ideas from math-
ematical programming. While specialized knowl-
edge of that field is required to appreciate and im-
plement those methods, in this section we summa-
rize the findings from that paper that pertain to this
work. Our goal in this paper is to solve the MVR
problem using a more intuitive technique that re-
quires no specialized knowledge or software.

The BILP that we formulated and explained in de-
tail in (Langville et al., 2009) is below.

min
n∑

i=1

n∑
j=1

ci j xi j

xi j + x ji = 1 for all i , j

xi j + x jk + xki ≤ 2 for all i , j , k

xi j ∈ {0, 1},

where

xi j =

{
1, if item i is ranked above item j
0, otherwise.

and C is a matrix of constants formed from the data
matrix D. One definition assigns

ci j := #{ k | dik < d jk } + #{ k | dki > dk j }, (1)

where # denotes the cardinality of the correspond-
ing set. Thus, #{ k | dik < d jk } is the number
of items ranking item j above item i. Similarly,
#{ k | dki > dk j } is the items ranking item i above
item j.

Industrial software such as Xpress-MP finds the
globally optimal MVR ranking. When the opti-
mization algorithm concludes, these xi j variables
can be assembled into a binary matrix X, which is
then used to create a ranking of the n items. The
item with the greatest number of 1s in its row is the
highest ranked team. In fact, this item has a row
sum of n − 1, meaning that it is ranked above ev-
ery other item. The second place item will have a
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row sum of n − 2, the third place item will have a
row sum of n − 3, and so on down to the last place
item, which has a row sum of 0, meaning that it is
ranked above no items. In addition, in (Langville
et al., 2009) we described a linear time algorithm
for scanning the optimal ranking to identify mul-
tiple optimal solutions. In other words, multiple
optimal solutions correspond to an optimal MVR
ranking with ties in some rank positions.

We discovered that the O(n3) inequality constraints
dramatically limit the size of ranking problems
that can be solved with the BILP method. Con-
sequently, we used classical relaxation techniques
from the field of mathematical programming. One
relaxation solves the linear program (LP) relax-
ation of the original BILP. The LP results were very
good. We were able to prove that the LP solu-
tion was optimal for the BILP under certain con-
ditions. In the few cases where the LP produces a
suboptimal solution, we used bounding techniques
to produce a measure ε, indicating that the LP
solution is within ε% of the optimal BILP solu-
tion. Further, the LP relaxation requires slightly
less computation, immediately identifies multiple
optimal solutions, and enables sensitivity analysis,
which enables measures of confidence in the as-
signments of items to rank positions. While we
solved a 347-team example in under a minute using
Xpress-MP software, we were still unsatisfied with
the size of ranking (also known as linear ordering)
problems we could solve. As a result, in this pa-
per, we present a very intuitive solution technique
called EO that requires no specialized knowledge
of mathematical programming or its software and
enables the solution of even bigger ranking prob-
lems.

3. EO

3.1. Overview of EO

EO, as the name suggests, takes it modus operandi
from natural evolution, and every EO algorithm
uses the basic evolutionary ideas of mating, mu-
tation, and survival of the fittest to solve an opti-
mization problem. The trick is to tailor these basic
ideas to fit the specific problem at hand. The idea
is to start with some initial population of p possi-
ble candidate solutions for the problem of interest.
Each member of the population is evaluated for its
fitness. The fittest members of the population are

mated to create offspring that contain the best prop-
erties of their parents. Continuing with the evolu-
tionary analogies, the less fit members are mutated
in asexual fashion while the least fit members are
dropped and replaced with immigrants. This new
population of p members is evaluated for its fitness
and the process continued. As the iterations pro-
ceed, it is fascinating to watch Darwin’s principle
of survival of the fittest. The populations march to-
ward more evolved, fitter collections of members.
Perhaps more fascinating is the fact that there are
theorems proving that evolutionary algorithms con-
verge to optimal solutions in many cases and near
optimal solutions under certain conditions (Fogel
and Michalewicz, 2004). Unfortunately, evolution-
ary algorithms can be slow-converging, which is
why careful tailoring to the application is so im-
portant (Fogel and Michalewicz, 2004).

3.2. Tailoring EO to the MVR problem

In this section, we tailor the general EO ideas above
to our specific MVR problem.

Figure 1: Overview of steps of EO for ranking
problem
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3.2.1. Members of the Population

For our MVR problem, each member of the EO
population is a ranking vector, i.e., a permutation
vector of the integers 1 through n.

3.2.2. Initialization

The EO algorithm always gets increasingly closer
to hillside form as it progresses. This is motivation
to find a good initial population. There are many
established methods of ranking that have done well
in predictive settings such as the NCAA March
Madness.1 We use the output from these meth-
ods as our initial parent population. Some methods
used are Massey, Colley, and mHits (Colley, 2002;
Govan et al., 2009; Massey, 1997). As seen in table
1, the initialization truly makes a difference. These
experiments were run using all 347 NCAA Divi-
sion 1 basketball teams.

Init. time (sec) violations
Random 19.6 1,404,783
Best 10 10.3 1,163,143

Worst 10 30.8 1,182,274

Table 1: Runtimes (in seconds) and number of vio-
lations for EO with different initializations

Starting solutions from the Colley, Massey, and
mHITS methods were considered. The number of
violations to hillside form was calculated for each
solution to determine the best and worst 10 solu-
tions. It can be seen that the runtime and number
of violations were both lowest for the best initial-
ization. Although the worst initialization had the
highest runtime, it had better results for the number
of violations than the random initialization. These
results are just preliminary, but suggest that further
work should be done on the sensitivity of the ini-
tialization.

3.2.3. Fitness

The fitness function for EO is the number of viola-
tions to hillside form for the reordered data matrix.
This can be calculated using the same C matrix de-
fined for the BILP in equation 1.

1Information about the NCAA March Madness Tour-
nament can be found at http://www.ncaa.com/sports/m-
baskbl/ncaa-m-baskbl-body.html

3.2.4. Offspring

There are two ways to create offspring: mating and
mutating. When considering Darwinian ideas, mat-
ing should take preference over mutating. Mutat-
ing is used as a means to break the population out
of a local optimum. Our algorithm allows the user
to choose both the percentage of time to mate ver-
sus mutate and set the probability density function
(pdf) to determine which mating or mutating algo-
rithm is used most often. All of our experiments
were run with mating set at 85% and a uniform pdf
over each mating and mutating algorithm. Future
work should be performed to determine how these
percentages affect the outcome.

This section presents the mating and mutating al-
gorithms we used for our MVR problem.

1. Mating: These use two or more parent solu-
tions to create one offspring.

(a) Borda Count: To compute the Borda
Count for a particular team, for each par-
ent list and for each team in that list,
count the number of teams that it ranks
above. Sum this for each list.

(b) Average Rank: This method uses exactly
two parent solutions. It averages the cor-
responding entries then ranks these aver-
ages.

2. Mutating: These use one parent solution to
create one offspring.

(a) Flip: Randomly choose two teams and
flip their positions.

(b) Insert: Randomly choose a team and put
it in a different location.

(c) Displace: Choose a group of teams and
put them in a different location.

(d) Reverse: Choose a group of teams and
reverse their order.

After an offspring is formed, the fitness of that off-
spring is checked. If the fitness is better than the fit-
ness of the worst parent solution, the offspring be-
comes part of the parent population and the worst
parent is kicked out. This allows for the popula-
tion to always be moving toward improving hillside
form.

3.2.5. Stopping Criteria

Texts suggest many different ways to select a stop-
ping criteria (Fogel and Michalewicz, 2004). Our
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EO algorithm uses the average change of the av-
erage fitness of the parent population. Every time
a new offspring is added to the population, the av-
erage fitness is calculated. We then calculate the
average change of these fitness values. The user
sets a tolerance level for the average change to fall
below. To allow the algorithm ample chance to es-
cape a local minimum, the average fitness change
has to fall below this tolerance level five times in a
row in order for the algorithm to stop. Upon termi-
nation, the best parent solution in the population is
the ranking.

Figure 1 gives a global view of the EO algorithm
applied to the MVR problem.

3.3. Summary of EO for the MVR problem

We pause to consider the pros and cons of EO
when compared to the alternative solution tech-
niques from mathematical programming, described
in Section 2. Pros:

• EO is easy to understand and requires no spe-
cialized knowledge of mathematical program-
ming.

• EO is easy to code and requires no specialized
industrial software.2

• EO is flexible and adaptable. For instance,
a user can easily implement multi-objective
functions or secondary or tertiary objectives
by changing the fitness function.

• EO can handle big datasets because it scales
up well and can be parallelized.

• Early termination of an EO algorithm gives
meaningful results that are at least locally op-
timal.

Cons:

• The EO solution is usually only locally opti-
mal. Unlike the mathematical programming
methods of Section 2, there is no guarantee
that the solution is globally optimal or within
some percentage of globally optimal.

2Our EO code for the MVR problem is available upon
email request.

• No sensitivity analysis is available with the
EO method.

However, it is possible to use the EO solution to
initialize or provide good bounds for the mathemat-
ical programming methods, thereby greatly reduc-
ing their runtimes, and enabling optimality guaran-
tees and sensitivity analysis.

4. Small Example of EO vs. BILP

For this section, we will use the 2009-2010 South-
ern Conference (SoCon) Men’s Basketball data.
For this dataset, a total of 119 games were played
with each team playing every other team approxi-
mately twice. The results shown use the Davg data
matrix formulation. The heights of each of the bars
in the pictures represent the magnitude of the entry
in the matrix. The top plot shows the matrix re-
ordered with the SoCon actual standings, the mid-
dle plot shows the matrix reordered with the results
from EO and the bottom plot shows the matrix re-
ordered with the results from the BILP. For the EO,
only one initialization was used with results from
Massey, Colley, and mHits, and all types of mating
and mutating described in Section 3 were used. Ac-
companying these plots are tables with the results.
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Figure 2: SoCon Standings, EO Results, and BILP
Results on 2009-2010 SoCon data.

You will notice that the EO and BILP differ only in
the last two teams. What is interesting about this is
that the number of violations found for both the EO
and BILP is 436. Since both of the optimal values
were the same, but the rankings were different, we
know there must be multiple optimal solutions for
this SoCon example.

5. Large Experiments

This section explores some larger examples for
both EO and BILP.

5.1. Datasets of Varying Size

We tested the runtime and number of violations for
data sets of different sizes for each of the algo-
rithms. The first dataset used is all of the data from
the 2009 - 2010 NCAA Division I basketball sea-
son with 347 total teams. The second dataset is all
of the data from the 2009 NCAA football season
with 634 total teams. The third dataset is all of the
data from the 2009 - 2010 NCAA basketball sea-
son with 1041 total teams. The fourth dataset is all
of the data from the 2009 - 2010 college basketball
season with 2034 total teams. The runtimes in the
table are in minutes.

EO BILP/LP
n time violations time violations

347 .35 1,161,919 .66 1,147,912
634 4.2 2,054,127 106.8 1,538,490
1041 14.2 11,412,879 1343.8 9,311,502
2034 21.3 42,109,102 - -

Table 2: Runtimes (in minutes) and number of vio-
lations for EO vs. BILP for problems of increasing
size

Here we note some observations from Table 2.

• The EO number of violations for the n = 347
example is within 1.22% of the optimal BILP
number of violations.

• The BILP took almost 10 times the amount of
minutes to run for the n = 1041 example. The
results are much better for the BILP, but one
must consider the time factor in determining
which algorithm to use.

• The BILP was allowed to run for 24 hours on
the n = 2034 example and did not obtain a
solution. We stopped the algorithm as the time
was so much greater than that for the EO.

5.2. March Madness

Both of these methods have been used to predict
winners in each game of the Division I NCAA
Men’s basketball tournament, which is often called
March Madness, in American College basketball
for the past two years. Before the tournament be-
gins, many fans complete brackets predicting win-
ners of each tournament game. Once the tourna-
ment begins, each correct prediction in a bracket
accrues points. As such, a pool of brackets can
be formed and compete for the highest score. A
popular online pool is the ESPN Tournament Chal-
lenge where over 4 million submissions were sub-
mitted for the 2009-2010 tournament. In this on-
line pool, the brackets are scored so that correct
guesses in later rounds earn the fan more points out
of the total 1920 points possible. The following
table shows results of using the various data matri-
ces and methods to predict March Madness Games.
The final column gives the percentile ranking for
the corresponding ESPN score. For example, the
EO Pavg method with ESPN score of 930 scored
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above 93.3% of the over 4 million brackets submit-
ted by fans.

Method ESPN Score Percentile
EO Pavg 930 93.3
EO Psum 930 93.3
EO Rankagg 910 92.9
BILP Rankagg 900 92.7
EO Diffavg 850 90.9
EO Davg 780 86.7
EO Diffsum 750 84.1
EO Dsum 740 83.2
BILP Pavg 710 80.1
BILP Dsum 700 78.9
BILP Diffsum 660 72.2
BILP Diffavg 650 69.9
BILP Davg 570 44.2
BILP Psum 480 15.8

Table 3: Table of March Madness Results

Let us note some observations from the table:

• Overall, the EO brackets did much better than
the BILP brackets. The 2009 - 2010 season
was filled with many upsets. This may provide
a reason why the local solutions of the EO bet-
ter predicted the tournament. However, this is
a very intriguing result that will need further
investigation.

• The P and Rankagg data matrices performed
the best.

• Almost all of the submissions were above the
50th percentile of all brackets submitted.

6. Conclusions

This paper presents two equivalent, but different
methods to solve the MVR problem. EO has a
simple structure and can handle large datasets, but
it gives a heuristic, often locally optimal value.
The binary integer linear program gives a global
optimum and can be converted to an LP which
helps with multiple optimal solutions and sensitiv-
ity analysis, but has a lot of constraints that signifi-
cantly affect the run time.

Our EO algorithm has become much more sophisti-
cated since we began this research; however, there

is more work that can be done. We need to up-
date our code using the definition of the C matrix
to count the number of violations to hillside form.
This should decrease the runtime. We can also do
analysis for each of the mating and mutating algo-
rithms to determine which lead to quicker conver-
gence. Finally, there is a lot of user choice involved
in initializing the algorithm. There are multiple
ways to do this using rankings from other meth-
ods or preprocessing the data itself. We believe
that the EO algorithm can become a competitive
method for ranking sports teams.
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Abstract 
 
In tennis the serve can be a most powerful weapon. However in badminton, the serve holds a much lower 
advantage in comparison to tennis, and for many players, yields a net disadvantage. Badminton’s most 
common service used is a short serve requiring accuracy, as opposed to a long serve requiring power. This is 
because badminton does not allow for the advantage of a second serve on fault of the first, someway 
explaining the conservative nature of serving, and low success probabilities. The short serve allows the 
receiver to gain the advantage, putting the server under pressure on the third shot. In this work, we develop a 
model to ascertain whether a player should be taking a high or low risk serve. Using Bayesian models, we 
hypothesize how a player’s performance could be optimized conditional on the state of the match in progress. 
Practical implications for players are discussed, given that the rules of badminton allow for coach intervention 
during a match in progress.  
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1. INTRODUCTION 
 
There are currently three racket sports played at the 
Olympic Games: tennis and table tennis (which have 
been played since 1988) and badminton (since 
1992). Tennis enjoys world wide popularity, whilst 
table tennis and badminton are predominately 
popular in Asia and Europe. Olympic Sports have 
the highest recognition amongst the vast number of 
competitive sports that now exist, and as a 
consequence Badminton Australia are interested in 
many areas of science (including mathematics) to 
potentially improve player performance in 
badminton.  
 
It has been shown in tennis (Barnett et al., 2008) that 
against certain opponents on specific surfaces, 
players could possibly increase their chances of 
winning a point by taking more risk on the second 
serve.  Pollard (2008) considered this problem and 
found that the range of risk in men’s singles tennis 
serves fall into a quadratic relationship rather than a 

linear one. Therefore it may not always be optimal 
to use a ‘hard’ first serve and a ‘soft’ second serve. 
Some players may benefit from taking risky first and 
second serves, while others may improve results by 
playing both serves safely. Unlike tennis, only one 
fault is allowed in badminton, and players generally 
rely on a low risk short serve, which requires 
accuracy, rather than a long serve that requires 
power (Edwards et al., 2005). Badminton players 
will generally perform better by constantly using a 
low risk serve, rather than a high risk serve. 
However, a common strategy amongst players is to 
occasionally use a high risk serve to catch the 
opponent off-guard and possibly force them in to 
making a poor return. This type of strategy has been 
analysed in tennis using a game theory approach, in 
which the expectations of the opponent are taken 
into consideration (Hannan, 1976). In this research 
we analyse the strategy of when to use an occasional 
high risk serve throughout a match in progress to 
potentially enhance player performance. The 
concept of importance (Morris, 1977) and Bayesian 
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models (Carlin and Louis, 2000) are used in this 
analysis. Given the rules of badminton allow for 
coaching intervention during play, this creates great 
opportunities for live data collection, computer 
analysis, and intervention which could greatly assist 
in improving player performance.    
 
 
2. THE GAME 
 
A badminton match is decided through the best-of-
three games. A game can be won only once the score 
reaches 21 points. If a player reaches 21 and is two 
points or more ahead, they win the game. If the 
score reaches 20-20, play continues until one player 
has obtained a two point lead and is the winner. If 
the score reaches 29-29, the winner of the next point 
wins the game. A toss of the coin allows a player to 
choose the end that they wish to play and whether to 
serve or receive. The player who wins the point 
takes serve and thus continues into the following 
game, with points capable of being won on either a 
players serve or return of serve. Badminton rules 
allow for only one service; if a fault is served, the 
point and service is immediately won by the 
opponent. 
 
 
3. MARKOV CHAIN MODEL 
 
Let us consider the possible outcomes of both the 

game (known as a set in tennis) and winning a 

match.  

 
3.1 Probability of winning a game  
 
Firstly, to the probability of winning a game. Let pA 
and pB represent the constant probabilities of player 
A and player B winning a point on serve. Let SA(a,b) 
and SB(a,b) represent the conditional probabilities of 
player A winning a game, conditional on the point 
score (a,b), for player A serving and player B 
serving respectively. These probabilities can be 
obtained recursively as follows: 

 
SA(a,b) = pASA(a+1,b) + (1- pA)SB(a,b+1)   
SB(a,b) = pBSB(a,b+1) + (1- pB)SA(a+1,b)   
The boundary values are:  
 
SA(a,b) = SB(a,b) = 1 if a=21 and b ≤19 or (a,b) = 
(22,20), (23,21), (24,22), (25,23), (26,24), (27,25), 
(28,26), (29,27), (30,28), (30,29)  

SA(a,b) = SB(a,b) = 0, if b=21 and a ≤19 or (a,b) = 
(20,22), (21,23), (22,24), (23,25), (24,26), (25,27), 
(26,28), (27,29), (28,30), (29,30)  
SA(29,29) = pA   
SB(29,29) = 1-pB  
 
3.2 Probability of winning a match  
 
Given the match of badminton is the best-of-three 
games, the outcomes are simple to ascertain. Let mA 
and mB represent the probabilities of player A 
winning a match when player A and player B are 
serving first in the match respectively. For notational 
simplicity, let SA(0,0)=sA and SB(0,0)=sB . Table 1 
exhibits the probabilities of player A winning a 
match for the different game outcomes for when 
player A and player B are serving first in the match.  
 
Game 
outcome   

Player A 
serving first 

Player B   
serving first 

WW sA sA sBsA 
WLW sA (1-sA)sB sB(1-sA)sB 
LWW (1-sA)sBsA (1- sB)sBsA 

   Table 1: Probabilities of player A winning a match 
for the different set outcomes 
 
It follows from the table that 

 
mA = sA

2 + 2sAsB – 2sA
2sB 

mB = sB
2 + 2sAsB – 2sAsB

2  
 
Table 2 exhibits the probabilities of player A 
winning a game and match for different values of pA 
and pB, and for both player A and player B serving 
first. It can be observed from the table that when pA 
and pB are greater than 0.5, it is an advantage to 
serve first in the match. Similarly, when pA and pB 
are less than 0.5, it is an advantage to receive first in 
the match.  
 
 
 
 
 
 
 
 
 
pA pB sA sB mA mB 
0.46 0.46 0.495 0.505 0.497 0.503 
0.48 0.46 0.549 0.556 0.577 0.581 
0.50 0.46 0.602 0.607 0.653 0.656 
0.52 0.46 0.653 0.655 0.723 0.725 
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0.48 0.48 0.497 0.503 0.499 0.501 
0.50 0.48 0.551 0.554 0.578 0.579 
0.52 0.48 0.604 0.604 0.654 0.654 
0.50 0.50 0.500 0.500 0.500 0.500 
0.52 0.50 0.554 0.551 0.579 0.578 
0.52 0.52 0.503 0.497 0.501 0.499 
Table 2: Probabilities of player A winning a game 
and match for different values of pA and pB, and for 
both player A and player B serving first. 
 
3.3 Mean number of points in a game  
 
Let EA(a,b) and EB(a,b) represent the mean number 
of points remaining in a game conditional on the 
point score (a,b) for player A and player B serving 
respectively. These probabilities can be obtained 
recursively as follows:  
 
EA(a,b) = 1+pA EA(a+1,b) + (1- pA) EB(a,b+1)   
EB(a,b) = 1+pB EB(a,b+1) + (1- pB) EA(a+1,b)   
 
The boundary values are:  
EA(a,b) = EB(a,b) = 0, if a=21 and b ≤19 or b=21 and 
a ≤19 or  (a,b) = (22,20), (23,21), (24,22), (25,23), 
(26,24), (27,25), (28,26), (29,27), (30,28), (20,22), 
(21,23), (22,24), (23,25), (24,26), (25,27), (26,28), 
(27,29), (28,30)  
EA(29,29) =  EB(29,29) = 1   
 
These derivations provide additional interest for 

both players and coaches during a match in progress. 
 
3.4 Importance of a point to winning a game  
 
Let IA(a,b) and IB(a,b) represent the importance of a 
point to winning a game when player A and player B 
are serving respectively.  IA(a,b) and IB(a,b)  are 
defined by Morris (1977) and can be obtained as 
follows:  
 
 IA(a,b) = IB(a,b) = SA(a+1,b) – SB(a,b+1) 
 
Note that IA(a,b) = IB(a,b) as a result of the rotation 
of serve in badminton. This result does not occur in 
a set of tennis since player’s alternate serve at the 
end of each game. It can be shown that IA(29,29) = 
IB(29,29) = 1 since the next point decides the winner 
of the game, and therefore represents the highest 
level of importance to winning the game.   
 
 

4. STRATEGIES 
 
We consider a series of strategies to employ whilst a 
match is in progress.  
 
4.1 Strategy 1 – game theory approach    
 
As stated in the introduction, badminton players will 
generally perform better by constantly using a low 
risk serve, rather than a high risk serve. However, a 
common strategy amongst players is to occasionally 
use a high risk serve to catch the opponent off-guard 
and possibly catch them in to making a poor return. 
 
Consider the following between player A (server) 
and player B (receiver)  
a - player A serves low risk and player B is 
expecting a low risk serve  
b - player A serves low risk and player B is 
expecting a high risk serve 
c - player A serves high risk and player B is 
expecting a low risk serve  
d - player A serves high risk and player B is 
expecting a high risk serve  
Based on the above it is reasonable to assign 
probabilities to the outcomes of a, b, c and d with the 
condition that d < a < c < b. An example is given in 
table 3 below in a game theory matrix. 
 
  Player B 
  expected   low 

risk serve 
expected high 
risk serve 

low risk 
serve 0.55 0.60 

P
la

ye
r 

A
  

high risk 
serve 0.57 0.45 

Table 3: Game theory matrix of how much risk to 
take on serve in badminton 
 
Solving this two-person zero-sum game with the 
Minimax theorem gives mixed strategies for player 
A of 0.706 low risk serve, 0.294 high risk serve and 
for player B of 0.882 expecting a low risk serve, 
0.118 expecting a high risk serve.  
 
Let piL represent the proportion of time that player i 
serves a low risk serve for the match and let piH 
represent the proportion of time that player i serves a 
high risk serve for the match. It follows that piL + piH 

=1, given they cover all scenarios. From the example 
above piL=0.706 and piH=0.294.      
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According to game theory analysis, this proportion 
of high risk serves should be randomized. Before the 
player serves, the coach could signal to the player 
what type of serve they should use, through a 
computer based selection. 
 
This form of game theory can also be applied to 
tennis. For example, even though a tennis player 
may perform better overall by serving high risk on 
the first and low risk on the second serve, rather than 
a high risk on both the first and second, a player may 
further improve their performance by serving a high 
risk second serve a proportion of the time as a 
‘surprise’ factor. Game theory analysis could 
determine the proportion of time that a player should 
serve out wide, down the line and into the body. 
Game theory analysis could also determine what 
proportion of the time that a player should be serve-
and-volleying.  
 
4.2 Strategy 2 – risk importance  
 
It is convenient to analyse tennis for devising risk 
strategies that depend on the level of importance, 
and then establish the connection to badminton.  
 
It has been established in tennis that the more 
important the point, the lower the probability that the 
server wins the point (Klaassen and Magnus, 2001). 
The model developed in Barnett et al. (2008) and 
Pollard et al. (2009), is used to determine if the 
server can increase their chances of winning a point 
by serving high risk on the second serve.  
 
The following definitions are given for each type of 
serve: 
A high risk serve is a typical first serve by each 
player 
A low risk serve is a typical second serve by each 
player  
 
Let:  
ahi = percentage of high risk serves in play for player 
i  
bhi = percentage of points won on high risk serves 
(conditional on them being ‘in’) for player i  
bli = percentage of points won on low risk serves 
(unconditional)  for player i  
chi = percentage of points won on return of high risk 
serves (conditional) for player i  
cli = percentage of points won on return of low risk 
serves (unconditional) for player i  

dhij = percentage of points won on high risk serves 
(conditional) for player i, for when player i meets 
player j  
dlij = percentage of points won on low risk serves 
(unconditional) for player i, for when player i meets 
player j  
cha=average percentage (all players) of points won 
on return of high risk serves (conditional)  
cla=average percentage (all players) of points won on 
return of low risk serves (unconditional)   
 
The following assumptions are given: ahi  < ali, bhi  > 
bli, chi  < cli, dhij > dlij , dhij = bhi - chj + cha and    
dlij = bli – clj + cla  
 
The following two serving strategies are defined:  
Strategy 1 – high risk serve followed by a high risk 
serve 
Strategy 2 – high risk serve followed by a low risk 
serve  
 
The percentage of points won on serve by player i 
by using each strategy is: 
Strategy 1 – ahi * dhij + (1- ahi) * ahi * dhij 
Strategy 2 – ahi * dhij + (1- ahi) * dlij  
Thus, player i should use Strategy 1 (two high risk 
serves) rather than Strategy 2 if 
ahi * dhij + (1- ahi) * ahi * dhij > ahi * dhij + (1- ahi) * dlij,  
and this inequality simplifies to ahi * dhij > dlij                                          
               
The following is developed to determine if the 
server can increase their chances of winning a point 
by serving high risk on the second serve, conditional 
on the “importance” of the point. We will assume 
that the server’s probability of winning a point on 
serve is affected only by serving low or high risk on 
the second serve.  
 
The percentage of points won on serve by player i 
by using a high risk first serve and a low risk second 
serve is given by: 
ahi * dhij + (1- ahi) * d^lij 

 

The superscript ^ is used as the server’s probability 
of winning a point on a low risk serve is now 
conditional on the “importance” of the point.   
From above, d^lij = b l̂i – clj + cla 

 

The following result follows from Klaassen and 
Magnus (2001), where it was established that a 
server’s probability of winning a point decreases 
with the more “important points”. Given two score 
lines in tennis x1 and x2, if the “importance” at score 
line x1 is greater than the “importance” at score line 
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x2, then b l̂i and consequently d^lij  is lesser at score 
line x1 than score line x2.  
 
Player i should use Strategy 1 (two high risk serves) 
rather than Strategy 2 if ahi * dhij > d l̂ij .           This is 
evidence to suggest that the server would be 
encouraged to take more risk on the more 
“important” points.   
 
Using the above information, we make the following 
suggestion as a strategy that could be used in men’s 
badminton: More high risk serves should occur on 
the more “important” points, and less often on the 
lesser “important” points.   
 
Let piL(a,b) be the proportion of time that player i 
serves a low risk serve at point score (a,b) and let 
piH(a,b) be the proportion of time that player i serves 
a high risk serve at point score (a,b). The following 
is discussed based on a game of tennis, to gain 
insight to obtaining values for piL(a,b) and piH(a,b). 
The average importance of a point to winning a 
game in tennis (IAV), as defined by Morris (1977), is 
given as IAV=N/L where N=dS(0,0)/dp, L = mean 
number of points in a game of tennis, S(0,0) 
represents the probability that the server will win the 
game at point score (0,0) and p represents the 
probability that the server wins a point. The 
following formula is intuitive 
piH(a,b)=[I(a,b)/IAV]piH. Note that a game of 
badminton requires two parameters and therefore a 
generalized expression for average importance is 
required. 
 

4.2 Strategy 3 – Bayesian  
 
The proportion of time that a player takes a high and 
low risk serve can be updated based on the initial 
proportions and what has occurred during the match 
using Bayesian analysis. Consider the binomial 
distribution, with Y the number of events in n 
independent trials, and µ the event probability. The 
sampling distribution is defined as P(Y = y | µ) = nCy  

θ
y(1-θ)n-y. The posterior distribution of µ given Y is 

calculated in Carlin and Louis (2000), and is 
Beta(a,b) with mean θ^ = M / (M+n) µ +n / (M+n) 
(Y/n), where M=a+b, µ = a/(a+b). Let ni represent 
the number of points served by player i, µi = piH(a,b), 
Y i/ni = the actual percentage of points won on a high 
risk serve by player i, and M = weighting parameter. 
Table 4 represents the updated proportion of time 

that player i should be using a high risk serve for 
different values of Yi/ni and M, given piH(a,b) = 0.2 
and ni =5. Due to the “small” sample size which 
occurs in the first game of the match, it would 
appear logical that more weighting should be given 
towards piH(a,b) initially, whereas towards the end of 
the match more weighting should be given to the 
actual values that occurred during the match. For 
this reason M=75 appears to be a more reasonable 
weighting parameter at the start of the match 
(compared with M=40), whereas M=40 could 
possibly be a more reasonable weighting parameter 
towards the end of the match. One method to 
overcome this problem is to let Mi represent the 
expected number of serves remaining in the match 
for player i, where Mi can be obtained from the 
Markov Chain model in section 3.  
 

 θ^ 
Y i/ni M=40 M=75 

0 0.18 0.19 
1/5 0.20 0.20 
2/5 0.22 0.21 
3/5 0.24 0.23 
4/5 0.27 0.24 
1 0.29 0.25 

Table 4: The updated proportion of time that player i 
should be using a high risk serve for different values 
of Yi/ni and M, given piH(a,b) = 0.2 and ni =5.  
 
 
5. CONCLUSIONS  
 
In this paper, we outline the simple method of 
evaluation of success probabilities recursively. From 
this, game and match success probabilities are 
evaluated, thereby assisting in the basic merits of 
differing types of serving strengths. From this, three 
levels of strategies have been identified in the paper 
as potential ways to increase player performance. 
Strategy 1 is a relatively simple game theory 
approach to determine when a player should use a 
high risk serve, with a clear element of surprise 
approach. Strategy 2 is an extension of Strategy 1. 
By identifying that more high risk serves should 
occur on the more “important” points and less often 
on the lesser “important” points, the adjustment 
allows for a more specific approach to success. 
Strategy 3 uses Bayesian analysis to update the 
initial estimates based on what has occurred during 
the match, and attempts to optimize in-the-run 
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performance based on current information. All of 
these strategies can be implemented in a live match, 
since the rules of badminton allow for coaching 
intervention during play, and thereby offer technical 
approaches to success not normally possible in other 
racquet sports.  
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Abstract 
 
In this work we look at the optimal criteria for taking a long (risky) serve in badminton. A simulation model is 
built and describes the process in determining when to execute a serve based upon point importance. 
Importance is the likelihood of winning a game given you succeed in the next point, against winning a game 
given you do not win the next point. By considering different types of player serve and return combinations, 
we explore the variations in game probabilities to ascertain the ideal time to execute a risky serve for each 
approach. 
Whilst many racquet sports are able to be dominated by players with the best serve, this is untrue for 
badminton, where the serve is not perceived as an advantage as in tennis, especially as badminton rules do not 
allow for a second serve in case of fault on the first. Badminton players opt for a ‘safe’ short serve over a 
‘risky’ long serve. In most cases, the need for the server to get the shuttle in play immediately results in the 
advantage of the receiver, and pressure for the server on the third shot. The rule developed in this paper 
identifies when ‘high risk’, or long serves, and ‘low risk’, or short serves, should be played during a match. 
Practical implications for this work are possible, given that the rules of badminton allow for coach intervention 
during a match in progress. 
 
Keywords: Badminton, serve, strategy, importance, simulation. 
 

 
1. INTRODUCTION 
Badminton is the world’s fastest racquet sport. With 
smashes in-play reaching over 300 km/h, it easily 
surpasses tennis’ fastest recorded shot (a serve) 
currently held by Andy Roddick, at 246 km/h. 
Badminton is both a popular recreational game and 
professional sport. Unlike tennis, badminton is 
especially strong in Asia. The Asian nations of 
China, South Korea, Indonesia and Malaysia 
dominate the Olympic medal count, and, at time of 
publishing, held 23 of 24 gold medals; 21 of 24 
silver medals and 25 of 28 bronze medals (69 of 76 
in total). Of the 63 nations to have competed for 
medals, only seven have medalled.  
Badminton competition comprises five forms; men’s 
and women’s singles, men’s and women’s doubles 
and mixed doubles. It is played on a rectangular 
court marked with both singles and doubles lines. A 
1.52 metre high net separates the players and a 
shuttle is hit back and forth between players with the 

aim of a player to make the shuttle fall to ground 
within the bounds of the opposition’s court. A 
badminton match is decided through the best-of-
three games. If a player reaches 21 and is two points 
or more ahead, they win the game. If the score 
reaches 20-20, play continues until one player has 
obtained a two point lead and is then declared the 
winner. If the score reaches 29-29, the winner of 
next point wins the game. A toss of the coin allows a 
player to choose the end that they wish to play and 
whether to serve or receive. The player who wins the 
point takes serve and thus continues into the 
following point, with points capable of being won on 
either a players serve or return of serve. Badminton 
rules allow for only one service; if a fault is served, 
the point and service is immediately awarded to the 
opponent.  
Two types of serve are utilised in badminton. These 
are the short serve and the long serve. Edwards, 
Lindsay and Waterhouse (2005) describe the short 
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serve as requiring “minimal strength and speed, in 
order to get the shuttle to ‘float over the net’ into the 
service box”, and the long serve as requiring “speed 
and strength, to be able to put the shuttle high and 
down the centre of the line and to fall vertically at 
the back of the court”. Unlike tennis, no faults are 
allowed in badminton, and the point is immediately 
lost. Players generally rely on a low risk short serve, 
as seen in Figure 1A, rather than a long serve as 
shown in Figure 1B.  

 
Figure 1A. ‘Safe’ Short serve trajectory 

 

 
Figure 1B. ‘Risky’ Long serve trajectories (1) used in 

doubles and (2) in singles. 
 
Current trends in men’s singles badminton players 
reveal that a long serve is used for only 5% of all 
serves, although in the women’s game it is used with 
greater frequency. These serves have different uses 
in matches. In singles, the long serve is used when 
the desire is to push your player into the back of the 
court. This will open up the court, however if that 
player is a strong attacker, this provides them with 
the opportunity to obtain an advantage. In doubles, 
this serve is used even less. The short serve is more 
commonly used at the highest level as players are 
typically strong attackers.  Badminton players will 
generally perform better by constantly using a low 
risk serve, and strategically using a high risk serve 
sparingly. The dilemma remains as to when to 
choose to execute a high risk serve. Pollard (2008) is 
one of many papers in tennis looking at service 
strategy.  
In this paper we utilise simultaneous simulation at 
fours levels of point importance by four different 

serve-return levels to determine the best time to 
execute a risky serve.  
 
2. METHOD 
In order to compare the success rate of different 
levels of importance, we first need to define the 
methods used to ascertain the probabilities of 
winning a game. This process was detailed in 
previous work Bedford, Barnett and Ladds (2010), 
and is covered here in brief.  

Let Ap and Bp  represent the constant probabilities 

of player A and player B winning a point on serve, 
and we assume that these probabilities are 
independent and identically distributed.  

Let ( )( )serveAbagamewinAPbaS A ∪= ,|),(  and 

( )( )serveBbagamewinAPbaSB ∪= ,|),(  represent 

the conditional probabilities of player A winning a 
game, conditional on the point score ),( ba , for 

player A serving and player B serving respectively. 
These probabilities can be obtained recursively 
using (1) and (2) as follows: 

)1,()1(),1(),( +−++= baSpbaSpbaS BAAAA
   (1) 

),1()1()1,(),( baSpbaSpbaS ABBBB +−++=    (2) 

The boundary values require definition, specific on 
the possible states of the match prior to game 
termination. The first boundary condition (game 
won by A)  is given by 

1),(),( == baSbaS BA
  (3) 

where 19),,21(),( ≤∈ yandyba  or  ( )yxba ,),( ∈    
such that ( ) ( ) 29,3023022 ===−∩<≤ yxoryxx  

The second boundary condition (game won by B) is 
given by 

0),(),( == baSbaS BA
     (4) 

where 19),21,(),( ≤∈ xwherexba  or     

( )yxba ,),( ∈      such that 

29,3023022 ===−∩<≤ xyorxyy . 

The third boundary state is given by 

AA pS =)29,29(    (5) 

The final boundary state is given by 

BB pS −= 1)29,29(   (6) 

Utilising equations (1) and (2) from (3) through (6), 
we can essentially fill-in the probability of winning a 
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game conditional on the current server and point 
score of the game at any point in the game. 
 

2.1 Importance 

It has been established in tennis that the more 
important the point, the lower the probability that the 
server wins the point (Klaassen and Magnus, 2001). 
It has also been shown that in tennis, at game and 
break point, men take extra risks on their serve and 
more important points occur at break points.  

Following on from the definition of importance in 
Morris (1977), an important point is determined by 

( ) ( ) ( )1,,1, +−+= baSbaSbaI BA   (7) 

Every combination of points has an importance 
associated with it, and typically the closer the game 
the greater the importance. 

 
Probability of winning on serve  
Probabilities of winning on serve, with the exception 
of top level players, are typically lower than when 
receiving. In this work, we assume the probability 
that player A will win on serve is also dependent on 
the probability that player B will win on return. 

For each point, we need to determine who is serving, 
and use a standardised probability set for when A is 
serving and B is receiving, or when B is serving and 
A is receiving. 

We used four scenarios in our approach. The 
following probabilities were used: 

 Scen. 1 Scen. 2 Scen. 3 Scen. 4 

 Sv Rt Sv Rt Sv Rt Sv Rt 

A 0.5 0.5 0.5 0.65 0.35 0.8 0.3 0.65 

B 0.5 0.5 0.45 0.7 0.45 0.65 0.6 0.8 

Table 1. Probabilities of winning on serve (Sv) and return 
(Rt) player A and B 

 

From Table 1, we note that scenario 1 is a balanced 
match, whereby there is no advantage in serving or 
receiving. This is not a true representation of a 
typical player’s performance, as most players are 
slightly better at one or the other. In Scenario 2, we 
have the strong return cases, with player A slightly 
better server than B, and the reverse in terms of 
receiving. Scenario 3 is the case with a weak serve 
but strong return for player A, and scenario 4 the 
dominant player B. 

From Table 1 we arrive at the following inputs for 
the simulation as detailed in Table 2. 

 Scen. 1 Scen. 2 Scen. 3 Scen. 4 

Ap  0.50 0.42 0.35 0.27 

Bp  0.50 0.41 0.36 0.48 

Table 2. Simulation inputs. 

 

Risk 
A risk here is defined as executing a long serve, also 
referred to as a high risk shot. We assume that it is 
only completed by player A, as this is the player, in 
practise, who will be coached to take a risk, based 
on this research. In our simulation, taking a risk 
increases a player’s probability of winning a point. 
In this case, a risk improvement of .45 is added 
when the player first plays a long serve. After this, 
the improvement reduces each time a long serve is 
played by .05, making the shot redundant after using 
it nine times.  

The increase of .45 typically guarantees that Player 
A will win their serve when playing a risky serve for 
the first time. The time to execute the risky serve is 
governed by the importance of the next point. 
However one must consider what that level of 
importance is before executing such a serve, hence 
our use of simulations. 

The values in this work are based on evidence 
collected by the Australian coach, however long 
term player-based analysis is critical to a successful 
implementation, and this work forms a basis for 
more detailed future modelling. 

 

Simulation 
We built the simulation in Excel using @Risk. For 
every single simulation run, we generate 

)1,0(~UX i  values for all states of the game (i.e. up 

to 59 possible points for 3 games, rarely all needed). 
If the seed generated for each point i is less than the 
probability of Player A winning that point (taking 
into account if a risky serve is taken) then player A 
wins. The simulator was specified so that a single 
value from Xi was used for both Risk and No Risk 
serves, thereby allowing the best possible direct 
comparison for every point. So we set up a 
simultaneous simulation to attempt to best determine 
the net effect. Nonetheless, once a risky serve is 
taken, the result of the match is more than likely to 



30 Using Importance to Determine a Service Strategy in Badminton 

  

change in some way that negates this approach. For 
example, if the first game is at 17-18, and we 
execute a risk, the outcome may change to a win for 
player A so that the score becomes 18-18. However 
the no risk simulation may yield a 17-19 score. 
Thereon in the match is not perfectly matched, as we 
do not then simulate the remaining no risk versus 
risk from 18 – 18. Furthermore, there is no 
conditionality on the success of risks. That is, a 
coach would be reluctant to continually encourage a 
player to execute more risk serves if they all fail!  

A screen shot of the summary window is given in 
Figure 2. This illustrates the outcome of one 
iteration of a simulation. In this example, the no risk 
match (our pseudo-control) yielded a loss to Player 
A in three games, whereas in the risk match (where a 
risk was taken when I > 0.25) the match was won. In 
this match, the final game was won with the 
execution of two risky serves. 

In this work, we look at setting up the problem and 
exploring some solutions, and leave the overall 
general solution for further work. 

The Importance values used are as follows: 

Simulation 1 2 3 4 

Κ 0.1 0.25 0.4 1 

Table 3. Simulations using I(a,b)>K to determine Risky 
serve execution for Player A 

 

In this work, we ran 16 simulations of 10,000 
simultaneous matches (risk v no-risk). Simulation 1 
is a low importance trigger level of 0.1; this can be 
viewed as executing a serve very early in a game in 
order to save a match before it gets away. 
Simulation 3 might be used if only a match is dire.  

 
 

 

 

 

 

 

 

 

 

 

 

One could argue that simulation 3 could be a 
suitable criterion for good players against poor 
opponents; and simulation 2 for a more conservative 
player. Simulation 4 was our testing value as 
Importance can never exceed 1.   

As a summary, the method is as follows: 

At (0,0), R = 0.45. 

For all (a,b) 

If I(a,b)> K then pA,win = max(pA, pA + R); and R=R-
0.05 else pA,win = pA 

If pA,win < Xi then player A wins point else B wins. 

Figure 2 provides a case where two risks are taken in 
the final game to win the match. 

All simulations were conducted 10,000 times for 
each of the four levels of K. Simulation 4, where K = 
1, was used to validate the accuracy of the no risk 
case. That is, the results were compared to the 
theoretical values of winning the match (see Bedford 
et. al.(2010) for these calculations). 

There are six possible outcomes for each paired 
match simulated in terms of player A. We define the 
possible outcome of a match within a simulation as 
follows: 

Let ( )R
i

NR
i mm ,  describe the outcome of match i, 

where i = 1,..,10000;  and NR = no risks taken and R 
= opportunity to take a risk when I >K.  

So from this we have the following possible 
outcomes: 

{ }
{ }.|,|,|,|

,

NRLossRLossNRWinRWinm

andLossWinm
R
i

NR
i

∈

∈
 

 
The matching of these events is of interest, and we 
can obtain the following six feasible pairings: 

 

 

 

 

 

 

 

 

 

 

 

Risk Short Serve Return Risk 0.45
A-serve B-serve A-return B-return Risk reduction 0.05

0.5 0.5 0.5 0.5
Serve Simulator P(A) 0.5 P(B) 0.5 Risk Criteria 0.25

Result Player A Player B A-B Sets Won
No Risk Set 1 18 21 -3 0

Set 2 21 17 4 1
Set 3 20 22 -2 0

2
Result Player A Player B Risks

Risk Set 1 18 21 -3 0 0
Set 2 21 17 4 0 1
Set 3 21 18 3 2 1

Figure 2: Simulation 2 screenshot of an iteration for K = 0.25, Scenario 1 
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P1. ( ) =RLossLoss |, Risk but no change Loss 

P2. ( ) =RWinWin |, Risk but no change Win 

P3. ( ) =RWinLoss |, Risk changes Loss to Win 

P4. ( ) =RLossWin |, Risk changes Win to Loss 

P5. ( ) =NRLossLoss |,  Loss 

P6. ( ) =NRWinWin |,  Win 

The comparisons of interest are those between the 
first four pairings and the final two. The proportional 
sum of all Win and Loss states used in each 
simulation should converge to the stationery 
probabilities obtained utilising (1) – (6), and for all 
outcomes when K =1.  

 

3. RESULTS 
We first consider the outcomes of the matches for 
Scenario 1, when the players are equal in quality. In 
the following tables, Win = P2 + P3 + P6, and Loss 
= P1 + P2 + P5. 
 
3.1 Scenario 1 
As seen in Table 4, great improvement is yielded 
(against K = 1) when K = 0.25 and 0.4, with smaller 
improvement for K = 0.1. 

    K  
Outcome 1 0.4 0.25 0.1 

Win 0.500 0.624 0.623 0.565 

Loss 0.500 0.376 0.377 0.435 

     

Table 4. Probability of win/loss by Simulation for 
Scenario 1 

 
Within these simulations, we exhibit the proportion 
of outcomes by the six pairings graphically. We only 
display the 0.25 and 0.4 graphs, as 0.1 yielded a 
large amount of undesirable outcomes. Firstly, every 
match saw the execution of a risky serve, which still 
improved the outcomes of player A winning, 
however yielded a large number of P4 (1,670 of 
10,000). A basic analysis of the costs for levels of K 
is given in Table 5. We first define the following 
statistics: 
Let RiskCost = P4/(P4+P1), so the proportion of 
Losing matches when a risk was taken paired to a 
match where a win resulted without risk / all 
matches where a loss occurred when a risk was 
taken; RiskBenefit = P3/(P3 + P2), the proportion of 
Winning matches when a risk was taken paired to a 

match where a loss resulted without risk/ all matches 
where a win occurred when a risk was taken; and 
Ratio = RiskBenfit / RiskCost.  
 
We obtain the following: 

    K  
Outcome 1 0.4 0.25 0.1 

RiskCost 0 0.090 0.149 0.384 

RiskBenefit 0 0.232 0.269 0.417 

Ratio - 2.588 1.802 1.085 

Table 5. Costs by Simulation for Scenario 1 
 
So in Table 5, K=0.4 yields the best result, with a 
lower RiskCost than K=0.25 and overall higher 
ratio. Looking at Figures 3A and 3B we note that 
when number of risks = 0, the risk changes lines are 
0 as they cannot occur, and No Change L and No 
Change W denote the proportion of P5 and P6. 
From table 4 we note that player A is able to 
increase their chances of winning by taking risks. 
Figures 3.1A – 3.1B display the proportion of not 
only the No Change (P1 + P5 and P2 + P6) but Risk 
Changes L to W (P3) and Risk Changes W to L (P4) 
for scenario 1 with K = .25 

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5 6 7 8 9
Number of risks

P
ro

b
ab

ili
ty

Risk Changes L to W Risk Changes W to L
No Change L No Change W

 
Figure 3.1A. Probability of winning given number of risks 

taken for Scenario 1, K = .25 

 
Some similarity is seen in figures 3.1A and 3.1B in 
terms of the Changes lines. 
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Figure 3.1B. Probability of winning given number of risks 

taken for Scenario 1, K = .4 
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The notable similarity is between the Changes lines, 
with matches requiring a high number of risks 
yielding a higher proportion of changed results to 
the paired match. In a balanced match, the use of 
K=0.4 appears the optimal result.  
 

3.2 Scenario 2 

In Scenario 2, Player A has a slight advantage over 
player B. 

As seen in Table 6, player A has a nice advantage 
without utilising any risks. This does improve 
substantially when any risk is taken, with again great 
improvement when K = 0.25 and 0.4, with smaller 
improvement for K = 0.1. 

    K  
Outcome 1 0.4 0.25 0.1 

Win 0.539 0.644 0.655 0.602 

Loss 0.461 0.356 0.345 0.398 

     

Table 6. Probability of win/loss by Simulation for 
Scenario 2 

In terms of the specifics of the benefits, we exhibit 
table 7. 

    K  
Outcome 1 0.4 0.25 0.1 

RiskCost 0 0.072 0.151 0.345 

RiskBenefit 0 0.243 0.285 0.351 

Ratio - 3.389 1.884 1.016 

Table 7. Costs by Simulation for Scenario 2 
 

Notably, K = 0.4 returns the highest ratio by some 
margin. A look at the specifics for K = 0.25 and 0.4 
are detailed in Figures 3.2A and 3.2B. 

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5 6 7 8 9

Number of risks

P
ro

b
ab

ili
ty

Risk changes L to W Risk Changes W to L
No Change L No Change W

 
Figure 3.2A. Probability of winning given number of risks 

taken for Scenario 2, K = .25 
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Figure 3.2B. Probability of winning given number of risks 

taken for Scenario 2, K = .4 

 

Similarly to Figures 3.1, we see K =  .4 yield the 
higher Change to win. The peak occurs around six 
risks. 

 

3.3 Scenario 3 

Beginning with a Player A disadvantage, it is 
interesting to see that by using risk greatly enhances 
a players chances.  

As seen in Table 8, taking a large number of risks 
improves the chances of player A dramatically.  

    K  
Outcome 1 0.4 0.25 0.1 

Win 0.469 0.602 0.604 0.549 

Loss 0.531 0.398 0.396 0.451 

     

Table 8. Probability of win/loss by Simulation for 
Scenario 3 

 

In terms of the specifics of the benefits, we exhibit 
table 9. 

    K  
Outcome 1 0.4 0.25 0.1 

RiskCost 0 0.070 0.175 0.305 

RiskBenefit 0 0.272 0.335 0.404 

Ratio - 3.898 1.916 1.324 

Table 9. Costs by Simulation for Scenario 3. 

 

The largest ratio yet is shown in Table 9 (3.898). 
Notably the risk cost is near the same as in Scenario 
2, with slightly higher benefit. We provide the 
detailed plots in figure 3.3A and 3.3B. 
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Figure 3.3A. Probability of winning given number of risks 

taken for simulation 3, K = .25 
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Figure 3.3B. Probability of winning given number of risks 

taken for simulation 3, K = .4 

 

Once again, we see in figure 3.3A and 3.3B that K = 
.4 delivers better results, with the exception of nine 
risks. Overall is performs much better than K=.25. 

We now look at the final scenario. 

 

3.4 Scenario 4 

This scenario is of great interest as player A has a 
major disadvantage.  

As seen in Table 10, taking any risk improves the 
chances of player A. This result is not unexpected as 
the chances of  

    K  
Outcome 1 0.4 0.25 0.1 

Win 0.039 0.162 0.145 0.081 

Loss 0.961 0.838 0.855 0.919 

     

Table 10. Probability of win/loss by Simulation for 
Scenario 4 

 

In terms of the specifics of the benefits, we exhibit 
table 11. 

    K  
Outcome 1 0.4 0.25 0.1 

RiskCost 0 0.004 0.014 0.008 

RiskBenefit 0 0.320 0.518 0.531 

Ratio - 79.937 37.472 63.742 

Table 11. Costs by Simulation for Scenario 4. 

 

The ratios in Table 11 are very large. This is 
expected given the very low likelihood of winning. 

We provide the detailed plots in Figure 3.4A and 
3.4B. 
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Figure 3.4A. Probability of winning given number of risks 

taken for Scenario 4, K = .25 
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Figure 3.4B. Probability of winning given number of risks 

taken for Scenario 4, K = .4 

 
3.5 Comparison 
The level of the trigger for a long serve, K, was 
checked at several levels as detailed in Tables 3-10. 
Each of these levels determined when Player A 
would take a risk for all scenarios. Given the 0.25 
and 0.4 values clearly the two optimal values, we 
plot the number of risks by each of these triggers for 
Scenario 1. 
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Figure 4. Winning probabilities for number of risks for 

scenario 1 by K = .25 and .4. 

 

We note that the results for .4 are at or higher than 
.25 for player A, with the exception of 1 risk. 

 

4. DISCUSSION 
By considering four scenarios for four levels of K, 
we identified that .4 has the most consistent results 
to be deemed the better criteria for risky serve 
execution. However, this finding is clearly restricted.  

The implementation of this trial involves three 
values of a trigger for long serve based on 
importance; and a check value. Ideally we would 
need to optimise this value given the results.  

So, we have not varied K; we have simply selected 
values to hone in on a local maximum.  

Further work is needed to vary K for differing values 
of pA and pB. These probabilities are assumed 
independent identically distributed, which, in all 
likelihood, may not turn out to be true, especially in 
light of the work of Klaassen and Magnus (2001). 
We believe the use of a fixed probability is a good 
proof concept; however a Bayesian approach seems 
the appropriate step forward.  

Also, the premise of this model is to execute a high 
risk serve when points are important – what is to say 
that unimportance could also be used? That is, we 
could fit a simulation to improve winning based on 
risky serves taken on an unimportant point 
threshold.  

 

 

 

 

 

 

 

5. CONCLUSION 
In this research, we demonstrated components of our 
simulation model that calculates the likelihood of 
winning a badminton game based on importance 
levels. In further work, we aim to compare this 
method to a simpler both points behind model. This 
simply involves counting to see if a player falls x 
points behind before executing a risky serve. It is 
simpler to use points behind given there is no need 
for technology, although we presume this would 
result in taking a large number of risks earlier in a 
match.  

Nonetheless, we hope to trial this model with some 
of the athletes, in conjunction with Badminton 
Australia, to determine the on-court practicalities of 
such an idea. 
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Abstract 
 

In almost all modelling of sports such as tennis, squash, badminton, volleyball, …, it is assumed that point 
probabilities are constant, and points are independent. Mathematics has been applied to find such things as the 
mean and variance of the number of points in the match, the probability that each player wins the match, and 
other characteristics. Indeed, Miles (1984) developed a very elegant theory of the relative efficiency of 
different scoring systems at correctly identifying the better player, assuming that points were independent.  
However, there is some evidence that in tennis for example this assumption may not be strictly true (Klaassen 
& Magnus, 2001; Pollard, Cross & Meyer, 2006). In squash when the ‘server only scores’ rule was used, it 
was generally accepted that the better of two players would often ‘lift his/her p-value’ when he/she had lost the 
previous point. The major objective of this research was to investigate whether Miles’ work on the efficiency 
of scoring systems could possibly be extended to the more general situation in which points are dependent in 
some manner. Thus, the focus in this paper is on the efficiency of scoring systems with one-step dependent 
points. 

Keywords: Correlated points, 1-step dependent points, importance of a point, play-the-loser, play-the-
winner.

 
 
1. INTRODUCTION 
 
In almost all mathematical modelling of sports 
scoring systems for various sports, it is assumed that 
point probabilities are constant, and points are 
independent. For example, Pollard (1983), using a 
methodology applicable to many sports, found the 
mean and variance of the number of points in a best-
of-three (advantage or tiebreak) sets match of tennis, 
and evaluated the probability that each player wins. 
Miles (1984) developed a very elegant theory of the 
relative efficiency of different scoring systems, 
assuming points were independent. 
There is some evidence that points in tennis are not 
strictly independent (Klaassen & Magnus, 2001; 
Pollard, Cross & Meyer, 2006). It would appear 
however that the evidence in tennis is probably not 
strong enough to seriously question the general 
conclusions reached when using the independence 
assumptions. When the ‘server only scores’ rule was 
used in squash, it was generally accepted that the 

better of two players ‘lifted’ his/her p-value when 
receiving (i.e. having lost the previous point and was 
at risk of losing a point, rather than just the right to 
serve). 
Whilst in some particular sports most players may 
not have the capacity to play in a non-independent 
manner, it may be that some players do have that 
capacity (Pollard, 2004). Further, a scoring system 
may be used for (say) two sports, and independence 
may be a reasonable assumption for one sport but 
not for the other one. For these reasons the analysis 
in this paper is of a general nature, and considers 
families of scoring systems. 
Miles (1984) considered the efficiencies of scoring 
systems when points were independent. For ‘win-by-
n’ (Wn) scoring systems in which player A has a 
constant probability p of winning every point 
(unipoints), it can be shown that the probability 
player A wins, P, and Q (= 1 - P) and µ satisfy the 
equations 

nqpQP /)(/)( −=− µ  
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nqpQP )/()/( =  
where q = 1-p. Also, Wn has the constant probability 
ratio (cpr) property (Pollard, 1992). That is, the ratio 
of the probability that player A wins in n + 2m 
points divided by the probability that he loses in n + 
2m points (m = 0, 1, 2, …) is constant, and is equal 
to P/Q. Using Wn (points) as the family of scoring 
systems with unit efficiency, Miles (1984) showed 
that the efficiency of a general ‘unipoints’ scoring 
system with key characteristics P and µ was 

)/ln()(
)/ln()(

qpqp

QPQP

−
−=

µ
ρ

                                     (1) 
Thus, ignoring the factors involving p (and q), ((P-
Q)/µ)*ln(P/Q) is the measure of relative efficiency 
for a unipoints scoring system given underlying 
independent points. 
Miles (1984) also considered systems relevant to 
tennis (and volleyball), which he called ‘bipoints’ 
scoring systems. He assumed that the probability 
player A (B) wins a point on service is pa (pb), and 
points are independent. Noting the work of Wald 
(1947) and using Wn (point-pairs) as the standard 
family of scoring systems with unit efficiency, he 
showed that the efficiency of a general bipoints 
scoring system with key characteristics P and µ was 
given by 

)/ln()(
)/ln()(2

abbaba qpqppp

QPQP

−
−=

µ
ρ                      (2) 

where qa = 1 - pa and qb = 1 - pb. Thus, the measure 
of relative efficiency is also ((P-Q)/µ)*ln(P/Q) for a 
bipoints system with underlying independent points. 
Pollard and Pollard (2008) showed that this is also 
the measure of relative efficiency for independent 
quad-points (tennis doubles). 
The major objective of this research was to consider 
extending this efficiency measure for unipoints and 
bipoints to the more general situation in which 
points are one-step dependent. 
 
 
2. METHODS 
 
Unipoints with dependencies, and the Wn system 
Under unipoints with dependencies, player A’s 
probability of winning a point is equal to pw = p + ε 
after winning the previous point, and is equal to pl = 
p – ε after losing the previous point. Here ε is the 
incremental (decremental) effect on player A’s 

probability of winning a point by having won (lost) 
the previous point. 
Example 1. Consider the W2 scoring system, which 
is the system used in a game of tennis once ‘deuce’ 
has been reached. With two equal players and ε = 
0.1, the initial point probability is p = 0.5, and 
thereafter it is either pw = 0.6 after a point has been 
won by player A, or it is pl = 0.4 after a point has 
been lost by player A. This is a case of ‘positive’ 
dependency from one point to the next (ε > 0). There 
are 5 possible ‘live’ states for this scoring system 
(the starting state, +1win, -1loss, 0win and 0loss 
using an obvious notation with the win or loss 
referring to the previous point outcome for player 
A). The importance of a point (Morris, 1977) is 
defined as the probability that player A wins under 
the scoring system given he wins that point minus 
the probability that he wins given he loses that point. 
Using recurrence methods, it turns out that the 
importance of each of the above five states, I, is 
equal to 1/(2(1 - ε)) which equals 5/9 when ε = 0.1 
(and p = 0.5). Correspondingly, when ε = 0.1 (and p 
= 0.5), the importance of every point in W3 is 5/13, 
and the importance of every point in W4 is 5/17,…. 
In general, for this ‘unipoints with 1-step 
dependency’ structure, the importances of every 
state in Wn are equal when p = 0.5. 
A fundamental equation for scoring systems 
Suppose Ii is the importance of the ith non-absorbing 
state within a scoring system when the players are 
equal. Now suppose there is a shift (from the ‘equal-
players’ situation) in favour of player A of δ in the 
‘p-value’ for every point. Then, after this shift, P, µ, 
the expected number of times state i is visited in one 
realization of the scoring system, ni , and, the 
proportion of time spent in state i, πi, satisfy  

∑+=
i ii InP δ5.0

 
δπµ iii

IQP ∑=− 2/)(
 

for a fair scoring system, where a fair scoring system 
has the property that P = 0.5 for two equal players. 
Also, if every point in the scoring system is equally 
important when the players are equal, we have 

δIQP 2µ/)( =−  
a useful equation (Pollard, 1992). 
The ‘module’ method for Wn systems (n large) 
Some complex Wn systems can be decomposed into 
smaller independent components called ‘modules’, 
which can in turn be analysed to produce values 
from which the asymptotic values of P, µ and ρ can 
be derived (Pollard, 1990). This method is useful 
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when analysing scoring systems with outcome 
dependent probabilities. 
Within a Wn system, these modules are steps in a 
general one-dimensional walk in discrete time. 
Using the approach and notation of Cox and Miller 
(1965, p. 46-58), the steps in the random walk, Zi , 
are mutually independent random variables on the 
integers …, -2, -1, 0, 1, 2,… and the moment 
generating function (mgf) of Zi is defined by 

 
 
 
 

If P(Q) represents the probability of absorption in 
states [a, infinity) ((-infinity, -b]), then, neglecting 
any excess over the barriers, 

)1)/(exp())exp(1(/ 00 −−−= abQP θθ
 

when E(Zi) ≠ 0, where θ0 is the non-zero solution of 
the equation f*(θ) = 1. For the Wn scoring system, 
we set a and b equal to n. Using this module 
approach, the efficiency of scoring system 1, SS1 
relative to SS2 is given by the ratio 

))(/)(/())(/)(( 22021101 DESEDESE θθ
         (3) 

where E(S) is the expected shift (in points) in favour 
of player A in the playing of one module, and E(D) 
is the expected number of points played in one 
module (Pollard, 1990). Note that the expression 
((P-Q)/µ)*ln(P/Q) converges to (θ0E(S))/E(D) as n 
tends to infinity. 
The efficiency of unipoints (with dependencies) 
scoring systems 
We firstly set up a family of scoring systems against 
which the efficiency of any unipoints (with 
dependencies) general scoring system can be 
measured. Noting that the first point with probability 
p occurs only once, and that the remainder of the 
time player A’s probability of winning a point is 
either pw or pl, we can consider the scoring system 
family W1(Wn

pw, Wn
pl), where the superscript refers 

to player A’s probability of winning the first point in 
that section of the scoring system. We consider this 
system not only because it is a natural system 
against which to compare others, but also because it 
has the cpr property, and this allows a general 
formula for efficiency to be constructed. This system 
has the key characteristics 

)/()(/ 1212
w

n
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n
w qqppQP −−=
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Noting that the efficiency of the scoring system SS1 
with key characteristics P1 and µ1 relative to the 

scoring system SS2 with key characteristics P2 and 
µ2 is given by µ2 / µ1 when P1 = P2, we have 

)/ln(/))/ln()/(ln(12 lwwl qpqpQPn −=−
)/()(2)(/)(( lwlw qpFpqQP −++−= µρ  

(where 1
)/ln(

)/ln()/ln( −−=
lw

wl

qp

qpQP
F )          (4) 

where ρ is an expression for the efficiency of a 
general unipoints (with dependencies) scoring 
system with key characteristics P and µ. Note firstly 
that this expression reduces to the above expression 
for the efficiency of unipoints systems (without 
dependencies) when pw = pl = p. Secondly, for large 
n, (P - Q) tends to unity and µ and ln(P/Q) are large, 
and ρ tends to ((P – Q)/µ)*ln(P/Q) multiplied by a 
function of the parameters pw and pl. Thus, when 
comparing the efficiencies of two unipoints (with 
dependencies) scoring systems with large means, we 
simply need to compare their values of ((P – 
Q)/µ)*ln(P/Q) or their values of (θ0E(S))/E(D). 
Example 2. Consider W2 with ε = 0.1. For two 
unequal players with p = 0.6, pw = 0.7, and pl = 0.5, 
recurrence relations can be used to show that player 
A’s probability of winning is equal to P = 91/134 
and the mean duration is equal to µ = 216/67 
=3.2239 points. Recalling from Example 1 that the 
importances I of all the points/states were 5/9 when 
ε = 0.1, it can be seen that (P - Q)/ µ = (p - q)*I = 
1/9. Also, ρ = 0.9821 (a little less than unity as the 
first point is a p point rather than a pw or pl point), 
and ((P-Q)/µ)*ln(P/Q) = 0.0833. (When p = pw = pl 
= 0.6 (no dependency), ((P-Q)/µ)*ln(P/Q) = 0.0811, 
and ρ = 1.) 
Example 3. Consider the scoring system W3 with 
unequal players (and p = 0.6, pw = 0.7, and pl = 0.5). 
Recurrence relations or absorbing Markov chain 
methods can be used to show that player A’s 
probability of winning is equal to P = 0.7482 and the 
mean duration is equal to µ = 6.4530 points. 
Recalling from Example 1 that the importances were 
equal to 5/13 when ε = 0.1, it can be seen that (P - 
Q)/ µ = 0.0769 = 1/13 = (p - q)*I. Also, ρ = 0.9903 
and ((P-Q)/µ)*ln(P/Q) = 0.0838, both being slightly 
greater than their values in Example 2. It follows 
that W3 is slightly more efficient than W2. In fact, it 
can be shown that ρ and ((P-Q)/µ)*ln(P/Q) both 
increase as the n in Wn increases. This is related to 
the fact that the proportion of the time spent in the 
initial state gets smaller as n increases. (When p = pw 
= pl = 0.6 (no dependency) ((P-Q)/µ)*ln(P/Q) = 
0.0811, and ρ = 1, as above.) 

)()exp()(* jZPjf i
j

=−= ∑
∞
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Example 4. For the scoring system Wn (with n 
large), consider the module beginning with a pw 
point and finishing when the next pw point is about 
to be played. This has a ‘geometric’ structure, and 
E(D) = pw + (qw(1 - pl

2))/(plql) which equals 1.6 
when pw = 0.7 and pl = 0.5. Further, E(S) = pw - 
(qwql)/pl = 0.4, and so E(S))/E(D) = 1/4. The mgf of 
this module is equal to pw*Exp(-θ) + (qwpl)/(1 - 
ql*Exp(θ)), which when equated to unity gives θ0 = 
ln(pw/ql) = 0.3365. It follows that (θ0*E(S))/E(D) 
[the asymptotic version of ((P-Q)/µ)*ln(P/Q)] is 
equal to 0.0841, and this is slightly bigger than the 
values in Examples 2 and 3, as expected. The 
efficiency ρ is obviously equal to unity. 
Example 5. Consider Wn (with n large) for the case 
in which the outcome dependency is negative (ε = -
0.1, p = 0.6, pw = 0.5, and pl = 0.7). Here E(S)/E(D) 
= 1/6 (smaller than above), whilst θ0 = ln(pw/ql) = 
ln(0.5/0.3) = 0.5108 (larger than above). The 
efficiency ρ is obviously unity and (θ0*E(S))/E(D) = 
0.0851, which is larger than its value in Example 4. 
An interpretation of this slightly higher value 
(0.0851 Vs 0.0841) is, per point played, the negative 
dependency situation is slightly more effective than 
the positive dependency one at identifying the better 
player. When there is no outcome dependency and 
pw = pl = 0.6, (θ0*E(S))/E(D) = 0.0811, which is less 
than both of the above cases. Thus, for the Wn 
system, both the positive and negative dependency 
cases are, per point played, slightly more effective at 
identifying the better player than is the independence 
case. That is, the underlying ‘structural variation’ or 
dependency that has been considered in our model 
actually increases the probability that the better 
player wins (per point played). 
Unipoints with dependencies, and the B2n-1 system 
Table 1 gives the probability that player A wins, the 
unconditional and conditional means and variances 

of duration, and the efficiency of the scoring system 
B2n-1. Several things are observable, including 
(i) P increases as the dependency (either positive or 
negative) increases 
(ii) as expected, µ decreases as the dependency 
becomes more positive, and it increases as the 
dependency becomes more negative 
(iii) for B 5, the variance increases as the dependency 
becomes more positive, and it decreases as the 
dependency becomes more negative 
(iv) Exp = (P-Q)/µ)*ln(P/Q) and ρ increase as the 
dependency becomes more positive, as in the Wn 
system (see examples 2, 3 and 4) 
(v) Exp = (P-Q)/µ)*ln(P/Q) and ρ decrease as the 
dependency becomes more negative, unlike in the 
Wn system. 
We note that if the family of scoring systems against 
which the efficiency of unipoints (with 
dependencies) is measured was Wn(W2

pw, W2
pl), 

then the efficiency ρ' is ((P-Q)/µ)*ln(P/Q) times a 
function of pw and pl. Thus, given two scoring 
systems SS1 and SS2, and (pw, pl), it is clear that 
ρ(SS1) < ρ(SS2) if and only if (P1 - Q1)/µ1)*ln(P1/Q1) 
< (P2 - Q2)/µ2)*ln(P2/Q2). 
Efficiency of bipoints (with dependencies) 
Suppose player A’s probability of winning a point 
when serving is equal to pa+ = pa + ε after winning 
the previous point on service and pa- = pa – ε after 
losing the previous point on service, and player B’s 
probability of winning a point when serving is equal 
to pb+ = pb + ε after winning the previous point on 
service and is equal to pb- = pb – ε after losing the 
previous point on service.  
We firstly set up a scoring system against which the 
efficiency of any bipoints with dependencies general 
scoring system can be measured. Noting that the first 
a point and the first b point occur only once each, 
and the remainder of the time player A’s probability 

 
SS P, pw, pl P µw σw

2 µl σl
2 µ σ

2 Exp Eff, ρ 
B3 0.6, 0.6, 0.6 0.648 2.4444 0.2469 2.5454 0.2479 2.48 0.2496 0.0728 0.8982 
B3 0.6, 0.61, 0.59 0.6480 2.4352 0.2458 2.5341 0.2488 2.47 0.2491 0.0732 0.9015 
B3 0.6, 0.7, 0.5 0.65 2.3538 0.2286 2.4286 0.2449 2.38 0.2356 0.0780 0.9185 
B3 0.6, 0.59, 0.61 0.6480 2.4537 0.2479 2.5568 0.2468 2.49 0.2499 0.0726 0.8946 
B3 0.6, 0.5, 0.7 0.65 2.5386 0.2485 2.6571 0.2253 2.58 0.2436 0.0720 0.8510 
B5 0.6, 0.6, 0.6 0.6826 3.9873 0.6201 4.2339 0.5824 4.0656 0.6213 0.0688 0.8478 
B5 0.6, 0.61, 0.59 0.6826 3.9704 0.6237 4.2146 0.5922 4.0479 0.6266 0.0691 0.8514 
B5 0.6, 0.7, 0.5 0.6855 3.8155 0.6392 4.0302 0.6652 3.883 0.6573 0.0744 0.8781 
B5 0.6, 0.59, 0.61 0.6826 4.0042 0.6161 4.2529 0.5723 4.0831 0.6156 0.0685 0.8441 
B5 0.6, 0.5, 0.7 0.6855 4.1539 0.5679 4.4181 0.4722 4.237 0.5528 0.0682 0.8055 

Table 1: Some characteristics of the B3 and B5 systems with dependent points 
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of winning an a point is either pa+ or pa-, and player 
B’s probability of winning a b point is either pb+ or  
pb-, we can consider the scoring system 
Wn(W1(W2

a+, W2
a-), W1(W2

b+, W2
b-)), (n = 1, 2, 3, 

…). We consider this system (even though it is not a 
particularly efficient one) as the basis against which 
to compare various other systems because this 
system has the cpr property and this allows a general 
formula for efficiency to be evaluated. This scoring 
system consists of two main components. The first 
has only a+ and a- points and has the cpr property. It 
can be seen that 

)/()(/ 33
11 +−−+= aaaa qqppQP , and 

)/())(1)((2 111 −+−+ −++−= aaaa qppqQPµ  

where P1 is player A’s probability of winning this 
first component, and Q1 = 1 - P1. The second 
component has only b+ and b- points, has the cpr 
property, and has corresponding equations 

)/()(/ 33
22 bwblblbw qqppQP =

 
)/())(1)((2 222 blbwblbw qppqQP −++−=µ

 
where, reversing the roles of P and Q, P2 is player 
B’s probability of winning the second component 
and Q2 = 1 - P2. The probability player A wins under 
the full scoring system when n = 1, P1,2 , is equal to 
(P1Q2)/(P1Q2 + Q1P2), and the expected duration µ1,2 
is equal to (µ1 + µ2)/(1-R1,2) where R1,2 is the 
probability each player wins exactly one of the two 
components, i.e. R1,2 = P1P2 + Q1Q2. The full scoring 
system (with general n) has the cpr property, and 

n
nn QPQP )/(/ 2,12,1=

 
)/()( 2,12,12,1 QPQPn nnn −−= µµ

 
where Pn is player A’s probability of winning (for 
general n), and µn is the mean duration. Thus, the 
efficiency of a general bipoints (with dependencies) 
scoring system (with key characteristics P and µ) is  

)/ln()(

)/ln()(

2,12,12,12,1

2,1

QpQP

QPQP

−
−

=
µ

µ
ρ                      (5) 

Noting that µ1,2 , (P1,2 – Q1,2), and ln(P1,2/Q1,2) are 
simply functions of the underlying parameters, it can 
be seen that the relative efficiencies of two scoring 
systems with this same dependent bipoints structure 
can be noted by simply comparing their values for 
the expression ((P–Q)/µ)ln(P/Q). 
The efficiency of play-the-loser bipoints, PL, 
(with dependencies) for Wn systems (n large) 
The module approach can be used to analyse the 
WnPL system for n large. Consider a module starting 

with an a+ point and using the PL rule. Player B 
might win 0, or 1, or 2, or…points until finally 
player A wins on an a- point (it is actually on the a+ 
point if it is the first point played in the module). 
This completes the first part of the module, and the 
last part of the module commences with a b+ point, 
and the module is completed when B wins a b- point 
(or possibly the very first b+ point). This is shown 
diagrammatically below, where the points played are 
shown on the first line, and the outcomes of those 
points are shown directly below on the second line. 
  // a+    a-   a-    a-…..a- / b+   b-   b-   b-…..b- // a+  
B// B     B    B    B…..A  / A   A    A    A…..B //       
The geometric distribution is used to analyse this 
module. Suppose S1(S2) is the shift (or gain) in 
points by player A during the first (second) part of 
this module. Then the distribution of S1 is given by 
P(S1=1) = pa+ , P(S1=0) = qa+pa- , P(S1=-i) = qa+pa-

*(qa-)
i   (i = 1, 2, 3, …), and the mgfs of S1 S2 are 

)1/()()(
1

θθθ eqqpepM aaaaS −+−
−

+ −+= , and 

)1/()()(
2

θθθ −
−+−+ −+= eqqpepM bbbbS . 

The mgf of S = S1 + S2 , MS(θ), is equal to the 
product of these two mgfs, and the expected number 
of points played in a module, E(D), is easily 
evaluated, as is E(S). 
Example 6: When pa+ = 0.9, pa- = 0.7, pb+ = 0.7, and 
pb- = 0.5, the equation MS(θ) = 1 gives θ = 0.6931, 
E(S)/E(D) = 1/6 and (θ*E(S))/E(D) is 0.1155. 
The efficiency of play-the-loser, PL, bipoints 
(with dependencies) for Wn systems (n small) 
Example 7: Consider the system W1(W2(PLa), 
W2(PLb)) with the 3 types of points (initially) for 
each player. For two equal players, the points are not 
equally important, and so (P-Q)/µ does not have a 
‘nice’ value. In fact, when pa = 0.8, pa+ = 0.9, pa- = 
0.7, pb = 0.6, pb+ = 0.7, and pb- = 0.5, (P - Q)/µ = 
0.0421, µ = 20.8514, and P = 0.9388, and so ((P-Q)/ 
µ)*ln(P/Q) = 0.1149, a little bit smaller than the 
value in Example 6 for large n. 
The efficiency of play-the-winner, PW, bipoints 
(with dependencies) for Wn systems (n large) 
Consider the module commencing with an a- point 
in the first part of the module, and the second part of 
the module commencing with a b- point. Then, for 
this PW module, the two relevant mgfs are  

)1/()()(1
θθθ −

++−− −+= epqpeqM aaaa  and 

)1/()()(2
θθθ epqpeqM bbbb ++−

−
− −+= ,  

and the mgf for the module is their product. 
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Example 8: When pa+ = 0.9, pa- = 0.7, pb+ = 0.7, and 
pb- = 0.5, the equation M1(θ)* M 2(θ) = 1 gives θ = 
0.2231, E(S)/E(D) = 1/2, and (θ*E(S))/E(D) = 
0.1116, which is a bit smaller than for the PL case. 
This is expected since we know from published 
work on bipoints without dependencies that, when pa 
+ pb > 1, play-the-winner Wn systems have slightly 
smaller efficiencies than play-the-loser Wn systems. 
The efficiency of play-the-winner, PW, bipoints 
(with dependencies) for Wn system (n small) 
Example 9: Consider the system W1(W2(PWa), 
W2(PWb)) with the 3 types of points (initially) for 
each player. For two equal players, the points are not 
equally important, and so (P-Q)/µ does not have a 
‘nice’ value. In fact, when pa = 0.8, pa+ = 0.9, pa- = 
0.7, pb = 0.6, pb+ = 0.7, and pb- = 0.5, (P-Q)/µ = 
0.0683, µ =9.6912, and P = 0.8310, and so ((P-Q)/ 
µ)*ln(P/Q) = 0.1088, a bit smaller than 0.1116. 
The efficiency of alternating bipoints, AL, (with 
dependencies) for Wn systems (n large) 
Consider the module approach to AL point-pairs. 
Suppose the module starts with an (a+, b+) point 
(state 1), and continues until the next (a+, b+) is 
about to be played. It is clear that the next state after 
the start of the module is (a+, b-) (state 2) with 
probability pa+qb+, (a+, b+) with probability pa+pb+ 
(and so the module has finished), (a-, b-) (state 3) 
with probability qa+qb+, and (a-, b+) (state 4) with 
probability qa+pb+. Now, if MS(θ) is the mgf of the 
shift in favour of player A during a module, and if 
M i(θ) is the mgf of the shift in favour of player A 
from state i to the end of the module, we have 

++= ++
−

++ babaS ppMeqpM )()( 2 θθ θ  

                  )()( 43 θθ θ MepqMqq baba ++++ + , 

++= −+
−

−+ baba ppMeqpM )()( 22 θθ θ  

               )()( 43 θθ θ MepqMqq baba −+−+ + , 

++= −−
−

−− baba ppMeqpM )()( 23 θθ θ  

                  )()( 43 θθ θ MepqMqq baba −−−− + ,  

++= +−
−

+− baba ppMeqpM )()( 24 θθ θ  

                  )()( 43 θθ θ MepqMqq baba +−+− + .  

Omitting θ, the last three equations can be written as  

iiii dMcMbMa =++ 432   (i=1, 2, 3) where  

a1 =1 - pa+qb-e
-θ, b1 =-qa+qb-, c1 = -qa+pb-e

θ, d1 = pa+pb-, 
a2 =-pa-qb-e

-θ, b2 =1 - qa-qb-, c2 =-qa-pb-e
θ, d2 = pa-pb-, 

a3 =-pa-qb+e
-θ, b3 =-qa-qb+, c3 =1 – qa-pb+e

θ, d3 = pa-pb+ 
It can be shown that 

)/()()( 1039183723 EEEEEEEEM ++=θ
 

32312 /)()( EEMEM +=θ
 

+−+= )/())(()( 31331114 EcMEbEaM θ  

                  )/()( 313121 EcEdEa −−  

where E1 = c3b2 - b3c2, E2 = c2d3 - c3d2, E3 = c2a3 - 
c3a2, E4 = c1a2 - c2a1, E5 = c1b2 - b1c2, E6 = c1d2 - d1c2, 
E7 = c1a3 - c3a1, E8 = c3d1 - c1d3, E9 = a1c3 - c1a3 , and 
E10 = b1c3 - c1b3. 
Substituting for M2(θ), M3(θ) and M4(θ) in the first 
equation, and putting MS(θ) = 1, we can solve for θ. 
Example 10: When pa+ = 0.9, pa- = 0.7, pb+ = 0.7, 
and pb- = 0.5, θ = 0.4581, E(S)/E(D) = 0.25 and 
(θ*E(S))/E(D) = 0.1145, which is a value between 
0.1116 (in Example 8) and 0.1155 (Example 6). This 
is not surprising as it is known that for bipoints 
without dependencies when pa + pb > 1, play-the-
winner Wn systems have slightly smaller efficiencies 
than alternating Wn systems, and play-the loser Wn 
systems have slightly greater efficiencies than 
alternating Wn systems. 
A relationship between the solutions for the PW 
and PL cases (n large) 
The solution θPL for the PL module is the solution of 
MS1(θPL)MS2(θPL) = 1, and the solution θPW for the 
PW module is the solution of M1(θPW)M2(θPW) = 1. 
Surprisingly, it turns out that these θ solutions are 
related, and can be obtained by putting MS1(θPL) 
equal to M1(θPW) and MS2(θPL) equal to M2(θPW), and 
solving simultaneously for θPL and θPW. Putting x1 = 
eθPL, y1 = 1/x1, x2 = eθPW and y2 = 1/x2, we have 

)(
)(

2
−−

−−

+
+=

aab

baa

pp

pp
x

δ
δ

, and 

)/()1( 221 xqxpy bbb δ−−= −+  

where δa = pa+ - pa- and δb = pb+ - pb-.  
Example 11: When pa+ = 0.9, pa- = 0.7, pb+ = 0.7, 
and pb- = 0.5, x2 = 1.25 and y1 = 0.5, giving θPL = 
0.6931 as in Example 6, and θPW = 0.2231 as in 
Example 8. These results for x2 and y1 were verified 
for several other parameter values. When δa = δb = 0, 
pa+ = pa- = pa, pb+ = pb- = pb these expressions for x2 
and y1 give θPW = ln(pa/pb) and θPL = ln(qb/qa) in 
agreement with earlier work (Miles, 1984 and 
Pollard, 1992). 
An explicit solution for the alternating module 
The value of θ for the AL module, although difficult 
to evaluate, turns out to be the average of θPL and 
θPW. In Table 2, and in line with the paper by Miles 
(1984), WnAL systems are given unit efficiency. It  
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Pa-, pa+, pb-, pb+  Exp(θ) theta, θ E(S)/E(D) θ *E(S)/E(D) Efficiency 
0.8,0.8,0.6,0.6 AL Sqrt(8/3) 0.4904 1/5 0.0981 1.0 
0.8,0.8,0.6,0.6 PL 2.0 0.6931 1/7 0.0990 1.0096 
0.8,0.8,0.6,0.6 PW 4/3 0.2877 1/3 0.0959 0.9777 
0.7,0.9,0.5,0.7 AL Sqrt(2.5) 0.4581 ¼ 0.1145 1.0 
0.7,0.9,0.5,0.7 PL 2.0 0.6931 1/6 0.1155 1.0086 
0.7,0.9,0.5,0.7 PW 1.25 0.2231 ½ 0.1116 0.9741 
0.9,0.7,0.7,0.5 AL Sqrt(3.215385) 0.5840 1/6 0.0973 1.0 
0.9,0.7,0.7,0.5 PL 2.2 0.7885 1/8 0.0986 1.0126 
0.9,0.7,0.7,0.5 PW 1.461538 0.3795 ¼ 0.0949 0.9748 

Table 2: Some characteristics of the AL, PL and PW modules 
 
can be seen that the efficiency (5) is greater than 
unity for the PL and less than unity for PW when ε is 
positive or negative. 
An extension of the fundamental equation 
We give an extension of the earlier equation from 
individual points to point-pairs, which can result in a 
win, a draw or a loss to player A. The importance of 
winning a point-pair rather than drawing it is equal 
to the probability of winning given the point-pair is 
won minus the probability of winning given the 
point-pair is drawn. Also, the importance of drawing 
a point-pair rather than losing it is the probability of 
winning given the point-pair is drawn minus the 
probability of winning given the point-pair is lost. 
Thus, using an obvious notation, when the score is 
(i, j), the importance of winning a point-pair rather 
than drawing it, Ii, j, W , is equal to P(i+2, j) - P(i+1, 
j+1), and the importance of drawing a point-pair 
rather than losing it, Ii, j, D , is equal to P(i+1, j+1) - 
P(i, j+2). The earlier equation becomes 

∑ ++= )(5.0 ,,,,,,,,, LjiDjiWjiWjiji IInP δδ  

where, as before, the importances are evaluated for 
the case in which the two players are equal, and the 
ni, j are evaluated when player A has an increase in 
probability of δi, j, W of winning the point-pair and a 
decrease in probability of δi, j, L of losing a point-pair. 
Example 12. Consider playing just two point-pairs, 
and if the final score is 2-2, a coin is tossed to 
determine the winner. The first point-pair is an (a, b) 
point-pair. The second is (a+, b-) if A wins the first 
point-pair; it is (a+, b+) if A wins the first a point 
and B wins the first b point; it is (a-, b-) if player A 
loses the first a point and B loses the first b point, 
etc. If the two players are equal, P equals 0.5, I2,0,W = 
0, I2,0,D = 0.5, I-2,0,W = 0.5, I-2,0,D = 0, I1,1,W = 0.5 and 
I1,1,D = 0.5. Also, if pa = pb = 0.7, pa+ = pb+ = 0.8 and 
pa- = pb- = 0.6, I0,0,W = 0.44 and I0,0,D = 0.44. If A is 
better than B and pa = 0.8, pa+ = 0.9, pa- = 0.7, pb = 

0.6, pb+ = 0.7 and pb- = 0.5, P equals 0.6606. Also, 
for example, n0,0 = 1, n2,0 = 0.32 and n-2,0 = 0 12. It 
can be seen, for example, that δ0,0,W = 0.8*(1 - 0.6) - 
0.7*0.3 = 0.11 and δ0,0,L = 0.3*0.7 - 0.6*(1 - 0.8)= 
0.09. The right hand side of the above equation is 
0.5 + 1*0.44*0.2 + 0.32*0.5*0.07 + 0.48*0.5*0.2 + 
0.08*0.5*0.2 + 0.12*0.5*0.09 = 0.6606, verifying 
the above equation for this example. 
Example 13. Consider W2point-pairsab using dependent 
bipoints, starting with an (a, b) point-pair. The 
possible states are (0, a, b), (2, a+, b-), (2, a+, b+), 
(2, a-, b-), (0, a+, b-), (0, a+, b+), (0, a-, b-), (0, a-, 
b+), (-2, a+, b+), (-2, a-, b-), and (-2, a-, b+). All of 
the importances for this scoring system are equal, 
and are equal to 5/18 when pa = pb = 0.7, pa+ = pb+ = 
0.8 and pa- = pb- = 0.6. As the importances are equal, 
(P –Q)/µ has a ‘nice’ value (1/18 when pa = 0.8, pa+ 
= 0.9, pa- = 0.7, pb = 0.6, pb+ = 0.7 and pb- = 0.5). 
Example 14. A stochastically identical ‘single-
point’ version of the scoring system in example 13 is 
W4(ALa). It can be seen that there are 3 ‘initial’ 
states, 0a, followed by 1b(+) or -1b(-), where, for 
example, 1b(+) represents a score of 1 with a b point 
to be played and the next a point being an a+ point. 
There are 12 b states when the scores are 3, 1, -1 or -
3, and 10 a states when the scores are 2, 0, or -2. The 
importances of all these states are equal, and equal 
to 5/18 for the above parameter values. 
Example 15. The system W1(W2PLa+(b+), W2PLb+(a+)) 
(where PLa+(b+) indicates that the first point is a+ and 
the first b is b+) has equally important points for two 
equal players (and equal to 5/24 for the above 
parameters). Further, W1(W2PWa-(b-), W2PWb-(a-)) has 
equally important points for two equal players. 
Relevance to golf 
The extension of the above equation to the situation 
where draws are possible has relevance to other 
sports such as golf. For example, in match play golf, 
each hole is won, drawn or lost. The equation can be 
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extended even further to where there are more than 
just 3 possible outcomes. For example, when two 
golfers play each other at stroke play and we assume 
each golfer has an eagle, a birdie, a par, a bogie or a 
double bogie on each hole, the two players’ scores 
on each hole can differ by +4, +3, +2, …, -4. The 
importance of having an eagle rather than a birdie, 
etc or having a +4 rather than a +3, etc, can be 
evaluated. This approach is taken in a forthcoming 
paper focussing on golf (Pollard & Pollard, 2011).  
 
 
3. RESULTS 
 
Various results for unipoints and bipoints scoring 
systems without dependencies have been seen to 
carry over to the case where one-step dependencies 
exist. Efficient scoring systems and systems with 
equally important points for two equal players have 
been identified. The detailed results are given in the 
methods section above, and are summarised below. 
 
 
4. CONCLUSIONS 
 
Formulae for the efficiency of unipoints and bipoints 
scoring systems with one-step dependencies have 
been derived. In both cases the relative efficiency of 
two scoring systems can be measured by the same 
function, namely ((P-Q)/µ)*ln(P/Q). Thus, the 
formula for relative efficiency has been extended to 
the case of one-step dependent points. 
The very efficient scoring systems for unipoints and 
bipoints without dependencies have points that are 
equally important points for two equal players. This 
is also the case when one-step dependencies exist. 
In the tennis context, the play-the-loser service 
exchange mechanism is seen to be slightly more 
efficient than the alternating mechanism, which in 
turn is more efficient than the play-the-winner 
mechanism, whether dependencies exist or not. 
A relationship between solutions to play-the-loser 
and play-the-winner scoring systems with one-step 
dependencies and large mean durations has been 
derived. Also, a relationship between these systems 
and the alternating system has been observed. 
Some results for the best-of-2n-1 unipoints scoring 
systems with one-step dependencies are given. 
By generalizing the definition of the importance of a 
point, the formula relating the increased probability 
of winning under a scoring system to the increased 
probability of winning the points within that system 

has been extended from the two outcome win/loss to 
the three outcome win/draw/loss structure. Indeed, 
there is a further extension to the situation where 
there is a four or more outcome structure. This can 
be useful for other sports such as golf. 
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Abstract 
 
The use of technology in sport to assist umpires has been gradually introduced into several sports. This has 
now been extended to allow players to call upon technology to arbitrate when they disagree with the umpire’s 
decision. Both tennis and cricket now allow the players to challenge a doubtful decision, which is reversed if 
the evidence shows it to be incorrect. However the number of challenges is limited, and players must balance 
any possible immediate gain with the loss of a future right to challenge. With similar challenge rules expected 
to be introduced in other sports, this situation has been a motivation to consider challenges more widely. We 
use Dynamic Programming to investigate the optimal challenge strategy and obtain some general rules. 
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1. INTRODUCTION 
 
Technology is being used increasingly in sport to 
assist, and in some cases replace, judges and 
referees. The photo finish has been used to help the 
steward decide close horse races since the camera 
was invented. In swimming, electronic timing has 
largely replaced the judges in determining finishing 
order. In tennis we have had the electronic service 
line machine for many years, and now also a device 
for picking up net cords. More recently, some forms 
of Rugby have used a video referee to decide on the 
legality of tries. Cricket followed suit, allowing 
umpires to refer decisions on run outs, stumpings 
and catches to a third umpire with access to video 
footage. In many other sports the media use video 
replays or other technology (such as the hot spot in 
cricket) to provide evidence for or against the 
umpire’s decision.  
In 2008 the Australian Tennis Open saw an 
interesting development with the introduction of 
Hawkeye. This system, relying on several video 
cameras and some mathematical modelling, was 
originally used in cricket, where it claims to show 
where the ball actually went or would have gone had 

it not hit the batsman. In tennis, it displays a schema 
of the court lines along with a mark where the ball is 
believed to have bounced, along with a decision on 
whether it was in or out. (Interestingly, the path of 
the ball is never shown with any error bounds. The 
public and players appear to accept that it is exact 
and infallible.) The interesting development in tennis 
was that the players, not the umpires, under certain 
conditions were allowed to challenge the umpire’s 
decision by referring to Hawkeye. If Hawkeye’s 
view was consistent with the appeal, the umpire’s 
decision was reversed. The International Cricket 
Committee has now introduced a similar rule into 
the playing conditions of some cricket series, and it 
seems inevitable that allowing players to challenge 
umpires’ decisions will play an increasing part in 
many sports. But some poor decision making by 
players shows they do not always make good use of 
their right to challenge. The number of challenges is 
limited, and players must balance any possible 
immediate gain with the loss of a future right to 
challenge. This provides the motivation to 
investigate the optimal strategy in the use of 
challenges in a wider context.  
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Norman (1995) gives several examples of the use of 
Dynamic programming to find optimal strategies in 
sport. It can be used here to find the optimal 
challenge strategy under simplified rules, and thus 
formulate some general rules for the real situation. 
 
 
2. A SIMPLE MODEL TO DETERMINE 
CHALLENGE POLICY 
 
In a game of tennis, at the end of a point, a player 
may challenge a line call. For example, if his 
opponent’s ball is called in when it may have been 
out, then a successful challenge will win the point 
(or if the miscall occurs on his opponent’s first 
serve, the opponent will be required to serve again). 
Again, if his own ball is called out when it may have 
been in, a successful challenge will earn a replay of 
the point, or even win the point if it is deemed that 
his opponent would have been unable to return the 
ball. A player may make up to three unsuccessful 
challenges in a set, up to four if a tie break is 
reached.  
The scoring system in tennis makes the game 
difficult to model and we consider here a simpler 
game in which two players compete to be the first to 
gain 20 points. It could be thought of as tennis with 
different scoring. It is not very different from the 
game of table tennis played under the old rule of 
first to 21.  
Suppose X (our man) is playing Y. With probability 
pc a challenge opportunity may occur for X, and if X 
makes a challenge the probability of success is sc. 
With probability (1 - pc ) no challenge opportunity 
occurs, and X wins the point outright with 
probability p. The point has just been played and one 
of three states occurs: 
W: X is about to be given the point outright; 
L: Y is about to be given the point and X thinks this 
is right;  
C: A call has been made such that if it stands Y will 
win the point, but X thinks there is a good chance he 
would be awarded it if he challenges the call. 
The probabilities of the three states W, L and C 
occurring are respectively (1-pc)*p, (1-pc)*(1-p) and 
pc 
Before the umpire says anything, we take the score 
to be i-j . X has m challenges left.  
We take the state of the system to be (i, j, m, θ) 
where θ can take the values W, L and C. 

Define f(i, j, m, θ) as the maximum probability of X 
winning the game, with the score i–j and X having m 
challenges left, with θ the state of play. Then 

 
f(i, j, m, W) = (1-pc)*p* f(i+1,j, m ,W) + (1-p)* f(i+1, 
j, m, L) } + pc* f(i+1, j, m, C)  
f(i, j, m, L) = (1-pc)*{ p* f(i, j+1, m, W) + (1-p)* f(i, 
j+1, m, L) + pc* f(i, j+1, m, C) 
f(i, j, m, C) = max  
don’t challenge: (1-pc)*{ p* f(i, j+1, m, W) + (1-
p)* f(i, j+1, m, L) + pc* f(i, j+1, m, C) 
challenge: sc*[(1-pc)*{ p* f(i+ 1, j, m, W) + (1-p)*  
f(i+1, j, m, L)} +  pc*  f(i+1, j, m, C)] 
 +(1- sc)*[ (1-pc)*{ p* f(i, j+1, m-1, W) + (1-p)* f(i, 
j+1, m-1, L)} +  pc* f(i, j+1, m-1, C)] 

 
Since having an extra challenge can never decrease 
X’s chance of winning (f(i, j, m, θ) >= f(i, j, m-1, θ)), 
it is easily shown that the challenge test quantity is 
monotone increasing in sc. Suppose the two test 
quantities are equal when sc = π. Then for sc > π it is 
better to challenge, and for sc < π it is better not to 
challenge. Thus the form of the optimal policy is 
‘Challenge only if the probability of success is 
greater than some probability π’.  
 
 
3. A COMPUTABLE MODEL FOR TENNIS 
 
One (big) disadvantage of this formulation is the 
number of variables in the state description. For 
computational simplicity, we may reduce the 
number of variables by one by taking the time at 
which a decision is made to be when player X is 
about to serve (or receive a serve). We suppose that 
he then asks himself whether if an opportunity to 
challenge occurs, he will take it.  
The state of the system is (i, j, m) where i - j is the 
score: i and j are the points each player (X and Y, 
respectively) has earned so far in the game; m is the 
number of challenges left. We consider X as the 
player who decides whether or not to challenge, and 
who has three challenges available at the start of the 
game. We define f(i, j, m) as the probability of X 
winning the set using an optimal policy. 
We suppose that challenge possibilities are of two 
types, occurring with probabilities p1 and p2. If 
player X makes a challenge, his probability of 
success is s1 and s2 respectively (s1>s2). If his 
challenge is successful, the state of the system 
becomes (i+1, j, m) but if unsuccessful (i, j+1, m-1). 
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Just before a point is played, player X may consider 
three possibilities: 

A: With probability 1-p1-p2, the point proceeds 
without any question of the ball being in or out of 
play and X wins with probability p and loses with 
probability 1-p 

B: With probability p1, the ball is called out when 
player X thinks it is in and unless he makes a 
successful challenge, he will lose the point. With 
probability s1 his challenge is successful and he will 
gain the point; if it is unsuccessful; he will lose the 
point and lose one right to challenge. 

C: With probability p2  the ball is called out when 
player X thinks it is in and unless he makes a 
successful challenge, he will lose the point. With 
probability s2 < s1 his challenge is successful and he 
will gain the point; if it is unsuccessful, he will lose 
the point and lose one right to challenge.  

 
The decision problem faced by X before the point is 
played is thus to choose one of three alternatives: 

I: Not to challenge, even if a possibility occurs 
II: To challenge if and only if possibility B occurs 
III: To challenge if either possibility B or 

possibility C occurs 
(since s1>s2 it is never optimal to challenge only if 
possibility C occurs ) 

The functional equation is thus 
f(i, j, m)=(1-p1-p2)*{ p* f(i+1,j, m)+(1-p)* f(i, j+1, m)} 
+ max 

I: (p1+p2)* f(i, j+1, m) 
II: p1*{  s1*  f(i+1, j, m) +(1- s1)* f(i, j+1, m-1)} + 

p2* f(i, j+1, m) 
III: p1*{  s1* f(i+1, j, m) +(1-s1)* f(i, j+1, m-1)} 

+ p2*{  s2* f(i+1, j, m) +(1-s2)* f(i, j+1, m-1)} 
for i, j < 20, m= 1, 2, 3. 
  

f(i, j, 0) =(1-p1-p2)*{ p* f(i+1 ,j, 0)+ (1-p)* f(i, j+1, 0)} 
+ (p1+p2)* f(i, j+1, 0) for i, j < 20 

 
f(20, j, m) =1 and f(i, 20, m)=0,for all i, j < 20, m = 
0, 1, 2, 3.  
 
 
4. MODEL CALIBRATION 
 
Table 1 summarises data on the success rate of 
challenges during the 2009 Wimbledon 
championship, obtained from 
http://www.wimbledon.org/en_GB/scores/challenge/
index.html.  

The “total challenges” in Table 1 relate to matches 
played with Hawkeye, a subset of 47 out of 127. 
Assuming the presence of Hawkeye has no effect on 
the number of sets in a match, we can calculate the 
number of challenges per set. We would really like 
to have average challenges per set, so we looked at 
the men’s singles results. 474 sets were played in 
125 matches played to completion, giving the 
average sets per match as 473/125 = 3.8. The 
average number of challenges per set is thus 6.7/3.8 
= 1.8.  

 
 Men Women 
Total 
challenges 

314 130 

Successful 
challenges 

93 38 

Unsuccessful 
challenges 

221 92 

Percentage 
successful 

29.6 29.2 

Average 
challenges per 
match 

6.7 3.8 

Table 1: Statistics on Challenges, Wimbledon 2009 
 

In the above model challenges are of two types, with 
different probabilities of success. We could suppose 
these probabilities to be 0.4 and 0.2. (They can’t be 
close to 1, as the line judges rarely make bad 
mistakes, and they can’t be close to 0 for then a 
challenge would not be worthwhile).  
How often do challenge opportunities occur? More 
guesswork is needed. Suppose, on average, that one 
type 1 opportunity and two type 2 opportunities 
occur per set. We might suppose that players take up 
all type 1 opportunities and half of type 2, giving an 
average of two challenges per set and an average 
success rate of (0.4 + 0.2)/2 =0.3 or 30%.  
It’s easy to juggle with these figures. If only a 
quarter of type 2 opportunities are taken up, then 
there will be an average of 1.5 challenge per set and 
an average success rate of (0.4 + 0.1)/1.5 =0.33 or 
33%. The point of all this is to suggest a set of 
credible values. Let’s take the ones in the preceding 
paragraph and suppose that, on average, a player has 
0.5 type 1 opportunity and 1.0 type 2 opportunity per 
set.  
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         X score          
  0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 
 0                     

 1      OPTION 2   
 2         

Y 3      CHALLENGE ONLY IF HIGH PROBABILITY OF SUCCESS   
 4                     
s 5                     
c 6                     
o 7                     
r 8                     
e 9                     
 10      OPTION 3   
 11         
 12      CHALLENGE AT EVERY OPPORTUNITY   
 13                     
 14                     
 15                     
 16                     
 17                     
 18                     
 19                     

Table 2: Optimal strategy in first to 20 game, with one challenge left, p = .6 
 
 
These values seem reasonable. A player is allowed 
up to three unsuccessful challenges in a set. This is 
presumably thought to be a reasonable maximum. If 
a player makes one challenge in a set, on average, 
then if the number of challenges follows a Poisson 
distribution, the probability that he makes three or 
fewer challenges is 0.98, a 2% chance that he cannot 
make as many challenges as he would like.  
A BASIC computer program (verified with an Excel 
spreadsheet) has been written for this game of first 
to 20, and with a slight modification a first to 30 
game. As any number of points between 20 and 39 
could be played in the first and any number between 
30 and 59 in the second, we take an average of 30 
points played in the first and 45 in the second. Thus 
we arrive at values of p1 = 0.5/30 = 0.0167 and p2 = 
1/30 = 0.0333 for playing up to 20 and p1 = 0.5/45 = 
0.0111 and p2 = 1/45 = 0.0222 for playing up to 30. 
s1 = 0.4 and s2 = 0.2 as suggested earlier. The 
probability of winning a point outright for player X 
was taken to be 0.6.  
 
 
5. RESULTS 
 
In both games, with more than one challenge left, in 
almost every situation, the optimal decision is 
Option III to take up every challenge opportunity. 
The cases where this choice is not optimal are when 

the game is virtually over, when Player X leads by 
many points and is very close to winning. For 
example, when X leads 19 - 4 in the first to 20 game 
and 29 - 10 in the first to 30 game, the optimal 
decision is Option I, not to challenge if an 
opportunity occurs. In such situations, Player X has 
a probability of winning very close to one and it 
matters little which decision he makes.  
With only one challenge left, the choice depends on 
the score. Decision tables for both games are shown 
in tables 2 and 3. It can be seen that in the first to 20 
game, a near-optimal policy for Player X would be 
to choose Option II if Player Y’s score is seven or 
less and Option III otherwise; and that in the first to 
30 game, a near-optimal policy for Player X would 
be to choose Option II if Player Y’s score is ten or 
less and Option III otherwise. In both games first to 
N the critical score for Y is about N/3. If this 
decision rule were applied to a set in tennis, then the 
recommended rule would be: take every opportunity 
to challenge, but with only one challenge remaining, 
if your opponent has won two games or fewer, 
challenge only if you have a (relatively) high chance 
of success  
Clearly this decision rule will alter depending on the 
relative ability of the players. We have used p = 0.6, 
which might be relevant for a seeded player playing 
a non-seeded player. This might be the case for 
many of the matches played on the show courts for 
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           X Score             
  0 1 2 3 4 5 6 7 8 9 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 
            0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 
 0                               
 1                               
 2        OPTION 2       
 3               
 4        CHALLENGE ONLY IF HIGH PROBABILITY OF SUCCESS       
 5                               
 6                               
Y 7                               
 8                               
s 9                               
c 10                               
o 11                               
r 12                               
e 13                               
 14                               
 15                               
 16                               
 17        OPTION 3       
 18               
 19        CHALLENGE AT EVERY OPPORTUNITY       
 20                               
 21                               
 22                               
 23                               
 24                               
 25                               
 26                               
 27                               
 28                               
 29                               

Table 3: Optimal strategy in first to 30 game, with one challenge left, p = .6 
 
 
which the challenge system is used. As the player 
becomes weaker, his relative reward for a successful 
challenge becomes greater, and he should challenge 
more often. The seeded player’s opponent, for 
example, (p = 0.4) should virtually always 
challenge. In the first to 30 game, with one challenge 
left nearly even players, (p = 0.5), should use option 
II only if their opponents score is less than about 
7,and a vastly superior player (p = 0.7) only if their 
opponents score is less than about 16.  
There are some challenges in which the successful 
challenger only wins a replay of the point. If an out 
call on a ball which the opponent could have played 
is successfully challenged, the point is replayed. 
While we have not included this possibility in the 
model, since the rewards for a successful challenge 
are not as good, clearly the player should be less 
aggressive in challenging such calls.  

 
6. CONCLUSIONS 
 
Analysing simplified rules can be helpful in 
generating simple rules towards optimal challenge 
strategy. Results suggest that in a simple ‘first to’ 
game, the optimal strategy will also be fairly simple 
– always challenge when you have a ‘good’ chance 
of success, and take any challenge once you get deep 
enough into the game that it looks as if you might 
not use all your challenges. However we do not 
expect the decision rules to be as straightforward 
with the nested scoring system used in tennis. In the 
simple game analysed here, there is no sense in 
saving a challenge until a more important stage of 
the game. Once a challenge opportunity with the 
maximum chance of success arises, there is nothing 
to be gained by saving that challenge to later in the 
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game, as if the challenge is successful that point 
stays on your score until the game is over. Keeping 
it in case you have a similar challenge opportunity at 
19 all is futile, since if you used it successfully 
earlier you would be 20-18. The only consideration 
is then how long into the match does it become 
unlikely that another maximum chance challenge 
opportunity will arise – at that stage you may take a 
lesser chance challenge. This is not true in the nested 
scoring system used in many racquet sports, in 
particular tennis. A set consists of first to six games, 
and once a game is won there is no advantage in 
winning it to love as opposed to winning it to 15. A 
challenge opportunity arising at 40-0 might not be 
taken up, as the game will probably be won anyway. 
Morris (1977) defines the importance of points in 
tennis. An Excel spreadsheet which solves a similar 
model to the above for the actual scoring system 
used in tennis has been developed (Clarke & 
Norman, 2010). Preliminary analysis of this model 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

suggests the optimal strategy depends on the 
importance of the point – the more important the 
point in winning the set, the more likely a player 
should challenge. Since importance increases in later 
points of close games, and in later games of close 
sets, this implies that players should save their 
challenges until needed deeper into close games and 
sets.  
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Abstract 
 

 
This is the first of two papers on ordering, ranking and seeding players or teams in sport. Such ordering may 
be used for player selection, seeding, handicapping, player progress evaluation and for predicting match and 
tournament outcomes. Pair-wise match probabilities are used to create order criteria based on match expected 
values, and the analyses of round robins, knock-out tournaments and ladder systems. Theoretical results are 
given for three and four players/teams. The total number of players/teams can affect the ratings. 
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1. INTRODUCTION 
 
Clarke and Dyte (2000) suggest that ratings be used 
to seed players for tournaments, to allow entry into 
tournaments, to allocate prize money at the end of 
the year and to predict the outcome of a match. They 
developed a binary logistic regression model which 
uses the difference in ratings to predict the 
probability of winning a match. Blackman and 
Casey (1980) mention tournament placement, 
handicapping and player progress evaluation as 
other uses for tennis rankings.  
As explained by Pollard and Meyer (2010), when the 
leading male tennis players formed the Association 
of Tennis Professionals (ATP) in 1973, one of their 
first acts was to introduce a 12 month weighted 
moving average world ranking system to determine 
which players gained entry into tournaments and to 
determine which players were seeded. The Women’s 
Tennis Association (WTA), founded in 1973, 
introduced its computer rankings system in 1975 and 
a separate doubles ranking system was introduced in 
1976. Prior to this time there were only informal 
ranking systems. Since 1989 and 1995 respectively, 
the ATP and WTA have used rankings that reward 
quantity as well as quality by selecting a player’s 
best results from a minimum number of 

tournaments. Stefani (1997) gives details of the ATP 
tennis ranking system which is based on tournament 
and bonus points. 
The original ranking systems were based on 
tournament importance as determined by prize 
money, and player performance was measured by 
the round reached. A schedule of points was agreed 
based on the above and a player’s ranking was 
calculated as the average points earned for 
tournaments played in the previous 12 months. 
Musante and Yellin (1979) refined this method using 
the ranking of all players entered in that event to 
measure its importance rather than prize money 
while using the ranking of defeated opponents, not 
just the round reached, to measure the performance 
of any player. The concept of bonus points for 
defeating a higher ranked player was used by the 
WTA for some years, but was subsequently 
discontinued. Subsequently Blackman and Casey 
(1980) developing a ranking system similar to a golf 
handicap using the actual scores in all matches 
between the players being ranked. The difference in 
these rating units for any two players was shown to 
be a good indication of match result probabilities 
and could also be used to determine what handicap 
should be given to the weaker player to make the 
match more even. 
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Ali, Cook, and Kress (1986) rank ordered a set of 
players on the basis of a set of pair-wise 
comparisons arising from a tournament. They 
showed that the minimum violation ranking rule can 
be represented as a mixed integer generalized 
network program. Strauss and Arnold (1987) used 
maximum likelihood and moment estimates for rally 
winning probabilities to develop a rating system for 
players in a tournament, also based on a paired 
comparison method. 
Cook, Golan, and Kress (1988) examined a series of 
heuristics for ranking the players in a round robin 
tournament. The comparison is based on a set of 
randomly generated n-player tournaments. The 
Generalized Iterated Kendall Method, produced a 
9% reduction in ranking violations compared to the 
next best contender. This work continued with Cook 
and Kress (1990) presenting a model for developing 
a weak ranking of players in a round-robin 
tournament.  
More recently Clarke (1994) has suggested that 
exponential smoothing should be used to update 
ratings while Klaassen and Magnus (2003), Bedford 
and Clarke (2000) and Barnett and Clarke (2002) 
have explored the use of ratings to provide models 
for predicting tennis match outcomes. 
A group of players needs to be ordered in order to 
determine which players are accepted into a 
tournament, who is seeded first, who is second, etc. 
In this paper we explore various criteria for ordering 
players, and consider round robins, knock-outs and 
ladder systems for three and four players. Match 
result probabilities for each pairing are assumed. 
 
 
2. METHODS 
 
Ordering three players 
Ordering two players is trivial. A natural way of 
ordering three players is to order them according to 
the magnitude of their row sums in Table 1. Thus, if 
the best player is defined as the player who has the 
largest row sum, then the best player is the one who 
has the largest value for the expected number of 
matches won in a round robin (RR) event, giving the 
definition some mathematical and statistical appeal. 
An example with players A and B being equally best 
and player C being the worst (according to this 
definition) is given in Table 1.  
If we had been considering just the two players A 
and B, A would be better than B. Thus, the ordering 
of two players A and B within a group of three 

players can be different to the ordering within just 
the two players. Thus, using the above definition, the 
ordering of two players within a group of players 
can change when other players are added or 
subtracted from the group. The ordering of three 
players is in general not a trivial exercise. 
 

Probability i beats j Player A Player B Player C Row sum 
Player A X p12 = 0.6 p13 = 0.6 1.2 
Player B p21=0.4 X p23 = 0.8 1.2 
Player C p31=0.4 p32=0.2 X 0.6 
Total    3.0 

Table 1: An example with three players 
 
A round robin tournament (RR) with 3 players 
In a RR with 3 players, player A plays player B, 
player A plays player C, and player B plays player 
C. Either one player ‘wins outright’ by winning both 
matches, or the event is a ‘draw’ with each player 
winning one match (with ‘draw’ probability Dr = 
p12p23p31 + p13p32p21). In a RR there are several 
criteria that might be used to order the players. 
Criterion 1: (row sums/expected values) The 
players are ordered according to their row sum 
probabilities. This criterion has particular relevance 
when the interest is in the expected total reward for 
each player and the total reward for the tournament 
is the sum of the rewards for each match each with 
the same reward structure (eg. each player’s 
earnings for a loss in any match is $X and each 
player’s earnings for a win in any match is equal $Y 
(> $ X). Also, the player with the greatest row sum 
has the greatest expected number of wins in the RR. 
Criterion 2: (based on rank distributions) The 
players are ordered according to some aspect of their 
rank distributions. The relevant aspect can take on a 
range of forms. The rank distributions for three 
players are given in Table 2, which includes the 
numerical values relevant to Table 1. 
 

Rank/Player A B C 
1 (worst) p21p31 (0.16) p12p32 (0.12) P13p23 (0.48) 
2 p12p31 + p13p21 

(0.48) 
p21p32 + p23p12 
(0.56) 

P31p23 + p32p13 
(0.44) 

3 (Best) p12p13 (0.36) p21p23 (0.32) P31p32 (0.08) 
Total 1 1 1 

Table 2: The rank distributions of three players 
 
Criterion 3: (win outright) Here the players are 
ordered according to their probabilities of winning 
all their matches in the RR. For 3 players, this 
ordering is based on the sizes of p12p13, p21p23 and 
p31p32 for players A, B and C respectively. This 
criterion is particularly relevant when the outright 
winner (only) gets an extra reward such as the right 
to go on to some major tournament. Interestingly, 
player A in Table 1 has a higher probability than 
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player B of winning outright (0.36 Vs 0.32), even 
though players A and B have equal row sums. 
Criterion 4: (lose outright) Here the players are 
ordered according to their probabilities of losing all 
their matches in the RR. For 3 players, this ranking 
is based on the sizes of p21p31, p12p32 and p13p23 for 
players A, B and C respectively. This criterion is 
particularly relevant when the outright loser misses 
out on an important opportunity that the other two 
players receive. Interestingly, player A in Table 1 
has a higher probability than player B of losing 
outright (0.16 Vs 0.12), even though players A and B 
have equal row sums. Note that the amount by 
which player B loses relative to player A in not 
being the outright winner (0.04) is equal to the 
amount by which player B gains relative to player A 
in not being the outright loser (0.04). 
Criterion 5: (expected rank) Here the players are 
ordered according to the expected values of their 
rank distributions. These can be determined from 
Table 2.  This ordering is relevant to the situation in 
which the players are paid (linearly) according to 
their final rank. 
Criterion 6: (distribution of number of wins) Here 
the players are ordered according to some aspect of 
their number of wins distributions. Note that the 
aspect in question may or may not be linearly related 
to the number of wins. In general this criterion can 
be different to criterion 2, although, for the case of 
three players, it is in fact the same as, in Table 2, the 
ranks of 1, 2 and 3 in the first column are replaced 
by wins of 0, 1 and 2 respectively. 
Criterion 7: (pair-wise comparisons): Suppose SA is 
player A’s probability of having more wins than 
player B plus his probability of having more wins 
than player C. SA equals 2p12p13 + p12p31p32 + 
p13p21p23. Player B’s probability of having more 
wins than player A plus his probability of having 
more wins than player C, SB, equals 2p21p23 + 
p21p31p32 + p23p12p13. The corresponding value for 
player C, SC is 2p31p32 + p31p21p23 + p32p12p13. Under 
criterion 7 the players are ranked according to the 
sizes of SA, SB and SC. Note that in Table 1 SA = SB 
= 0.96 and so A and B are equal players under 
criteria 7.. In general, it can be shown that, for three 
players (but not necessarily for four players), 
criterion 7 gives the same ordering as criterion 1. 
A random knock-out (RKO) with three players 
Here we consider the situation in which one player 
plays another in the first match whilst the remaining 
third player has a ‘bye’. This match is followed by 

the final in which the winner of the first match plays 
the person who had the bye.  
The probability player A wins a RKO is equal to 
(2p12p13 + p12p23 + p13p32)/3, whilst the probability 
player B wins a RKO is equal to (2p21p23 + p21p13 + 
p23p31)/3, the difference between the first expression 
and the second being p12p13 – p21p23. The 
corresponding difference for players A and C is 
p12p13 – p31p32, and for players B and C it is p21p23 – 
p31p32. The difference between the probability player 
A wins the RKO and the probability that player B 
wins it equals the difference between their respective 
probabilities of winning a RR outright. This equality 
also applies to the differences between the other 
pairs of players. Thus, the ordering of the three 
players in a RKO is always identical to the ordering 
under criteria 3 for a RR. (This is not necessarily 
true for the case of four players.) Thus, in Table 1, 
player A has a higher probability of winning the 
RKO (0.44) than does player B (0.40), even though 
players A and player B are ‘equal players’ 
according to criteria 1 and criteria 7 for the RR. 
An analysis of the ladder system (LS) 
The LS has the following structure. With three 
players there is an order on the LS at the beginning 
of a cycle. The ‘top down’ cycle consists of the 
leader on the LS playing the second player, with the 
winner becoming the new leader on the LS, and the 
loser then playing the third player on the LS with the 
loser moving to the bottom of the LS. There is also a 
‘bottom up’ cycle. The 6 possible orders (or states) 
at the beginning of a cycle are ABC, ACB, BAC, 
BCA, CAB, CBA, called states 1 to state 6 
respectively. The steady state probabilities are  
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. 
The probabilities for the ‘bottom up’ cycle are the 
same. Thus, the steady state probabilities that A, B, 
and C are on the top of the LS are respectively (π1 + 
π2), (π3 + π4), (π5 + π6), and the probabilities that 
they are on the bottom of the LS are (π4 + π6), (π2 + 
π5), (π1 + π3) respectively. It would seem reasonable 
to assume that the sizes of these steady state 
probabilities give an appropriate ordering for the 
players in this ladder situation. 
We note a useful method for generating the steady 
state probabilities. The method is given here because 
the same procedure can be used for four players. The 
first state ABC has 3 implicit ordered pairs, AB, AC 
and BC, with ‘associated probabilities’ p12, p13 and 
p23. The product of these three probabilities is equal 
to P1 = p12*p13*p23. The second state ACB has the 
three implicit ordered pairs, AC, AB and CB with 
associated probabilities p13, p12 and p32. The product 
of these second three probabilities is equal to P2. If 
the sum of the corresponding six products is denoted 
by S, then the steady state probability for state i is 
equal to Pi /S (i = 1, 2, 3, 4, 5, 6). 
It follows that the steady state probabilities that 
player A is at the top of the LS (rank 3), and at the 
bottom (rank 1) are given in Table 3, which also 
gives the values for players B and C. In this table, D 
= p12p13 + p21p23 + p31p32 = p21p31 + p32p12 + p13p23.  
Each player’s probability of having rank 2 can be 
obtained by subtraction from unity in Table 3. The 
expected value of player A’s rank can be shown to 
equal E(RA) = 2 + (p12p13 – p21p31)/D = 2 + (p12 + p13 
– 1)/D, and the expected values for the other players 
are E(RB) = 2+(p21 + p23 – 1)/D and E(RC) = 2+(p31 + 
p32 – 1)/D. 
As the expected rankings within the LS are functions 
of the row sums (for three players), the expected 
rankings under the LS give rise to the same ordering 
as under criteria 1 and criteria 7. Thus, when p12 = 
0.6, p13 = 0.5, p23 = 0.6, the row sums are 1.1, 1.0, 
0.9, the values for E(Rank) are 2.1351, 2.0, 1.8649, 
and the above linear relationship is clear. Further, 
when p12 = 0.6, p13 = 0.6, p23 = 0.85, player A has a 
higher probability than player B of being at the top 
of the LS (0.4737 > 0.4474), although player B is 
better than player A under criteria 1 and criteria 7. 
This is because in this example p12p13 > p21p23. It can 
be seen that the players’ probabilities of being at the 
top of the LS are in exact accordance with criteria 3. 
 

 
Probability Top of ladder (rank 3) Bottom of ladder (rank 1) 
Player A p12p13/D p21p31/D 
Player B p21p23/D p32p12/D 
Player C p31p32/D p13p23/D 

Table 3: Some details for the ladder system 
 
The ordering of players can depend on the 
scoring system for each individual match 
We now suppose that, in the example in Table 1, the 
scoring system to be used for each match between 
the players is the best-of-three of the earlier ‘units of 
play’ (e.g. best-of-three sets of tennis). The relevant 
match probabilities are now as in Table 4. 
 

Probability i beats j Player A Player B Player C Row total 
Player A X 0.648 0.648 1.296 
Player B 0.352 X 0.93925 1.29125 
Player C 0.352 0.06075 X 0.41275 
Total    3.0 

Table 4: The example in Table 1 revisited, with each 
match being the ‘best-of-three’ units of play’ 
 
It can be seen that now the best player is player A 
according to criteria 1 (rather than players A and B 
being equal according to that criteria). Thus, the 
ordering of a group of players can depend on the 
scoring system being used for each individual 
match. It follows that when data on best-of-three sets 
matches is used for the purpose of ordering players 
for a best-of-five sets competition, care should to be 
taken in the process of ordering the players. 
The ordering of four players 
We consider the effect of adding a fourth player to 
the three players considered above, and see whether, 
by adding a fourth player, the ordering of the initial 
three players can be affected. 
Consider the three players A, B and C in Table 1, 
and add a fourth player, Player D. Assume each of 
players A, B and C has the same probability p of 
beating player D, and consider eight examples.  
(a) p = 1.0, (b) p = 0.75, (c) p = 0.5, (d) p = 0.25,  
(e) p = 0.0, (f) p23 is changed from 0.8 to 0.9, and p 
= 0.5, (g) p23 is changed from 0.8 to 0.8706, and p = 
0.5, (h) p23 is changed to 0.885, and p = 0.5. 
Examples (f), (g) and (h) are not chosen arbitrarily, 
but are chosen quite specifically to demonstrate 
certain facts. Case (f) is an example in which players 
A and B are equal under ranking criterion 3, but 
player B is better than player A under ranking 
criterion 1.  In case (g), the value of p23 = 0.8706 has 
been chosen so that the probability player A wins a 
random knock-out equals the probability player B 
wins it, even though player B is better than player A 
under criterion 1. Further, case (h) is an example in 
which player A has a higher probability than B of 
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winning under criteria 3, but has a lower probability 
of winning a random knock-out. The purpose of 
these various examples is to demonstrate that the 
relative ordering of (say) 2 players can depend on 
the scoring system used for the tournament and the 
criteria within that scoring system. 
 
Thus, in case (a) players A, B and C each beat player 
D with probability 1, in case (c) players A, B and C 
each beat player D with probability 0.5, and in case 
(e) players A, B and C always lose to player D with 
probability 1. For all of cases (a) to (e), the row sum 
for player A equals the row sum for player B. Case 
(f) is the same as case (c) except that p23 is changed 
from 0.8 to 0.9, and case (g) is the same as case (c) 
except that p23 is changed to 0.8706. Case (h) is the 
same as case (c) except that p23 is replaced by 0.885. 
 
A round robin tournament with four players 
The seven criteria can be extended to four players. 
We note the following results 
(i) Considering cases (a) to (e), provided p is not 
equal to 0 or 1, player A performs better than player 
B under criteria 7. Thus, the addition of the fourth 
player, player D, has led to a (non-zero) criteria 7 
difference between player A and player B, a 
difference which is in the same direction as the 
outright win or criteria 3 difference. 
(ii) For cases (a), (c) and (e) the expected value of 
the ranks for players A and B are equal, whereas the 
expected values are very slightly different in cases 
(b) and (d), even though players A and B have equal 
row sums. Unless p = 0, 0.5 or 1.0, players A and B 
score slightly differently under criteria 5 (E(rank)), 
even though they score equally under criteria 1. 
(iii) In case (f), the probability that player A wins 
outright equals the probability that player B wins 
outright (i.e. players A and B are equal under 
criteria 3 since p12p13p14 = p21p23p24, even though 
player B is better than player A under criteria 1. 
(iv) In case (h) player A has a higher probability 
than player B of winning the RR outright (criteria 3), 
whilst it will be seen in the next section that he has a 
lower probability of winning the RKO. Thus, the 
addition of a fourth player has changed the earlier 
result for three players… ‘the ordering of three 
players in a RKO tournament is always identical to 
the ordering under criteria 3 for a RR tournament’. 
The probability that player A wins outright, the 
probability player B wins outright, …are given by 

141312)( pppAP =
, 

242312)1()( pppBP −=
, 

342313 )1)(1()( pppCP −−=
, and 

)1)(1)(1()( 342414 pppDP −−−=
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where these probabilities are expressed as functions 
of the above-diagonal elements of the pij matrix. One 
could use differential calculus to evaluate the effect 
on any of the above expressions resulting from a 
change in one or more of the pij values (see Pollard 
and Pollard (2007a and b)). Correspondingly, one 
could write down expressions for the player’s values 
under criterion 7, and use the calculus similarly. 
A random knock-out with four players 
For the cases (a) to (d), the probability that player A 
wins a RKO is always greater than the probability 
player B wins it, even though players A and B are 
equal under criteria 1. In case (g), the value of p23 
(0.870588235) has been selected so that the above 
two probabilities are equal. 
Except for examples (f), (g) and (h), the probability 
players A and C are in the final equals the 
probability players B and C are in the final, and the 
probability A and D are in the final equals the 
probability players B and D are in the final. These 
equalities may have been anticipated. One can write 
down expressions for P(A wins the RKO), P(B wins 
the RKO), …The expression for player A is 

+++= 2412134314341312 ()(()( ppppppppAp  

                 3/))() 32132312144214 ppppppp ++  

The ladder system with four players 
There are 24 states; ABCD, ABDC, ACBD, …, 
DCAB and DCBA, called states 1, 2, 3, …, 23 and 
24. Using recurrence methods, the steady state 
probabilities were found by inverting the relevant 
23*23 matrix, and it was verified that those 
probabilities could be calculated by the method 
discussed above. The steady state probabilities of 
being on top of the LS (rank 4), second on the LS 
(rank 3), …, for each of the players were calculated.  
 

Player Rank 4 Rank 3 Rank 2 Rank 1 Sum Expected Rank 
A 0.3553 0.2763 0.2105 0.1579 1.0 2.8289 
B 0.3158 0.3158 0.25 0.1184 1.0 2.8289 
C 0.0789 0.1579 0.2895 0.4737 1.0 1.8421 
D 0.25 0.25 0.25 0.25 1.0 2.5 
Sum 1.0 1.0 1.0 1.0   

Table 5: Steady state probabilities for the ranks (case (c)) 
 
These are given in Table 5 for case (c). Player D’s 
expected rank is 2.5 (midway between 1 and 4), and 
the other players’ expected ranks are linearly related 
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to their row sums (eg. 2.8289 = 2.5 + (1.7 – 
1.5)*1.6447; and 1.8421 = 2.5 + (1.1 – 1.5)*1.6447.) 
The following results for the LS are noted. 
(a) If Player A is first on the LS with a higher 
probability than player B, then player A wins the RR 
outright more often than player B. 
(b) For the LS, E(Rank A) equals E(Rank B) in 
cases a), c) and e). However, E(Rank A) is less than 
E(Rank B) for case b) (as for the RR), and E(Rank 
A) is greater than E(Rank B) for case (d) (as for the 
RR), even though players A and B have equal row 
sums. This can be explained, for example, by the 
nature of the expression for P(A) below. Thus, 
unless p = 0, 0.5 or 1.0, players A and B score 
slightly differently under criteria 5 (E(rank)), even 
though they score equally under criteria 1.  
The probability A is on top of the LS (rank 4) is 

34232423141312 )1((()( pppppppKAP −+=  

                   ))1)(1( 3424 pp −−+ , 

where K is the reciprocal of the general expression 
for the sum of the various ‘products’ (see earlier). 
An example of ordering players 
Suppose we have four ‘equal but not identical’ 
players with the pij matrix given in Table 6. 
 

pij Player A Player B Player C Player D Sum 
Player A X 0.6 0.5 0.4 1.5 
Player B 0.4 X 0.6 0.5 1.5 
Player C 0.5 0.4 X 0.6 1.5 
Player D 0.6 0.5 0.4 X 1.5 

Table 6: An example with four ‘equal’ players 
 
Now suppose p14 is increased from 0.4 to 0.5, and 
hence p41 is decreased to 0.5, making A clearly the 
best and D the worst player. Further, suppose p23 is 
changed from 0.6 to p, and hence p32 is changed to 
1-p. We consider the ordering of the players for five 
scoring systems (winning the RR outright, pair-wise 
comparisons for the RR, winning the RKO, being 
top of the LS, and E(Rank) in the LS) as p increases 
from 0.6 up to 1. It can be shown that 
(a) Based on the criteria of winning the RR outright, 
the ordering of the players when p is between 0.603 
and 0.666 is ABCD. The ordering changes to ABDC 
when p is somewhere in the range 0.666 to 0.667, 
and it changes again to BADC as p passes through 
0.75. Thus, as B’s probability of beating C increases, 
firstly D becomes a better player than C when p is 
somewhere between 0.666 and 0.667, and secondly, 
B becomes better than A as p moves above 0.75. 
(b) When p is in the range 0.675-0.684, the ordering 
of the players is ABDC based on winning the RR 
outright or being top in the LS. However, the 

ordering is ABCD for three other criteria (the pair-
wise comparisons, the probability of winning the 
RKO, and the size of E(Rank) within the LS). Thus, 
for a given value of p, the ordering of the players 
depends on the scoring system being used and the 
criteria for ordering within that scoring system. 
(c) In four of the five scoring systems (excluding 
E(Rank)) the order changes from CD to DC and then 
from AB to BA at different values of p, the second 
change always being at a higher value of p. With 
E(Rank) for the LS however, these two changes 
occur at exactly the same value of p (89/128). This 
‘p-range’ from the ‘first order change to the second 
order change’ is smallest (ie. zero) for E(Rank) 
within the LS criteria, second smallest for the paired 
comparisons within the RR criteria, third smallest 
for RKO probability of winning criteria, second 
largest for the probability of being top in the LS 
criteria, and largest for the probability of winning 
the RR outright criteria. 
Seeding for optimal knock-out outcomes 
It is standard practice to seed players for a KO 
tournament. What is the reason for seeding? It would 
appear that the main reason for seeding players is to 
‘spread the better players’ across the draw. Given 
four players in a KO tournament, we could quantify 
the reason for seeding by maximizing the probability 
the best two players reach the final. We demonstrate 
how this can be achieved for four players. Suppose 
the relevant matrix is as given in Table 7.  
The probability that the players win a RKO are 
given in Table 7. The ordering of the players from 
best to worst is A, B, D, and C, based on the last 
column. One way of finding the KO draw that 
maximizes the probability that the best two players 
reach the final is as follows. Firstly, the matrix in 
Table 7 is re-ordered with the players in the order 
from best to worst. This is done in Table 8. 
 

Probability 
matrix 

A B C D Row 
Sum 

P(Player wins 
RKO) 

A X 0.55 0.55 0.5 1.6 0.2851 
B 0.45 X 0.65 0.5 1.6 0.2814 
C 0.45 0.35 X 0.6 1.4 0.2135 
D 0.5 0.5 0.4 X 1.4 0.22 

Table 7: A random knock-out example 
 
Calculate the maximum of p13p24 and p14p23 in this 
re-arranged matrix. The value of p13p24 is 0.5*0.65 = 
0.325, and the value of p14p23 is 0.55*0.5 = 0.275, 
the maximum being p13p24. Noting the subscripts, if 
player A plays player D (and B plays C) in the first 
round, the probability that the best two players, A 
and B, play in the final will be maximized. 
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Win Probability A B D C Sum 
A X 0.55 0.5 0.55 1.6 
B 0.45 X 0.5 0.65 1.6 
D 0.5 0.5 X 0.4 1.4 
C 0.45 0.35 0.6 X  

Table 8: A re-arranged matrix with players in order 
 
When is ordering/ranking of players necessary? 
We have seen that if the organizers of a KO 
tournament wish to maximize the probability that the 
best two players reach the final, there needs to be a 
way of finding who the best two players actually are. 
Using the criterion that the best two players are the 
two who have the highest probabilities of winning 
the KO tournament, we have seen how this can be 
done. For example, with 3 players, we can consider 
p12*p13 for player A, p21*p23 for player B, and 
p31*p32 for player C. The best two players are the 
two with the largest values for these products. With 
four players we can consider differences such as the 
probability player A wins a RKO minus the 
probability player B wins it, which is given by 

)()( 24211412432321131234 pppppppppp −+−  

))(( 211223142413 pppppp −++  
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By considering such differences, the best two of the 
4 players in a KO can be identified, and the above 
method used to determine the (optimal) draw. For a 
RR there is no obvious need to identify the best two 
players as the system is fair in the sense that every 
player plays every other player. Note however that 
an ordering method can be used to select which four 
(out of five or more) players are placed in the draw. 
With a KO structure however every player does not 
play every other player, and there is a greater need 
for ordering. Also, under the LS, every player plays 
every other player in due course in a way that is 
automatically determined by the LS. Thus, as for the 
RR, there is less need to order the players in the LS. 
 
 
3. RESULTS 
 
Several results have been noted in the methods 
section, and the main results have been summarized 
in the conclusions section. The overall result 
however is that the ordering of a group of players 
can depend on the scoring system being used for 
each individual match, the tournament structure and 
the criteria for ordering within that structure. 

 
 
4. DISCUSSION 
 

We have considered the RR, KO and LS in some 
detail. The KO system has a particular importance in 
many sports. For the KO the best player was defined 
as that player who has the highest probability of 
winning a RKO, the second best as that player with 
the second highest probability of winning, etc. The 
effect of alternative definitions might be explored. 
For example, given four players, the second best 
player might be defined as that player who, after the 
best player has been identified, has the next highest 
probability of reaching the final of a RKO. The 
worst player might be that player who has the 
highest probability of losing in the first round, or the 
lowest probability of reaching the final in a RKO. 
Alternatively the players might be ordered according 
to their expected earnings, or their probabilities of 
reaching a RKO final. These definitions may give 
rise to different orderings. 

 
 
5. CONCLUSIONS 
 
An ordering of players allows tournaments to decide 
which players to accept into the draw. For knock-out 
events it allows them to be seeded. The ordering of 
players however is not a trivial problem. 
We believe that the listing of the 7 ranking criteria, 
and the various results for round robins (RR), 
random knock-outs (RKO) and ladder systems (LS) 
for 3 and 4 players, identifies a range of issues and 
conclusions that are new or not commonly 
appreciated. Extending these results to more players 
is of course not a trivial exercise, but the authors 
believe that this paper gives important insights into 
addressing this extension. 
Several criteria for ordering the players within a RR 
were considered. One was based on the sum of a 
player’s probabilities of beating the others. This 
general criterion has relevance when the interest is 
in the total expected earnings or the expected 
number of wins. A second criterion was based on a 
player’s probability of winning outright, and this is 
relevant when (say) only one player moves to the 
next stage. A third criterion was based on a player’s 
probability of losing outright, and this is relevant 
when (say) all but one of the players move to the 
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next stage. A fourth general criterion was based on a 
player’s ‘pair-wise comparisons’ with the others. 
For four players, the ordering of the players in a RR 
is not necessarily the same for these criteria. 
The probability of winning a RKO was used as the 
criterion for ordering players for a KO event. For 3 
players (but not necessarily 4 players) this ordering 
is always the same as for the second criterion above. 
For the LS one criterion was the probability of being 
on top of the ladder. A second was the expected rank 
on the ladder. For three players (but not necessarily 
four players), this second criterion gives the same 
ordering as the first and fourth criteria above. 
The ordering for a group of players playing best-of-
three sets matches can be different to the ordering 
for the same group playing best-of-five set matches. 
Thus, when data on best-of-three sets matches is 
used for ordering players for a best-of-five sets 
event, care should to be taken in the ordering. 
The overall conclusion is that the ordering of a 
group of players can depend on the scoring system 
used for each match, the tournament structure and 
the criteria for ordering within that structure. 
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Abstract 
 

 
This is the second of two papers on ordering, ranking and seeding players and teams in sport. Such orderings 
may be used for player selection, seeding, handicapping, player progress evaluation and for predicting match 
and tournament outcomes. KAN-Soft data for eight of the top male tennis players is used in a simulation study 
to explore various ranking systems. These ranking systems rely on historical relative frequencies for pairwise 
performance in the context of two scoring systems and three tournament structures. Of special interest is the 
sensitivity of the rankings to individual cases. 
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1. INTRODUCTION 
 
Player orderings or rankings have administrative and 
motivational uses in all sports. For instance they are 
useful for selecting which players or teams should 
be allowed into elite tournaments, for seeding, 
handicapping, monitoring progress and predicting 
match outcomes (Bedford and Clarke, 2000;  
Klaassen and Magnus, 2003; Pollard and Meyer, 
2010). Several methods have been suggested for 
ranking purposes. Some of these methods rely on 
prize money awarded in the past while others use 
more heuristic measures based on particular point 
systems (Musante and Yellin, 1979; Cook, Golan 
and Kress, 1988; Cook and Kress, 1990, Stefani, 
1997). Evolutionary approaches for the 
establishment of ratings have also been considered 
(Bedford and Clarke, 2000; Clarke, 1994).  
In this paper pairwise comparisons of match 
performance are used in order to establish ratings 
(Blackman and Casey, 1980; Ali, Cook and Kress, 
1986; Strauss and Arnold, 1988). Pollard, Pollard 
and Meyer (2010) describe these methods in more 
detail and, in particular, they have explored various 
pairwise comparison criteria for ordering players 
(and teams) considering round robins, knockouts and 

ladder systems for three and four players. This has 
been done assuming that the probability that a player 
wins when playing against a specific opponent is 
known. Their results suggest that the ordering of 
players may depend on what tournament system is 
assumed and what scoring system is used for 
individual matches. In this paper these results are 
considered in the context of elite male tennis using 
KAN-Soft data to provide pairwise information for 
eight of the current top players in the world.  
 
2. METHODS 

Using the 2009 December KAN-Soft database, 
match results for the top eight male players were 
extracted and the relative frequencies for a win were 
determined for each possible pairing. Table 1 shows 
these results for all matches played between these 
eight players according to the KAN-Soft database. 
Some of these matches took place some time ago. 
For example the first match between Federer and 
Nadal took place at the French Open on 23rd May 
2005. Comparing the KAN-Soft rankings for 
December 2009 with those of a year previously  
little change was observed. Only two players had 
dropped out of the initial eight rankings (Badopalia 
and Tsonga) with Sorderling and Del Potro as their 
replacements. The data shows that of the 77 matches 
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he has played Federer has won 50 matches, giving 
him a 65% success rate overall, which has led to his 
dominance in the game for many years. 

 

 
 

ID Loser 
 

ID 

Winner 

1 
9  

8 
9  

5 
6 
8  

6 
5 
2  

6 
7 
7  

1 
0 
7 
5  

5 
9 
9 
2  

6 
4 
6 
5  

Match 
Wins 
(2009) 
(Rank) 

19    
Federer 

- 12 
 

6 
 

9 
 

6 
 

3 
 

8 
 

6 
 

50 
(1) 

89  
Roddick 

1 
 

- 
 

2 
 

0 
 

2 
 

3 
 

4 
 

0 
 

12 
(7)  

568  
Davydenko 

1 
 

1 
 

- 3 
 

4 
 

4 
 

1 
 

3 
 

17 
(6) 

652  
Sorderling 

0 
 

2 
 

6 
 

- 
 

2 
 

1 
 

1 
 

0 
 

12 
(8)  

677 
Nadal  

12 
 

3 
 

4 
 

3 
 

- 
 

7 
 

12 
 

4 
 

45 
(2)  

1075  
Murray 

6 
 

5 
 

5 
 

0 
 

2 
 

- 
 

3 
 

5 
 

26 
(4)  

5992  
Djokovic 

5 
 

2 
 

3 
 

4 
 

7 
 

4 
 

- 
 

3 
 

28 
(3)  

6465  
Del Potro 

2 
 

2 
 

0 
 

2 3 1 0 - 10 
(5)  

Matches 
Lost 

27  27 26  21 26  23  29  21 50 
(1) 

2008 Rank 2 6 5 17 1 4 3 9  

Table 1: Number of matches won and lost for the top 
eight male players as at 7/12/09 KAN-Soft data 
base. 

As shown in Table 1, the top eight players have all 
played against each other at least once. However, for 
some pairs there are very few matches (e.g. 
Sorderling and Murray have met on only one 
occasion). This deficiency is addressed by using a 
modeling approach to estimate the pairwise 
probabilities for winning in the case of each pairing.  

The model is constructed using the summary 
statistics given in Table 2, which shows the mean 
percentage of points won on serve and return for 
each of the eight players for all matches played 
amongst each other. The good performance of 
Federer on both service and return again justifies his 
position on the rankings as number one. However, 
Nadal is ahead of Federer on return and not far 
behind on serve, confirming that he is a worthy 
challenger. Amongst the other players Roddick is let 
down by his return while Davydenko and Del Potro 
are let down by their serves. 

 

 

Player Mean 
success 
on serve 

(%) 

Mean 
success 
on return 

(%) 

Rank 
on 

service 

Rank 
on 

return 

Federer 67.76 38.69 1 2 
Roddick 65.03 31.04 2 8 
Davydenko 60.95 38.53 7 3 
Sorderling 62.41 32.96 5 6 
Nadal 62.84 39.36 3 1 
Murray 61.10 37.69 6 4 
Djokovic 62.56 36.95 4 5 
Del Potro 59.75 32.62 8 7 

Table 2: Statistics used to predict the probability of a 
win on any match 

Using the results in Table 2 a binary logistic 
regression model which allows for the prediction of 
match probabilities (win or loss), for all possible 
pairwise combinations of players, was developed. In 
this analysis the results were weighted according to 
the number of matches played by each pair of 
players as indicated in Table 1. 

In the following equation pij represents the 
probability that player i will beat player j, while 
Servei represents the probability of player i winning 
a point on serve and Returnj represents the 
probability of player j winning a point on return. An 
interaction term between these two predictors failed 
to improve the prediction and was therefore omitted. 

ji
ij

ij turnServe
p

p
Re1526.0887.

1
ln −=















−
               (1) 

The odds ratio for the serve variable is 1.093 
suggesting that a 1% improvement for points won on 
serve will increase the odds of winning by 9% on 
average. The odds ratio for the return variable is 
.859 suggesting that a 1% improvement for points 
won by the opponent on return will reduce the odds 
of a win by 14% on average. However, there is a 
problem with these predictions because, for any 
match, the predicted probabilities of a win for both 
players do not necessarily add to one. This 
deficiency in the model predictions is easily 
corrected by dividing by the sum of the estimated 
win probabilities for each pair of players. Figure 1 
shows how these estimated probabilities of a win 
compare to the relative frequencies calculated from 
Table 1. In this plot the size of the points indicate 
the number of matches used to compute each 
relative frequency or “observed probability”. There 
is an obvious discrepancy between estimated and 
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observed probabilities when players have played 
each other on only rare occasions, especially when 
one of the players has won all these matches. 
However, when two players have met many times, 
as indicated by the larger points, the predicted and 
observed probabilities appear much closer. These 
results suggest that the predicted probabilities are 
more reliable than the “observed probabilities”, 
giving a better indication of the relative performance 
of each player. This is to be expected since these 
predicted probabilities are based on the average 
performance of each player on service and return for 
all of their Table 1 matches. 
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Figure 1: Predicted Probabilities (prob) of winning 
compared to Relative Frequencies (obsprob) from 
Table 1 

A ranking system for these eight players can be 
conceptualized as a one dimensional representation 
of these predicted pairwise probabilities of winning. 
Principal component analysis is commonly used to 
reduce the dimension of matrices of various types, 
with the eigenvalues used to measure the importance 
of each dimension. This technique was developed by 
Hotelling (1933) after its original creation by 
Pearson (1901). A principal component analysis was 
therefore performed on the Table 1 matrix of 
predicted winning probabilities, with zeros on the 
diagonal, and the first eigenvalue was used as a 
measure of the ranking feasibility. In this paper this 
measure is used to compare the feasibility of a 
ranking system for two scoring systems and to test 
the importance of each of the eight players to the 
strength of the ranking system.  

The initial analysis concerns a comparison of 3 set 
and 5 set scoring systems when the ranking system 
based on a simple row sum of winning probabilities, 
described by Pollard et al (2010), is used. The first 

eigenvalues are compared for these two scoring 
systems. In addition the sensitivity of the 5 set 
ranking system to each of the eight players is 
assessed by excluding each player one at a time, 
noting the value of the first eigenvalue and any 
changes in the rankings of the remaining seven 
players. Such a sensitivity analysis has practical 
applications in that it is important that injury or 
retirement for one of the top players should not 
make an existing ranking system redundant. 

In the ensuing simulations performed using the 
estimated win probabilities, the rankings for these 
eight players are compared using various tournament 
structures. The purpose of these simulations is to not 
only show any differences in the expected rankings, 
but also to indicate the degree of variation that can 
be expected in the rankings obtained for the various 
tournament structures.  

 
 
3.  RESULTS 
 
Comparison of scoring systems. 
 
The initial ranking system developed using the 
predicted pairwise probabilities of winning a match 
is obtained using the row sum method of Pollard et 
al (2010). This method is used below to compare the 
rankings obtained for two match scoring systems, 
best of 5 sets and best of 3 sets.  
The above predicted probabilities were based on a 
scoring system with the best of five sets used to 
determine the winner. Assuming independence 
between the performances of players in each set it is 
possible to compute the estimated probability of a 
win for each set (p) using the following equation for 
the probability of winning a five set match. 
 

)61510( 23 ppp +−                                  (2) 

This allows the calculation of pairwise probabilities 
of winning a best of 3 sets match using the formula 

)1(2 22 ppp −+                                         (3) 

Table 3 compares the row sum of winning 
probabilities for each of the eight players for a best 
of 5 sets and a best of 3 sets scoring structure. The 
rankings are identical, however, there is clearly more 
variation in the row sum of winning probabilities for 
the best of 5 sets matches (2.77 – 4.25) than there is 
for the best of 3 sets matches (2.91 – 4.11). The first 
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eigenvalue for the matrix of estimated pairwise 
winning probabilities is very similar for the two 
scoring systems, with a value of 55.58% for the 5 set 
matches and 55.79% for the 3 set matches. This 
means that a ranking system is only slightly more 
appropriate in the case of 3 set matches than it is in 
the case of 5 set matches, because a one dimensional 
model explains only slightly more of the variation in 
performance in the case of the best of three set 
matches. The shorter matches appear to better 
differentiate the performance of players, making it 
easier to create a meaningful ranking.  

 

Row Sum of 
Predicted Win 
Probabilities 

Ranking 
Player 

Best of 
5 sets 

Best of 
3 sets 

Best of 
5 sets 

Best of 
3 sets 

Federer 4.25 4.11 1 1 

Roddick 3.06 3.15 6 6 

Davy-
denko 

3.70 3.66 3 3 

Sorder-
ling 

3.04 3.13 7 7 

Nadal 4.01 3.91 2 2 

Murray 3.57 3.56 5 5 

Djokovic 3.58 3.57 4 4 

Del 
Potro 

2.77 2.91 8 8 

Total 28 28 28 28 

 
Table 3: Ranking based on the row sum of predicted 
pairwise probabilities for winning 
 

Sensitivity of Rankings to Individual Players 

Table 4 shows how the eigenvalues change when 
each player is removed in turn. It appears that in all 
cases the ranking is stronger when there are only 
seven players than when all eight players are 
included, because the first eigenvalue is slightly 
lower for the eight player ranking (55.58%) than for 
any of the seven player rankings. It appears that the 
strongest ranking emerges when Nadal is removed 
and the weakest ranking emerges when Roddick is 
removed. However, in only one case, when Murray 
is removed, is there a change in the rankings. This 
suggests that the row sum of winning probabilities 
produces a ranking system which is robust to the 
withdrawal of any one of the top eight players, 
confirming that a ranking system based on the row 

sum of winning probabilities is likely to be effective 
in practice. 

 

Ranking for remaining 
players using the row sum of 

winning probabilities 

Player 
removed 

First 
eigen

-
value 
(%) 

1 2 3 4 5 6 7 8 

1.Federer 56.59 * 1 2 3 4 5 6 7 
2.Nadal 56.63 1 * 2 3 4 5 6 7 
3.Davydenko 56.53 1 2 * 3 4 5 6 7 
4.Djokovic 56.41 1 2 3 * 4 5 6 7 
5.Murray 56.43 1 2 3 7 * 5 6 4 
6.Roddick 56.39 1 2 3 4 5 * 6 7 
7.Sorderling 56.41 1 2 3 4 5 6 * 7 
8.DelPotro 56.59 1 2 3 4 5 6 7 * 
None 55.58 1 2 3 4 5 6 7 8 

 
Table 4: Sensitivity analysis for ranking for best of 5 
set matches 
 
The results of the three tournament simulations are 
now considered. In these examples the estimated 
pairwise probabilities of winning are considered 
only for five set matches. 
 

Round Robin Tournament 

Results for 1000 round robin tournaments were 
simulated using the above predicted pairwise 
probabilities. The average number of matches won 
by each player in these tournaments appear in Table 
5. The rankings based on these averages are clearly 
identical to those obtained in Table 3. 

Also of interest is the consistency of the players. 
Roddick and Nadal have the lowest standard 
deviations for the number of matches won 
suggesting that these two players are slightly more 
consistent than the other players. However, when 
one looks more closely at the simulated results it is 
interesting to find that there is an outright winner for 
only 63.9% of the tournaments, with 24.5% of 
tournaments shared between 2 winners and the 
remaining 11.6% of tournaments shared between 3-6 
winners. This, as well as tournament time 
restrictions, means that round robin tournaments are 
not usually a feasible option at this level of tennis. 
We now consider the results for a simulation of 
results for 10000 knockout tournaments, which are, 
of course, the most popular form of tournament for 
elite players. 
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 Number Matches Won  

Player Mean Standard 
Deviation 

Ranking 

Federer 4.23 1.32 1 
Roddick 3.07 1.26 6 
Davydenko 3.78 1.30 3 
Sorderling 2.97 1.33 7 
Nadal 3.96 1.28 2 
Murray 3.56 1.32 5 
Djokovic 3.65 1.32 4 
Del Potro 2.79 1.32 8 
Total 28  28 

Table 5: Rankings for 1000 Round Robin 
Tournaments 

Knockout Tournaments 

Two different types of knockout tournament are 
considered. The first simulation assumes a random 
knockout in that players are randomly assigned to 
divisions, while in the second simulation, referred to 
as a “seeded” knockout, Federer and Nadal are 
placed in separate divisions as is common for the top 
seeded players, in order to improve the chances of 
the top seeds reaching the final.  

Table 6 clearly shows that the seeded knockout 
tournament strategy is beneficial for the top seeds. 
The simulation shows Federer winning 31.6% of the 
seeded knockout tournaments and reaching the final 
in a further 22.2% of these tournaments, whereas, in 
the random knockout tournaments, he wins only 
23.5% of these tournaments and reaches the final in 
only a further 13.1% of these tournaments. 

 

 Random Knockout Seeded Knockout 

Player Win Final Rank Win Final Rank 
Federer 23.5 13.1 1 31.6 22.2 1 
Roddick 6.2 12.5 7 4.3 5.8 8 
Davydenko 10.5 16.9 5 8.4 8.8 5 
Sorderling 8.0 10.5 6 5.7 8.4 6 
Nadal 20.4 12.0 2 18.4 17.6 2 
Murray 12.0 13.4 4 12.4 13.5 4 
Djokovic 14.3 11.5 3 14.1 15.2 3 
Del Potro 5.2 10.2 8 4.9 8.4 7 

Table 6: Rankings for 10000 Knockout Tournaments 

However, the rankings for random and seeded 
knockouts are similar with only Roddick and Del 
Potro changing places. However, a comparison of 
the results for knockout and round robin 

tournaments shows a major change in the rankings. 
Although Federer and Nadal are consistently in the 
top two positions there are plenty of differences for 
the other players. Djokovic and Murray move up to 
positions 3 and 4 in the case of knockouts, while 
Roddick and Sorderling and Davydenko move 
down. 

We now consider Ladder Tournaments which 
assume an initial ladder and allow a number of 
challenges. Of particular interest in this case is the 
number of challenges required for the ranking to 
stabilize.  

Ladder Tournaments 

In our analyses we use the 2009 KAN-Soft rankings 
to suggest the initial ladder. This means that the 
order of play for the initial ladder challenge follows 
the pattern shown in Table 7. This initial series of 
matches is referred to as the first ladder challenge 
below. Figure 2 illustrates the mean average 
rankings for 1000 simulations for one up to 1000 
such ladder challenges.  

 
a. Federer plays Nadal deciding rank 1 
 
b. If Federer wins then Nadal plays Djokovic. 
Otherwise Federer plays Djokovic. This match 
decides rank 2. 
 
c.The winner of (b) plays Murray. This match 
decides rank 3. 
 
d.The winner of (c) plays DelPotro. This match 
decides rank 4. 
 
e.The winner of (d) plays Davydenko. This match 
decides rank 5. 
 
f.The winner of (e) plays Roddick. This match 
decides rank 6. 
 
g.The winner of (f) plays Sorderling. This match 
decides ranks 7 and 8. 
 
Table 7: Initial Ladder Challenge based on 2009 
KAN-Soft rankings 
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Figure 2: Average rank plotted against number of 
ladder challenges on a log scale  
 

Figure 2 shows that regardless of the number of 
challenges the players appear to hold their positions, 
suggesting that it does not really matter how many 
ladder challenges are considered. However, for the 
first 10 ladder challenges the mean rankings move 
closer together, perhaps suggesting that rankings 
should be based on 10 ladder challenges.   

Figure 3 shows the standard deviations for the above 
rankings. Clearly the standard deviations for the 
rankings grow as the number of ladder challenges 
increases, especially for the higher seeded players. 
However, the weaker players, such as Sorderling 
show more stability. Interestingly the standard 
deviations appear to stabilize after only 10 ladder 
challenges, again suggesting that this might be a 
realistic number of ladder challenges to use in order 
to establish rankings. 

 

 
 
Figure 3: Rank Standard Deviation plotted against 
number of ladder challenges on a log scale  
 

Finally, the sensitivity of the rankings to the initial 
ladder is explored in Figure 4. The initial ladder for 
Figure 4 has Djokovic at the top of the ladder, 
Federer at number 2 and Nadal at number 3, but the 
remaining players retain the spots allocated to them 
previously. The results clearly show that Federer 
tends to move back to the top of the rankings after a 
single ladder challenge and that the rankings of all 
the other players are unchanged. This confirms that 
this ranking system is not sensitive to the initial 
allocation of rankings and is capable of correcting 
any error in the initial ladder ranking. These results 
also suggest that it is sufficient to consider 10 ladder 
challenges when setting up a ranking based on the 
ladder tournament structure 

 

4. DISCUSSION 
 

This paper has developed a method for estimating 
pairwise probabilities for winning matches. This 
means that even when two players (or teams) have 
never met, it is still possible to estimate their relative 
chances of winning a match. 
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Figure 4: Average rank plotted against number of 
ladder challenges on a log scale when Djokovic 
starts at the top of the ladder  
 
It has been suggested that a ranking system can be 
established by taking the row sum of these estimated 
pairwise probabilities of winning. A sensitivity 
analysis was conducted in order to assess the affect 
of different scoring systems and player retirement or 
injury on these rankings. No differences in the 
rankings for the best of three set matches and the 
best of five set matches were observed. Similarly the 
removal of single players appeared to have no effect 
on the rankings except in the case of Murray. 
Further sensitivity analyses could be conducted in 
terms of the estimated probabilities of winning and 
also in terms of the probabilities of winning a point 
on serve or return, which were used in the binary 
logistic regression model to estimate the pairwise 
probabilities of winning.  
 
We have considered the rankings derived using 
simulated round robin, knockout and ladder 
tournaments. The purpose of these simulations was 
to allow for random variation in performance, 
thereby giving us some idea about the variability in 
rankings that could emerge from such systems if 
they were employed in practice. The only major 
difference between the rankings between these 
tournament simulations and the original ranking 
system, based on the row sum of predicted pairwise 
probabilities of winning, occurred in the case of 
knockout tournaments. This is strange, given the fact 
that the KAN-Soft data used in this analysis was 
collected using data from knockout tournaments. 
Although the positions of the top two players were 
not adversely affected in the case of knockout 

tournaments, even in the case of random knockout 
tournaments, it was found that the positions of the 
remaining six players changed when simulated 
knockout tournaments were  used to create a 
ranking. 

The knockout system has particular importance in 
many sports. In tennis in particular, almost all 
tournaments use the knockout structure. For this 
simulation the best player was defined as that player 
who had the highest probability of winning the 
random knockout tournament, the second best player 
was defined as the player with the second highest 
probability of winning, etc. We note here that the 
effect of alternative definitions might be explored. 
For example, given four players, the second best 
player might be considered to be that player who, 
after the best player has been identified, has the 
highest probability of reaching the final. The worst 
player might be that player who has the highest 
probability of losing in the first round, or the lowest 
probability of reaching the final. Alternatively the 
players might be ordered in terms of their 
probabilities of reaching, or they might be ordered 
strictly according to their expected earnings. In 
tennis for example, a typical ‘winnings structure’ is 
that the winner in the final receives $x, the loser in 
the final receives $x/2, and the losers in the semi-
final receive $x/4. These different definitions for 
ordering the players may give rise to different 
rankings. 

In the case of the round robin tournament 
simulations it was assumed that the best player won 
the most matches, the second best player won the 
second highest number of matches etc. For a single 
tournament this system will not work because tied 
results are so common. However, the simulation of 
1000 tournaments overcame this problem. In the 
case of ladder tournaments one of the aims was to 
determine how many (complete) ladder challenges 
should be allowed in order to establish a final 
ranking. The results showed that any changes in the 
ranking (e.g. Djokovic placed at number 1 instead of 
3) were quickly corrected by the ladder system and 
that rankings were not sensitive to the number of 
ladder challenges allowed. However, the simulations 
showed an increase in the standard deviations 
associated with the rankings from one to about ten 
ladder challenges, suggesting that ten ladder 
challenges would give a realistic picture of the 
ranking variability that could be expected with this 
system.  
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This analysis has considered only tennis and only 
the world’s top eight male players. It is expected that 
further analyses which consider female tennis 
tournaments, other tournament-based sports and a 
doubling or tripling of the number of players or 
teams would provide further interesting results, 
particularly in the case of knockout tournament 
structures. Also, this paper has used a binary logistic 
regression to estimate pairwise probabilities of 
winning a match based on the success of players on 
service and return. Conceivably there are many other 
ways of estimating these probabilities, perhaps using 
points rather than match results or using alternative 
models. 
 
5. CONCLUSIONS 
 
The results of this study have shown that the 
December 2009 ranking of the top eight players by 
KAN-Soft is supported by the data. In particular a 
model has been developed which allows the 
estimation of pairwise probabilities of a match for 
the top men’s tennis players in the world. Using 
these estimates it has been shown that a simple 
ranking system based on the row sum of the 
estimated pairwise probabilities of winning is robust 
to changes in scoring rules, to the loss of one of the 
players and to changes in tournament structures in 
the case of round robin and ladder system 
tournaments. However, there do seem to be some 
differences between the rankings achieved using a 
knockout tournament structure and the other ranking 
systems that have been considered (round robin 
tournaments, ladder tournaments and the row sum of 
estimated paired probabilities of winning). This is 
important because so many sports rely on a 
knockout tournament structure to ensure that 
tournaments are viable in terms of time and cost. 
However, the results have suggested that in the long 
run random knockout tournaments will give the 
same rankings as seeded knockout tournaments, 
where seeded players are assigned to different 
divisions. 
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Abstract 
 
In elite AWD field athletic competition (World Championships, Paralympics) >20 disability classes may 
compete in each field event (e.g. Discus, Javelin, Shot). Logistic considerations require that classes be 
combined, which in turn dictates the requirement for intra-class comparison. There is a growing dissatisfaction 
with previous comparison methods based on a combination of recent best performances and the current world 
record. We show that the use of such a simple system inevitably leads to bias and a lack of fairness, due to the 
small number of results used; and suggest a novel, fair, system in its place. 
 
By utilising a large number of individual performances the distribution of performances in any class can be 
shown to follow (asymptotically) a 2-parameter extreme-value distribution for a given event. This large 
number of individual performances is obtained in practice by combining results from a number of different 
elite competitions by modelling specifically: technical improvements over time; and differences in competition 
standards. This threshold-difference reduces as the number of throws in a class increases. Athletic 
performances are compared as percentiles of their respective distributions, modulo the uncertainty in the 
percentile estimate. 
 
A class by class analysis of the throws events (discus, javelin and shot) at all Paralympic and World 
Championship events ( a total of about 30,000 throws) showed that, for the majority of event/class 
combinations, a linear quartile-quartile plot was consistent with a 2-paramater extreme-value distribution. The 
coefficients of the linear relationship of these plots formed the basis of inter-class comparisons, and 
uncertainties in these estimates allowed the determination of significant difference thresholds. 
 
The system can be used objectively to decide outcomes in mixed-class competition, and also for setting 
qualifying standards systematically. In a few cases, anomalous results indicated copying/transcription errors in 
official results or misclassification of athletes (in a number of cases these athletes subsequently underwent re-
classification). A colleague (Prof. Will Hopkins, AUT, NZ) suggested a refinement of the methodology so that 
all parameters (class differences, technical improvements and competition differences) were determined in a 
single step, using a bootstrapping technique, and this will be reported on elsewhere. The uncertainty in 
estimating EV-distribution parameters leads to a threshold-difference, within which performances must be 
declared equal (a tie). This is an inescapable feature of the task of class comparison, and although usually 
overlooked, must be recognised in a fair system. 
 
The methodology is quite general, and can also be used to compare relative performances across gender, 
events (the Meet Champion), and even time, for both AWD and able-bodied athletes (“the athlete of the 
decade”). Ultimately it could be used to place ’enhanced classes’ (prostheses, drugs, genetics...) on an even 
footing with all other athletes! 
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Abstract

The number of obese children is increasing steadily. This is mainly caused by a lack of physical exercise.
Furthermore, those problems are highly correlated with the increasing prevalence of cardiovascular dis-
eases. Health insurance companies are demanding special programs to motivate obese children to exercise
frequently.
This work proposes a computer game to motivate children to physical exercise. Unlike common
acceleration-based games it additionally evaluates the outcome of the cardiovascular system. Our com-
puter game uses a portable chest module, which is mounted on a chest strap. It includes sensors for single
channel ECG, 3D-acceleration, and temperature. All data is transmitted continuously to a desktop computer
by using a 2.4GHz wireless connection.
Our chest module enables the user to evade randomly created obstacles in the game’s scenario by bending
sideways or by jumping and to project the running speed on the agent. These motion patterns are detected
by smoothing and adaptively thresholding the acceleration signal. The heart rate is used to judge the game’s
outcome and is determined by filtering the signal and applying a heuristic scheme.
The performance of the motion pattern recognition was tested with different probands. Bending sideways
is recognized with a sensitivity of 97% and a specificity of 99%. Jumping and running are detected with
a sensitivity of 95% to 100%. The body movements caused a moderate to high cardiovascular strain with
heart rates between 100 to 160 beats per minute. The probands described the interaction with the game as
entertaining and challenging. Combining our chest module with a computer game is an attractive approach
to prevent obesity among children.

Key words: Motion tracking, physiological stress, obesity prevention, cardiovascular diseases

1. INTRODUCTION

A lack of physical exercise is an increasing prob-
lem in the developed countries. The reasons for
this problem can be found in mainly sitting activi-
ties in school, at work, and in personal life. Conse-
quences are obesity, postural defects or premature
cardiovascular diseases even at young age (Kurth
and Rosario (2007)). In Germany 15% of the
young people between the ages 3-17 have over-

weight (BMI > P90)1. Furthermore, 6.3% suffer
from obesity (BMI > P97). The highest increase
towards overweight can be found during elemen-
tary school age (Kurth and Rosario (2007)). In
this context regular physical exercise is of impor-
tance (Opper et al. (2007)).
The AOK, the largest German health insurance

1The statistical data were taken from a study (KiGGS) of
the Robert-Koch-Institute from 2003 to 2006. BMI is short
for Body Mass Index. P90 and P97 stand for overweight and
obesity within the percentile curve of the weight distribution.
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Figure 1: The module mounted on a regular chest belt with
integrated electrodes. The external battery pack is optional,
normally a coin cell is used. The lower part of the figure shows
the receiver for transferring the data to a desktop computer.

company, cooperates with several institutions and
universities to launch projects in kindergarten and
school against obesity. The aim is to introduce ex-
ercise programs and create an understanding for the
importance of sport.
Since 2006, starting with Nintendo Wii, sev-
eral acceleration-based computer games have been
brought to the market. They capture movements
using acceleration sensors. High sales figures in-
dicate the attractiveness and acceptance of this
approach. On the Game Developer Conference
in March 2010 Electronic Arts announced a ver-
sion 2.0 of their ”Sports Active” series which ex-
tends a motion based controller with the oppor-
tunity to measure the heart rate. In conjunction
with a training manager the program will guide the
user through a personal training plan (Steinlechner
(2010)).
Besides of the use as a leisure activity there are
projects utilizing miniaturized motion sensors on
clinical background. ”Partnership for the Heart”
(Köhle, Lücke (2007)) is a project of a consortium
led by the university hospital Charité in Berlin. It
links different sensors wirelessly to treat patients
with congestive heart failure in their home environ-
ment. If a critical situation is detected it provides
the possibility to transfer the required medical data
to a tele-health facility for seeking aid. The re-
mote patient monitoring system includes an activ-
ity sensor. This module uses acceleration sensors
to measure the patients motions to guide the pa-
tient through a 6-minute-walk test at home (Jehn et
al. (2009)).
Witkowski et. al (2008) have developed a portable

chest module for measuring body movement and
physiological parameters. Figure1 shows the mod-

ule mounted on a chest strap. The module includes
sensors for single channel ECG (Electrocardiogra-
phy), 3D-acceleration, and temperature. Data is
transmitted continuously to a desktop computer us-
ing a 2.4GHz wireless connection.
This work examines how to use this module for
obesity prevention. First the quality of the reg-
istered ECG and acceleration signals is evaluated
to detect the heart rate and motion patterns. Fur-
thermore, a game scenario is developed in which
the module enables the user to evade randomly cre-
ated obstacles using the detected motions. The sce-
nario demands various movements such as running,
jumping and bending sideways to control the agent.
In this way the user is challenged to activate differ-
ent muscle groups. The heart rate is used to mea-
sure the cardiovascular stress and functions as a
feedback loop to adapt game parameters. The chest
module and the game scenario were evaluated with
probands for usability.
The system is designed to be appropriate and at-
tractive for young people to motivate them to train
regular with a training effective level.

This paper is organized as follows. Section 2 out-
lines the signal filtering of the ECG captured with
the chest module and the determination of the heart
rate. Section 3 outlines the signal filtering of the
measured accelerations and the recognition of the
motion patterns running, jumping and bending of
the upper torso. Section 4 states the results of the
performance tests on the pattern recognition and
the game scenario. Section 5 discusses the results
and possible improvements. Section 6 outlines op-
tions for future use of the chest module.

2. Heart Rate Detection

Registering signals on the surface of a moving body
usually causes superposed artifacts of body move-
ments. In addition one observes electromagnetic
interferences (Thakor and Zhu (1991)). The pat-
tern recognition algorithms need to react robust to-
wards these disturbances.
Compared to clinical ECGs which are regis-
tered with self-adhesive electrodes we expect sig-
nificantly more motion-related artifacts (Brüne
(2008)). This is mainly caused by the slipping of
the electrodes during movements. Varying contact
resistance and additional myographic contributions
result in noise and a fluctuating signal baseline (fig-
ure 4). Furthermore, the signal quality depends on
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Figure 2: An undisturbed ECG registered with the chest mod-
ule at rest with good conductance between electrodes and skin.

Figure 3: An ECG disturbed with electromagnetic influences
(high peak at 50Hz in the power spectrum). The ECG was
registered at rest with poor conductance between electrodes
and skin.

the conductance of the electrodes and the closeness
to unshielded electronic devices (figure 2 and fig-
ure 3). Several algorithms for heart rate detection
in clinical ECGs have been published. A popular
approach for QRS2 detection has been introduced
by Pan and Tompkin (1985). We have adapted
their method to the observed disturbances in the
ECG-signal registered with the chest module dur-
ing physical exercise.
The signals are filtered to suppress irrelevant sig-
nal components and to accentuate the pitches of
the R-waves3. First a bandpass, implemented as
a combination of an averaging and a median filter,
is applied on the ECG input signal to reduce the
influence of other muscles, electromagnetic distur-

2The QRS-complex describes a series of waves that corre-
spond to the contraction phase of the cardiac chambers.

3The R-wave has the highest pitch within a QRS-complex.

Figure 4: An ECG disturbed with motion and electrode arti-
facts. The ECG was registered during physical exercise with
good conductance between electrodes and skin.

Figure 5: An undisturbed ECG (red) and the filter output
(green). The ECG was registered with little movement and
good conductance between electrodes and skin.

bances and baseline variations. Second a gradient
filter accentuates the R-wave and removes compo-
nents with smaller gradients per time, e.g. baseline
variations. The output is squared for pointing out
the QRS-complex and obtaining the absolute value.
Finally a long range averaging filter smoothes the
signal leaving QRS-complexes as peaks in the filter
output with other signal components near the base-
line. Figure 5 and figure 6 show the ECG input and
the filtered signal. To determine the heart rate, the
filtered signal is analyzed for matching threshold-
ing criteria. In this regard the signal filtering highly
influences the performance of the detection algo-
rithm. Strong artifacts may lead to similar charac-
teristics in the filter’s output signal and a heartbeat
is false wise detected when the thresholds are ex-
ceeded. Because it is not to be expected that all
disturbances can be suppressed (Brüne (2008)),
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Figure 6: An ECG disturbed with strong motion and electrode
artifacts (red) and the filter output (green). The ECG was reg-
istered during physical exercise and medium conductance be-
tween electrodes and skin.

the detection must check the plausibility of the de-
termined heart rate values to avoid unrealistically
or rapidly changing heart rates. If distinguishing
QRS-complexes from artifacts or noise is not pos-
sible, the detection must pause.
These requirements are implemented in form of a
heuristic algorithm. First the detection is initial-
ized by searching for a regular rhythm consisting
of 9 QRS-complexes. In the filter output QRS-
complexes are peaks with highest amplitudes. The
amplitudes are depending on the physiology of the
user and the conductance of the electrodes. The
routine searching for these QRS-complexes up-
dates the detection threshold to the signal quality of
the last found peak. Typically at the beginning of a
workout the conductance of the electrodes is poor,
but during physical exercise sweat improves the
quality of the captured ECG leading to sharp peaks
with higher amplitudes. As a result the threshold is
increased, fading out noises of smaller amplitudes.
To protect the heart rate detection against distur-
bances, the detection-routine is only called during
a time window when a heartbeat is expected. First,
a initialization phase determines the parameters of
the time window by searching for peaks matching
a series of heartbeats. During this phase the al-
lowed variations from peak to peak narrow down
to approach the heart rate rhythm. The search win-
dow is configured using the arithmetic average of
the last three detected peaks. After the initializa-
tion phase the heart rate is updated by averaging
the last 5 determined values. If there is no heartbeat
found in the given time period, the search interval is
increased. After continuously missing three heart-

Figure 7: Flow diagram of the heart rate detection algorithm.

beats the initialization routine is called again, as the
heart rate of the user can’t be expected to be the
same.

3. Motion Pattern Recognition

3.1. Detection of Running and Jumping

Typically sensors for detecting the user’s running
speed or jumps are placed near the foot. Compa-
nies like Suunto Oy, Garmin Ltd. and Polar Elec-
tro Oy have foot pods as accessories for their sport
watches. The foot pods are placed on top of the
shoes to capture the strides.
Measuring accelerations in the chest area leads to
different signal shapes as strides and jumps are ab-
sorbed. In this work the placement of the accel-
eration sensor is limited to the chest area as we
want the chest module to be easily attachable on
a chest strap. Furthermore, it is important to take
into account, that strides and jumps are performed
differently by each user and also vary over time be-
cause the body is getting exhausted or the attention
fades. This causes variations in amplitude, width
and form of the signal shapes.
The filtering of the acceleration signals smoothes
and accentuates characteristics of strides and jumps
and suppresses signal parts of irrelevant motions.
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Figure 8: Measured vertical accelerations (red) and the filter
output (green) of 6 jumps performed by proband A as uniform
as possible. The black bar is indicating the threshold and the
time period it must be exceeded for detecting a jump.

Figure 9: Measured vertical accelerations (red) and the filter
output (green) of 5 jumps performed by proband B as uniform
as possible. The black bar is indicating the threshold and the
time period it must be exceeded for detecting a jump.

Characteristic for strides and jumps are high pitch
rates and amplitudes in the registered signals.
Three criteria are used to recognize the patterns
running and jumping. Therefore, the filtered signal
must continuously exceed a threshold for a given
time period (black bars in figure 8, figure 9 and fig-
ure 10). If a stride or jump is recognized the de-
tection is paused afterwards. We determined that
in the game scenario 2 strides and 1 jump per sec-
ond are distinguishable in the acceleration signals.
The pause provides security for the motion pattern
detection to avoid strong disturbances to be contin-
uously recognized as a stride or jump. The settings
for the criteria were derived from tests with differ-
ent probands.

Figure 10: Measured vertical accelerations (red) and the fil-
ter output (green) of 4 strides. The black bar is indicating
the threshold and the time period it must be continuously ex-
ceeded.

3.2. Detection of the Bending Direction of the Up-
per Torso

For the detection, the baseline of the acceleration
signals is analyzed as it varies with the bending di-
rection of the upper torso. The axis of the accelera-
tion sensor which points straight down to earth has
a baseline of 1 g. With changes in the orientation
the gravity effects different axes causing changes
on their baselines. During physical exercise accel-
erations from body movements overlap the under-
lying baseline. A median filter over a time range of
0.5 sec is used to approximate the baseline. The de-
tection distinguishes bending forwards, backwards,
sideways left and right.
In tests with probands we determined the thresh-
olds of the attitude angle and the duration it must be
exceeded. Choosing a longer time period increases
the detection latency but reduces the algorithms re-
sponse towards unwanted movements (specificity).

3.3. Description of the Game Scenario

The game scenario is meant to challenge the user
on a medically sensible cardiovascular stress level
corresponding to a form of endurance sport. Fur-
thermore, the user is challenged to use different
movements to train various groups of muscles. On
the other side the scenario needs to be attractive to
make the user enjoy the workout.
The playing field is generated at random and con-
tains obstacles in form of ditches, holes and nar-
rowing walls. The detected motions are used to
control the game. Therefore, the user’s running
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Figure 11: Playing field designed to be appropriate for young
people.

speed is projected on the agent. Jumping and bend-
ing sideways are used to avoid obstacles. The goal
is to cover as much distances as possible per time.
The effort is rewarded with points covering dis-
tance per time and the complexity of the playing
field. At the moment the heart rate is valued with
points, too. In future it will be used to adapt the
playing field and the game rules to meet a training
effective heart rate zone.

4. RESULTS

The performance of the pattern detection was tested
with three different probands. For the evaluation
of the heart rate detection algorithm ECG records
are grouped in three classes with strong (class 3),
medium (class 2) and only few (class 1) distur-
bances (figure 12). For the evaluation records con-
taining 1729 QRS-complexes (class 3: 192, class 2:
457, class 1: 1080) were manually analyzed. The
outcome is noted in form of a contingency table
and the sensitivity and specificity rate is calculated.
The sensitivity rate describes the detected QRS-
complexes which are correctly identified as such.
The specificity rate states the negatives which are
identified as such. The determined sensitivity rate
in class 3 is 67% , in class 2 87% and in class 1
99%.
Missing consecutively one to three beats is com-
pensated by the algorithm and does not lead to
detection failures. Disturbances of class 3 in the
ECG-signal are seldom, but can lead to deviations
to the real heart rate. In conclusion the tests showed

Figure 12: Contingency table with the results on the perfor-
mance test of the QRS-detection algorithm. The test classi-
fies the recorded ECG-data into three classes. For evaluation
data files containing 1729 QRS-complexes were manually an-
alyzed.

that the heart rate detection is suitable for the pre-
cision needed in this scenario. Running strides are
detected with a sensitivity of 97% and a specificity
of 100% (180 strides were analyzed). The algo-
rithm’s parameters are set to detect strides corre-
sponding to running with moderate speed. It will
pickup other movements as well if they match the
pattern, but this has no disadvantage for our appli-
cation as it shows that the user is physically active.
Jumps are recognized with a sensitivity of 95% and
a specificity of 100% (108 jumps were analyzed).
For the evaluation the probands tried to continu-
ously jump with the demanded intensity. Changes
in the jump technique or trying out movements with
similar characteristics will lead to different sensi-
tivity or specificity rates.
The bending direction of the upper torso is detected
with a sensitivity of 97% and a specificity of 99%
(114 bendings were analyzed). As described, a
high reliability of the recognition is achieved by
taking into account signal values over a long time
range of 0.5 sec. To control a game this latency is
high and demands a game scenario with foresight-
ful acting. Overall the system requests the coordi-
nation of different movements and caused a cardio-
vascular stress level with heart rates between 100
to 160 beats per minute.
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Figure 13: Contingency table with the results of the perfor-
mance test on the motion pattern detection. For evaluation
data files containing 180 strides, 108 jumps and 114 bendings
of the upper torso were manually analyzed.

5. DISCUSSION

The tests showed that a correct position of the chest
strap is important. It should be placed tight under
the pectoral muscle to avoid slipping which causes
disturbances in the ECG and acceleration signals.
The user should also wet the electrodes with water
in advance. This increases the conductance and re-
duces the noise level of the ECG signal.
As already mentioned measuring accelerations in
the chest area has disadvantages for the recognition
of strides and jumps. However the results show that
the precision of the detection suits the requirements
of the given game scenario. In future it should
be researched if the accuracy can be increased by
adapting the algorithm’s parameters to the user and
environmental conditions. Furthermore, it should
be checked if this suppresses unwanted movements
to greater extend and whether the latency of the
bending detection can be reduced. This could be
done using an initialization step in advance or by
continuously learning optimal thresholds from the
user’s actions.
Ongoing tests should be extended with more
probands to acquire statistically more sufficient
data. Furthermore, tests with probands coming
from non technical background are necessary to an-
alyze the usability of the game controller.

6. CONCLUSIONS

This work analyzed the quality of the signals regis-
tered with the custom-made chest module. We ex-
amined its use as a game controller which addition-

ally allows measuring the cardiovascular outcome.
In the tests the probands felt challenged and it could
be shown that the developed algorithms are able
to recognize the motion patterns running, jumping
and bending as well as the heart rate with a preci-
sion suitable for the game scenario. In conclusion
the system could be used as part of an attractive ap-
proach to prevent obesity among children.
Different extensions or applications for the use of
the system will be investigated. The game speed or
the complexity level of the playing field could be
adjusted to the measured cardiovascular stress level
to match a personal training plan. A game scenario
in form of a ”Drill Instructor” could define a se-
ries of movements and monitor their correct execu-
tion. In this context not the latency of the detection
but its precision is of importance. Furthermore the
chest module can be used for applications in the
field of ambient assisted living or tele-health, for
example to transmit ECG data in case of an emer-
gency.
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Abstract 
 
The aim of this study was to investigate the effect of the shape of a taper on elite cyclists’ performance. Training and 
performance data were collected from two elite female cyclists over an extended period. Daily training load was 
quantified using a modified TRIMP (PTRIMP) and performance was quantified using a technique which calculates 
performance from power data recorded during races. The training load (PTRIMP) for the 3 days prior to each 
performance was analysed using a data mining approach whereby the time series is transformed into a symbolic 
representation.  Symbolic Aggregate approXimation (SAX) was the method used for the transformation. SAX 
divides the distribution space of the time series into a user-defined number of equiprobable regions.  Each region 
was assigned a symbol, and then each point in the time series was mapped to the symbol corresponding to the region 
in which it resides. The resulting symbolic representation thus described the shape of the training load prior to a 
performance. The shapes identified were grouped into 4 categories (low, high tail, low tail and high). The main 
effect of taper shape on performance was significant for both subjects (F(3, 22) = 4.2, p < 0.05, MSE = 0.5) and 
(F(3,18) = 3.9, p < 0.05, MSE = 0.3). There was considerable inter-athlete difference in optimal taper shape. The 
results indicate that this novel approach to identifying and examining the impact of taper shape can provide useful 
information to athletes and coaches in planning the most effective taper.  Future work could extend this technique to 
identify the patterns of training load in training microcycles, and relate these patterns to fatigue and performance 
measures. 
 
Keywords: taper, performance, shape, data mining 
 
 

 
1. INTRODUCTION 
 
The taper can be defined as a period of reduced training 
prior to a competition, undertaken with the aim of 
achieving peak performance at the desired time 
(Thomas, Mujika & Busso, 2009). It is of paramount 
importance in the preparation of athletes for 
competitions (Pyne, Mujika & Reilly, 2009).  
  
The effectiveness of a taper as reported in the literature 
varies, however the improvement in performance is 
usually in the range of 0.5-6%. A realistic goal for 
performance improvement as the result of a taper is 
about 3% (Mujika & Padilla, 2003). In competitive 
athletes such modest improvements are important. A 
worthwhile improvement for top-ranked athletes is 
estimated to be in the range of 0.5-3.0% for events such 
as endurance cycling (Hopkins, Hawley & Burke, 
1999).  
The aim of the taper is to reduce accumulated training-
induced fatigue, while retaining or further enhancing 
physical fitness (Bosquet, Montpetit, Arvisais & 

Mujika, 2007). The key elements to manipulate in 
determining an optimal taper include; the magnitude of 
reduction in training volume; training intensity; 
duration of the taper, and; the pattern of the taper 
(Pyne, Mujika & Reilly, 2009).  
 
Uncertainty exists about the optimal design of a taper 
(Mujika & Padilla, 2003). In a meta-analysis study 
Bosquet, Montpetit, Arvisais & Mujika (2007) 
suggested that training volume should be reduced by 
41-60% over a two-week taper, without any 
modification to training intensity or frequency. They 
found that reducing training volume elicited a 
performance improvement approximately twice that 
gained by modifying either training intensity or 
frequency.  
 
A number of taper patterns have been described and 
investigated in the literature. Training load can be 
reduced in the form of a simple step – where the load is 
suddenly reduced and then maintained at the same low 
level; or it can be reduced progressively, either with a 
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constant linear slope, or with an exponential decay 
(Thomas, Mujika & Busso, 2009; Mujika & Padilla, 
2003). There is evidence to suggest that a progressive 
taper is to be preferred (Bosquet, Montpetit, Arvisais & 
Mujika, 2007; Banister, Carter & Zarkadas, 1999).  
 
Little research has been done on more complicated 
taper patterns. One such study looked at the effect of a 
two-phase taper. This model study found that the last 3 
days of the taper were optimised with a 20 to 30% 
increase in training load. In the modelled response such 
a two-phase approach allowed for additional fitness 
adaptations to be made in the final 3 days, without 
compromising the removal of fatigue. The magnitude 
of the performance gain is questionable (0.01), 
however, over the optimal linear taper (Thomas, 
Mujika & Busso, 2009).  
Much of the literature provides generalised guidelines 
on designing an optimal taper. It must be noted, 
however, that individual responses to training vary. Not 
all athletes respond equally to the training undertaken 
during a taper, and tapering strategies must be 
individualised (Mujika, 2009). Individual profiles of 
training adaptation and the time course of de-training 
need to be considered in determining optimal taper 
duration (Mujika & Padilla, 2003).  
 
The positive performance results of the two-phase taper 
in modelling work done by Thomas, Mujika and Busso 
(2009) suggests that further investigation into optimal 
taper shapes is warranted.  
 
The purpose of this study was to investigate the effect 
of the shape of a taper on elite cyclists’ performance, 
and to determine if individual differences in optimal 
taper shape exist between athletes. We aim to 
investigate these aspects from a novel angle – through 
symbolisation of taper time series information and 
subsequent relation of the taper shape to performance. 

 
2. METHOD 
Two female elite cyclists provided data for the study 
over a period of 250 and 870 days respectively. An 
SRM power monitor (professional model, Schoeberer 
Rad Messtechnik, Germany) was fitted to each 
subject’s bike(s) over the data collection period. Power 
data from all rides (training and racing) was captured at 
1Hz. In accordance with operator instructions, the SRM 
was zeroed prior to the start of each session. SRM data 
files were imported into a custom-built program for the 
calculation of training load (PTRIMP) and 
performance.  
 
Quantifying Training Load 
The following steps were taken to calculate PTRIMP. 
The power data was first smoothed by taking 3 rolling 
averages, of durations of 5s, 30s, and 4mins. Each of 
the smoothed points was then given a weight, which is 
calculated by determining the percentage the point 
represents of the athlete’s Maximal Mean Power 
(MMP) for that duration. The percentage is then 
multiplied by an exponential formula (refer to equation 
(1)).  The weight of each point, for each of the 3 
smoothed datasets is then added together to determine 
PTRIMP (refer to equation (2)).  
 

 
where c = exponential curve based on MMP. 

 
 
 

 
 

 
(2) 

 

 

(1) 
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Figure 1. Comparison of the area under the MMP curve between an athlete’s personal best, and a 

Performance A. 
 
A record of MMPs for 5s, 30s, and 4mins achieved by 
the athlete was kept, and updated when a new personal 
best was achieved.  
 
Quantifying Performance 
Each athlete kept a training diary, which was used to 
identify races. Performances were included in the 
dataset when training data existed for the three days 
prior to the performance. Twenty-six performances 
were identified for Subject A, and 22 for Subject B.     
 
 A curve was created from the MMPs for time 
durations from 5s to 20min for the power file from 
which performance was calculated. The area under the 
curve was then compared to that of the athlete’s 
maximum MMP profile at the time of the performance 
(refer to Figure 1). The definite integral was calculated 
using the trapezium rule.  
 
The durations for which MMP were recorded were at 
regular intervals from 5s to 20min. These durations are 
chosen to represent a spectrum of energy system 
contributions. For durations of up to approximately 10 
seconds, energy is predominantly supplied by the 
anaerobic alactic system. From around 10 seconds to 
approximately 60 seconds, energy is predominantly 
supplied by the anaerobic lactic system. Beyond this, 
the contribution of the aerobic energy system 
increasingly becomes the major contributor (Gore, 
2000). The range in durations thus theoretically 
balanced out the effects of different types of races. 
 

Symbolic Aggregate Approximation 
Symbolic Aggregate approXimation (SAX) allows a 
time-series of arbitrary length n to be reduced to a 
string of arbitrary length w. The alphabet size used is 
also an arbitrary integer (Lin, Keogh, Lonardi & Chiu, 
2003). The process involves firstly normalising the 
time series to have a mean of zero and a standard 
deviation of one. A series of breakpoints are identified 
that divide a Gaussian distribution up into n number of 
equiprobable regions. These breakpoints are used to 
map each data point into symbols, such that a data 
point lower than the smallest breakpoint will be 
mapped to the symbol ‘a’, a point greater than or equal 
to the smallest breakpoint but smaller than the next 
breakpoint will be mapped to ‘b’ and so on (refer to 
Figure 2).  
 
A time series consisting of the three days training load 
(PTRIMP) in the lead up to a performance was created.  
The Matlab code of Lin, Keogh, Lonardi and Chiu 
(2002 & 2003) was used to discretise the time series of 
PTRIMP data. The code was customised in two areas. 
A change was made such that normalisation of the time 
series was performed based on the entire series, rather 
than just on the current ‘window’ of data. The code 
which performs numerosity reduction was also 
removed. A window size of three days and an alphabet 
size of three were used. An alphabet size of three was 
selected as a good compromise enabling the creation of 
a usable number of patterns whilst maintaining 
reasonable statistical power. 
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Figure 2.  Predetermined breakpoints are used to break the feature space into equiprobable regions. Each 

data point is mapped to the symbol of the region it falls in. 
 
The result was a sequence of three strings for each 3 
day taper period, representing the shape of the taper. A 
result of ‘321’, for example, represented consecutive 
days of high, medium and low training respectively.  
 
Taper Shapes 
The symbolised taper time series allowed different 
taper “shapes” to be identified. A number of 
categorisation schemes were tested. Analysis of the 
data suggested that the training load of the day before a 
performance had the greatest effect on the subsequent 
performance. It also suggested that a training load of 3 
(high) on the final taper day was highly represented in 
tapers resulting in poor performances. Using this 
knowledge a grouping scheme with four categories was 
developed (low, high-tail, low-tail and high). A low 
taper contained any combination of low to medium 
training loads. A high tail taper contained low to 
medium training loads on days one and two, and a high 
load on day three. A low tail taper consisted of a high 
training load on days one and/or two, and low to 
medium loads on day three. A high taper included 
tapers with a high training load on days one and/or two, 
and a high load on day three.      
 

Data Pre-Processing 
SRM files occasionally include short durations of 
spurious power readings. Such spurious data points 
were identified and removed.  
 

The Performance dataset for one subject contained an 
outlier. This (worst) performance was capped at -
155000(au).  
 
The Performance data was transformed by taking the 
natural log of Performance. A constant was added to 
Performance so that all values were positive prior to 
transformation. As performance is measured in 
arbitrary values (au), it was judged no information was 
lost in this process.  
 
Statistical Analysis 
The Shapiro-Wilk normality test was performed to 
verify the normality of the distribution. A two-way 
analysis of variance (ANOVA) confirmed that a 
significant interaction effect between subject and taper 
shape was present. Subsequently, the difference 
between the taper shapes was compared using a one-
way analysis of variance (ANOVA). The scale 
proposed by Cohen (1988) was used for interpretation. 
The magnitude of the difference was considered either 
small (0.2), moderate (0.5), or large (0.8).The statistical 
power for the effect size was determined to indicate the 
probability of correctly rejecting a false null 
hypothesis. Statistics were calculated using the R 
Statistical Package Version 2.6.1 (The R Development 
Core) and the package Rcmdr (version 1.3-15). 
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3. RESULTS 
 
Significant differences were observed in the mean of 
performances grouped by taper shape between subjects 
(for raw data refer to Table 1). The main effect of taper 

shape on performance was significant for both Subject 
A (F(3, 22) = 4.2, p < 0.05, MSE = 0.5) and Subject B 
(F(3,18) = 3.9, p < 0.05, MSE = 0.3). The effect of each 
taper group on performance showed considerable 
variation between subjects (refer to Figure 3).  

 
Table 1. Mean and standard deviation (SD) of performance grouped by taper shape for each subject. 

  Mean SD n 
Group Subject A Subject B Subject A Subject B Subject A Subject B 
High 11.28 11.36 0.36 0.27 5 4 
high 
tail 11.15 11.48 0.23 0.33 3 4 
Low 11.83 11.29 0.38 0.25 8 8 
low tail 11.56 11.78 0.33 0.28 10 6 

 
 

 
Figure 3. Plot of mean performance for each subject, grouped by category. Error bars show 95% confidence 
intervals. This plot shows the variation between subjects in their reaction to different taper shapes.  

 



 
 

The most effective taper for Subject A was a “low” 
taper, where combinations of low to medium training 
days were performed. The least effective taper was a 
“high tail” taper, where low to medium training was 
performed in days one and two, and a high training 
load was undertaken on day three. Using Cohen’s scale 
(Cohen, 1988) the effect size between the “low” and 
the “high tail” taper was classified as large. The 
statistical power was 97.5% (5% error level). When 
expressed as a percentage, this was a 6.1% 
improvement in performance.  
 
The most effective taper for Subject B was a “low tail” 
where a high training load was undertaken on days one 
and/or two, and a low training load undertaken on day 
three. The least effective taper for Subject B was the 
“low” taper. Using Cohen’s scale (Cohen, 1988) the 
effect size between the “low tail” and the “low” taper 
was classified as large. The statistical power was 92.4% 
(5% error level). When expressed as a percentage, this 
was a 4.4% improvement in performance.  
 
 
4. DISCUSSION 
 
The results show considerable variance between 
individuals in their response to a taper.  A two-way 
ANOVA showed that the interaction effects between 
taper shape and subject was significant. Combining the 
results of both subjects was considered inappropriate. 
The subjects for this study were reasonably 
homogenous – both female elite cyclists. Tapering 
advice in the literature is frequently generalised across 
genders, between different sports, and between trained 
athletes and elite athletes. These results suggest that 
specific tapering advice can not be provided using a 
generalist model.  
 
The “low” taper shape was associated with the highest 
mean performance for Subject A, and the lowest mean 
performance for Subject B. The optimal taper may be 
influenced by the intensity and volume of the training 
preceding the taper. Those who train harder and longer 
may require a longer taper to enable them to recover, 
while those with less training require a shorter taper to 
minimise loss of fitness (Kubukeli, Noakes, & Dennis, 
2002). One possible explanation for the variance in 
taper effect observed is that Subject A tended to carry 
more fatigue into the final 3 days of training, due to a 
higher training load in the preceding training cycle. 
Thus, a low training load in the taper allowed for more 
effective dissipation of fatigue, resulting in higher 
performance.  
The most effective taper shape for Subject B was the 
“low tail” shape. If Subject B went into the final 3 days 

with relatively low levels of fatigue, higher training 
loads would not have the negative effect on overall 
fatigue that they would for Subject A. Thomas, Mujika 
and Busso (2009) suggest that a moderate increase in 
training load in the final 3 days of a taper can allow 
adaptations to training to occur without compromising 
fatigue minimisation.  
 
The experimental design did not consider the training 
load prior to the final 3 days of taper before a 
performance. Previous work by the researchers 
(Churchill, Sharma & Balachandran, 2009) suggested 
that training load over the 3 days before a performance 
had the highest correlation with performance. The 
current research could be extended by modelling the 
training load in the 4-11 days prior to the 3-day period 
studied. Such an extension could potentially determine 
whether the level of training-induced fatigue brought 
into the taper period affects the optimal shape of the 
taper, as hypothesised.  
 
The training load quantification method (PTRIMP) 
aggregates the volume and intensity of training. This 
means it is not possible to distinguish the specific 
influence of training intensity during the taper. The 
model we have developed can determine the optimal 
shape of training load within a taper, but can not 
provide guidance on the optimal balance between 
training duration and intensity during the taper. There 
is general agreement in the literature that intensity 
should be maintained in the taper (e.g Mujika & 
Padilla, 2003; Pyne, Mujika & Reilly, 2009; Bosquet, 
Montpetit, Arvisais & Mujika, 2007), and this is the 
general practice followed by the subjects. 
 
In this study, crisp boundaries were used in 
determining the breakpoints in the symbolisation 
process. Crisp boundaries result in some loss of data, as 
two similar training load values positioned either side 
of a boundary will be treated as different categories 
although the actual difference in values is small. 
Removing crisp boundaries in favour of fuzzy 
boundaries would remove this potential issue.  
 
This research studied the effect of different taper 
shapes on performance in actual competitions. Few 
studies have used data from real world training and 
performance data. The relationship between 
performance in tests and performance in events was 
questioned by Hopkins, Hawley & Burke (1999), and 
how a change in performance in a test translates to 
performance change in a competition remains 
uncertain.  
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Performance tests in competition are affected by 
external factors, such as climatic conditions, tactics, 
drafting, terrain and varying competition types (time 
trials, hilly road races, flat road races and criteriums are 
all race types included in this study’s dataset). Such 
factors are either not applicable, or can be controlled 
for, in a lab situation. The fact that the effect size of the 
different taper shape treatments is significant for both 
subjects indicates that the model developed is robust, 
however.  
 
The use of field-derived model inputs makes this model 
a practical tool for the planning of a taper to maximise 
competition performance. The relatively minimal data 
collection requirements make it feasible for elite 
athletes to provide data without interfering with their 
normal training and racing. 
 
5. CONCLUSION 
 
This paper describes a model which uses power data 
from a cyclist’s training and races to determine an 
optimal individualised taper strategy for the final 3 
days before a competition. The model uses a novel 
application of a symbolisation technique to enable 
examination of the shape of a taper. The results of this 
study suggest that taper responses are highly individual, 
and can not be generalised. The use of field-derived 
model inputs makes this model a practical tool for the 
planning of a taper to maximise competition 
performance. Future work could extend this technique 
to identify the patterns of training load in training 
microcycles, and relate these patterns to fatigue and 
performance measures. 
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Abstract 
 
Weightlifting has been the subject of research among world scholars since a long time ago. Previous research 
mainly focused on biomechanical and kinesiological aspects, whereas in recent years, simulation of 
weightlifting motion has come to the forefront. However, there is an evident lack of data on modeling and 
simulation of this motion from biomechanical and robotic aspects. 
In this paper, snatch technique of weightlifting has been modeled from a biomechanical perspective, which 
includes physical joint constraints, muscle strength and the typical snatch technique; and by applying the 
proposed model it is possible to model the motion, from start to finish in a given time, for an athlete of known 
weight and stature, and present the suitable optimum motion as output. Using motion analysis equipment and 
comparison of athlete’s motion with that of the model, we can improve the performance of novice athletes to 
prepare them for medal attainment in competitions. The model output accurately replicates the biomechanical 
details such as the new elite athletes’ technique – double knee bending in which the knee initially extends and 
then flexes so as to reduce the reaction torque and hence decreasing injury risks. The weightlifting robot has 
been modeled with a Lie algebraic formulation and the resultant problem is solved as a parameter constrained 
optimal control problem. 
 
 

Keywords: Snatch, Weightlifting, Optimal Control, Lie Algebra, Double Knee Bending 
 
 

 
1. INTRODUCTION 
 
Barbell Trajectory and other dynamic characteristics 
of motion, like displacement and velocity of barbell 
during the Snatch Lift Technique have garnered 
widespread interest for the last few years. Several 
researches investigated by Isaka et al. (1996), 
Baumann et al. (1988), Gourgoulis et al. (2000), 
Byrd (2001), Garhammer (2001) and Schilling et al. 
(2002), evaluated optimum barbell trajectory 
experimentally according to the percentage of the 
athletes’ success, aimed to answer research 
questions by investigating the relationships between 
variables using quantities data obtained in an 
experiment and assessing the significance of the 
results statistically. Theoretical approaches to 
answering a research question typically employ a 

model that gives a simplified representation of 
physical system under study.  
The snatch technique requires the barbell to be lifted 
from the floor to a straight-arm overhead position in 
one continuous movement (Garhammer, 1989).The 
movement as a whole includes six phases, as shown 
in Figure 1: the first pull (a), the transition from the 
first to the second pull (b), the second pull (c), the 
turnover under the barbell (d), the catch phase (e) 
and rising from the squat position (f )(Baumann et 
al., 1988).The first five phases are considered to be 
the most important phases of the lift (Baumann et 
al., 1988). They occur in less than 1 s and, as such, 
involve a high power output (Isaka et al., 1996).                      
In recent years, some researches introduced 
optimized patterns for lifting tasks using actuating  
torque as a mechanical parameter. 
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Figure 1: The phases of the snatch: (a) the first pull, (b) transition 

from the first to the second pull, (c) the second pull, 
(d) turnover under the barbell, (e) the catch phase, (f) 
rising from the squat position. 

 
For example, investigating the differences in motion 
patterns for goal-directed lifting by considering 
biomechanical constraints or physiological 
responses and the redundancy of degrees of freedom 
made it possible to have an optimum motion pattern 
(Park et al.2005).But because of its complexity this 
method for weightlifting was not widely used. 
Using double knee bending technique, which is 
unique to weight lifting, permits reemployment of 
powerful knee extensor muscles through their 
strongest range of motion. Capability of optimal 
control theory for sport activities encourage us to 
apply this method to optimize the whole motion of 
snatch lift and a mathematical model based on 
dynamic principles to predict the barbell trajectory 
which minimized the specific criterion is formulated. 
 
2. METHODS 
 
To effectively devise a mathematical model of the 
human’s physical properties, the five-link model is 
employed to analyze lifting Tasks which have been 
used in several researches.  
By simplifying comprehensive model for 
weightlifting which has been introduced by Chaffin 
and Anderson (1991), to a sagittal plane model, the 
body segments are modelled with solid links and 
body joints to simple revolute joints. The schematic 
diagram of this model which is made by five links 
and also five body joints, used by like Chang et al. 
(2001), Menegaldo et al. (2003) and Park et al. 
(2005) is shown in Figure 2. L1 to L5 represent shin, 
thigh, trunk, upper arm and forearm, respectively 
and ankle, knee, hip, shoulder and elbow are named 

O1 to O5 respectively. Therefore we used this 
model.  
The redundancy of degrees of freedom makes it 
possible to have an optimum motion pattern. 

 

 
Figure 2: Biomechanical Model of a Weightlifter  
 
The minimum-effort optimal control problem for 
this system describes as (Martin and Bobrow 1999): 
Minimize τ where  

 
(1) 

 
 

Now τ is given by motion equation as follow: 
(2) 

 
where )(qM  shows the (n × n) inertia matrix and 

),( qqh ɺ  consists of Coriolis and gravity and friction 

vectors and               ,             . 
Bounds on the joint coordinate and initial and final 
conditions are primarily shown as follows: 

  (3) 
 
 

(4) 
 

whereq  and q are specified values and tf  is the final 

time. 
In order to solve the optimal control problem it is 
assumed that joint coordinates are B-splines where 
their curves depend on Bi(t) basic functions ,and 
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P={p1,p2,…,pm}, vector of control inputs, where                 
.               .                . Therefore the joint trajectory 
turns to ),( Ptqq =  where:                           
 

(5) 
 
Considering the fact that                        , boundary  
 
conditions of joint movements in (3) can be replaced 
with boundary of spline parameters  pi  and therefore 
the parametric optimal control problem can be 
described as follow: 
Minimize P where 
 

(6) 
 
 
Subject to 

(7) 
 
accompanied by the boundary conditions in (4).Joint 
torque can also be calculated for each P vector using 
amended Newton-Euler recursive dynamic approach 
based on Product of Exponentials which can be 
easily solved using computing techniques. 
Our intended purpose is to propose a model for 
weightlifting robot  with a Lie algebraic formulation 
which does not consider the experimental trajectory 
as the input of simulation and  not only solve it as a 
constrained optimal control problem but, as well, is 
in accordance with the experimental results . 
The force exerted by a muscle is a function of the 
activation level and the maximum muscle force. As 
indicated by Yeadon et al.(2006), a four parameter 
function consisting of two rectangular hyperbolas 
was used to model the torque/angular velocity 
relationship while the activation/angular velocity 
relationship was modelled using a three parameter 
function for high concentric velocities. The product 
of these two functions gave a seven parameter 
function which best models the torque/angular 
velocity, therefore we used this model and extended 
it for other muscles.  
Control constraints term is used for the inequalities 
defining limitation on torques acting on the system 
and the redundancy of degrees of freedom in order 
to (i) provide a continuous motion (ii) limit the 
motion by human’s joints and torques  boundaries 
(iii) minimize the proposed  cost function from a 
biomechanical point of view. Therefore an optimal 
control problem is formulated. We aim to generate 

an optimal motion by minimizing actuating torques 
as our performance criterion. We have used 
minimum-torque-change principle introduced by 
Uno et al. (1989) and penalized it with maximum 
muscle force by introducing cost function as: 
Minimize P where  

 
 
 
  
 
 

 
 
                 

(8) 
 

The first term of Equation (8) which describes the 
torque-change cost function is multiplying with 
another cost function which penalizes the deviation 
from maximum muscle torque as follow: 
 
 

                                                                                 
(9) 

 
AS it can be seen in equation (9) this cost function 
penalizes the torques which is greater than the 
maximum muscle torque in exponential form and 
others will remain the same. The second term of 
equation (8) which shows the barbell trajectory in 
snatch lift helps us to optimize the barbell trajectory 
which minimizes the torque-change cost. 
 
 

                                                                (10) 
 
Third and fourth terms of cost function (8) represent 
minimum and maximum vertical height of barbell in 
the whole motion, respectively. Minimum vertical 
height of barbell, )(min( Pbary ), should be greater 

than vertical height at the start point )(0 Pbar  and 

any difference also penalizes in exponential form. 
Decreasing the cost function with maximum vertical 
height of the barbell, results in more extension of 
body during snatch lift. 
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Double knee bending (DKB) technique indicates in 
equation (11) and (12). Since applying torque on 
knee joint is 3 times less than on hip and is 
regardless to weight of athlete and barbell, expert 
weightlifters use this technique to reduce the 
reaction torque and hence decrease injury risks. r1 

and r2 coefficients are obtained from experimental 
data and ci coefficients used to equal terms of cost 
function. Eliminating these coefficients result in 
ignoring the lower order terms. 
 
3. RESULTS 
 
The problem was solved for a weightlifter with      
60 kg mass who lifts a 143 kg barbell by snatch 
technique. Other dimensional parameters were 
calculated based on this information. Actuating 
torques of all joints and starting and ending angles 
were used as indicated in Bartonietz (1996). Barbell 
trajectory is considered during the start of snatch 
from the barbell lift-off until the start of catch phase 
in 1 second is shown in Figure 3.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3: Optimized and experimental barbell trajectory during 

snatch lift 
A good agreement could be seen between the 
optimized trajectory and experimental results found 
by Gourgoulis et al. (2000) and also this model 
follows the concavity and convexity compared with 
similar research by Nejadian et al.  ( 2007, 2008). 
From a biomechanical point of view, an effective 
snatch lift is characterized by a velocity-time 
relationship of the barbell in which the vertical 
linear velocity of the barbell increases continuously 

between the first and the second pull. Figure 4 
shows the diagram of the vertical barbell velocity 
which changes with the time during snatch lift. It 
can be observed here that vertical velocity first 
increases and decreases when the barbell is moving 
toward the final position. 

 
Figure 4: Optimized vertical velocity of barbell during snatch lift 
 
Figure 5 illustrates curves for joint angular 
displacements including ankle, knee and trunk in the 
sagittal plane to determine the movement of the leg 
and the trunk with respect to horizontal axis (as 
described in experimental graphs).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5: lower-limb angular velocities during snatch lift 
 
The reason why the curves in above diagram are in a 
good agreement with experimental graphs as the 
barbell moves toward the final position is the 
similarity between simulated and real motion. 
As it could be observed, during the first pull, the 
knee joint is extended and achieved a minimum at 
the end of the first pull. After achievement of the 
minimum knee angle, which marked the start of the 
second pull, the knee is explosively extended and 
reached its maximum extension at the end of the 
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second pull. The ankle joint is extended 
continuously during the first pull and then decreased 
during the transition phase. During the second pull, 
the ankle joint was explosively extended and 
reached its maximum at the end of the second pull, 
which demonstrates essential technique like DKB in 
modern weightlifting. 
 Considering coefficients (11) and (12) in cost 
function (8) causes the knee joint crosses 90° twice, 
as is shown in Figure 5, which describes its flexion 
and extension. Applying waist-knee torque ratio in 
the cost function forces the output of simulation to 
provide a trajectory satisfying this constraint which 
was not considered in past researches. 
The curves of lower-limb moments including ankle, 
knee and hip during snatch lift are plotted in      
Figure 6. As shown the great amount of moment is 
applied on hip joint and applying torque on knee 
joint is the least. The positive moment or negative 
moment declares that extensor muscle or flexor 
muscle is acting.  
As the barbell approaches the end of first pull, the 
moment on hip joint becomes steady while the 
moment on knee and ankle joint decreases. The 
moment on the knee decreases continuously over the 
first pull and the knee flexor muscle acts, 
accordingly. By starting the second pull phase all the 
moments become positive again and knee and ankle 
moments reach their second maximums before 
decreasing. The joint moment-time curves are 
approximately similar in different athletes.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6: lower-limb moments during snatch lift 
 
In Figure 7, the ground reaction force (GRF) during 
snatch lift can be observed, which decreases as the 
barbell accelerates upward and reaches a minimum 
at the end of first pull and increases continuously till 
the barbell reaches its highest position. 

Since the foot-off phase is not considered in the 
biomechanical model (Fig.2), decreasing all 
moments and also ground reaction force to zero right 
after the foot-off phase, as can be observed in 
experimental diagrams, are missed here. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7: Ground reaction force during snatch lift 

 
 
4. DISCUSSION 
 
Our optimized model provides Barbell trajectory 
which can be observed as its typical form in 
experimental diagrams during snatch lift. Producing 
this optimized trajectory from system motion 
dynamics, penalizing actuating torque with human 
muscular model and considering the double knee 
bending technique in our model confirm that 
proposed model achieves a relative success to 
anticipate the optimal motion in comparison with 
other optimizing strategies. This optimization can 
apply for training weightlifters to act like the 
optimized kinematics parameters or to make their 
characteristics like resultant kinetic parameters.  
However selecting several parameters such as time 
of snatch lift, energy expenditure,… as criteria 
which should be minimized during an optimized 
snatch lift results in improving the performance of 
weightlifter. Introducing and modifying the proper 
criterion which is in accordance with human motion 
pattern is another advantage of this study and we 
believe that we are successful regarding to this 
matter. However, lack of data on modeling and 
simulation of this motion from biomechanical 
aspects is a problem that we experienced. 
 
5. CONCLUSIONS 
 
Dynamic of the model help us to gain an accurate 
and deep understanding of motion and to control and 
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improve it during the snatch lift. Obtained results 
which are in accordance with experimental results 
confirm the reliability of proposed model due to 
achieving a relative success to anticipate the optimal 
motion. 
Applying optimized motion during snatch lift  does 
not only help coaches to advise weightlifter about 
the correct velocity he should reach or the strength 
training he should do to compensate the weakness of 
particular joint, assists athletes as well to act like the 
optimized kinematics parameters with the purpose of 
reducing injury risks and maximizing desirable 
training effects. The importance and descending role 
of each joint during the snatch lift can also be 
identified which are good parameters to show the 
practical differences between an actual snatch 
motion of weightlifter and the ideal optimized one 
which weightlifter could achieve.   
Considering the body movement, physical 
characteristics of the various sectors of the 
movement, muscle strength characteristics of barbell 
trajectory of the movement which have a certain 
impact on snatch weightlifting will be the focus of 
future research. 
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Abstract 
 
This paper describes briefly the development of Mathematics and Computers in Sport in Australia and New 
Zealand through analysis of papers and presentations at ‘MathSport’ biennial conferences. In providing a 
context for this analysis it is proposed that Mathematics and Computers in Sport is seen as contributing to 
sports science both directly and indirectly through other science disciplines. Scholars and scientists associated 
with the ‘MathSport’ group began input into the body of knowledge in sports science in the early 1990s. This 
contribution of research and scholarship has continued up to the present. The variety of contributions in terms 
of different sports, theoretical frameworks and modes of analysis has increased in volume since the early days. 
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1. INTRODUCTION 
 
This paper describes the history of contribution to 
sports science by the MathSport group in Australia 
and New Zealand through collaboration and 
presentations at biennial conferences.  Mathematics 
and Computers in Sport (MCS) is seen by the 
MathSport group as contributing to sports science 
through: mathematical and statistical modelling in 
sport; the use of computers in sport; the application 
of these to improve coaching and individual 
performance; and, teaching that combines 
mathematics, computers and sport (ANZIAM, 
2008). In placing this view within science in general 
and sports science specifically, three models are 
proposed, adapted from a concept by Hughes, 
Hughes and Behan (2007). The models are presented 
in progression to illustrate how mathematics and 
computers contribute to the body of knowledge in 
sports science and to the enhancement of 
performance. The first of these (Figure 1) provides a 
view of sports science contribution to the performer, 
with the performer at the centre of the model in a 
dynamic environment which includes social, 
pedagogical and performance contexts. 

 

Defining MCS

Physical Capacities

Hereditary

Maturation &
Experience

Imponderables

Science

Mental Well-being

The Performer

Social Context 

Performance Context Pedagogical Context 

The Performer

Figure 1: A model based on the performer
 

The second model (Figure 2) then places sports 
science in the same triangulated context but 
depicting how wider science disciplines and applied 
disciplines, such as performance analysis, contribute 
to sports science. The obvious link between sports 
science and performer is reduced here to a single 
linear relationship but this is merely to connect back 
to Figure 1 and does not illustrate the dynamic 
multi-faceted nature of the link. 
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Defining MCS 

Performance Analysis

Motor Control

Psychology

Biology

Physics

Chemistry

Sports Science

Social Context 

Performance Context Pedagogical Context 

The Performer

Fig. 2: A model of the contributions of science to sports science

Sports Science

 
The third model (Figure 3) depicts how mathematics 
and computer science then contributes to the wider 
science disciplines and, therefore, indirectly to 
sports science (Hammond & de Mestre, 2008).  
Again, the complexity of these relationships cannot 
be adequately illustrated in a two-dimensional model 
but the dynamic environment would continue, albeit 
abstractly, across the second and third models 
postulated here.  
 

A Sports Science 
Model

Performance Analysis

Motor Control

Psychology

Biology

Physics

Chemistry

Sports Science

Social Context 

Performance Context Pedagogical Context 

Fig. 3: The contributions of mathematics and computer science

Computer 
Science

Mathematics
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This progressive view of intra and inter relationships 
in sports science set the contributions of 
mathematics and computer science in a wider 
context. Developments within these elements of 
sports science in Australasia over the last eighteen 
years, or so, are described in the next section.  
 
 
2. BRIEF HISTORY OF MCS IN 

AUSTRALASIA 
 
The MathSport group, set up to promote MCS, grew 
out of members of the Australian Mathematical 
Society (AustMS) who had like interests in applying 
their discipline to research and scholarship in sport. 
AustMS is the national society of the mathematics 

profession in Australia, whose mission is to promote 
and extend mathematical knowledge and its 
applications (AustMS, 2008). Within AustMS the 
Australia and New Zealand Industrial and Applied 
Mathematics division (ANZIAM) supports special 
interest groups, one of which is the MathSport group 
(ANZIAM, 2008). This group facilitates forums 
within which sports scientists, from Australian and 
New Zealand and the wider international 
community, interact. The MathSport special interest 
group holds biennial meetings - the Australasian 
Mathematics and Computers in Sport Conferences 
(MathSport, 2008).  
The MathSport group was inspired by the 
publication ‘Mathematics of Projectiles in Sport’ 
and its author Neville de Mestre (1990). The group 
held its first conference at Bond University in 1992, 
i.e. ‘Mathematics and Computers in Sport 
Conference’. The topics were varied and the 
program included papers on: one-day cricket 
(Johnston, 1992) – this subject matter that was to 
become synonymous with the conference; fell 
running (Hayes & Norman, 1992); and, combining 
mathematics and computer technology for 
improving sport, by keynote speaker Jon Patrick 
(1992). The 1992 conference saw a lasting 
relationship between the conferences and Professor 
Stephen Clarke who presented a paper concerning 
sports betting and Australian rules football (1992), 
topics which have been strong features of the 
conferences over the years. The two other keynote 
addresses were given by John Croucher (1992) and 
David Hoffman (1992) who presented papers 
concerning the science of winning and team rating 
systems, respectively. 
The success of the first conference initiated requests 
for a follow-up conference, which came to fruition 
in 1994. The number of presentations increased from 
twelve to twenty, with topics including: seven 
papers about various aspects of golf (1994); dynamic 
control of bobsled by keynote speaker Mont 
Hubbard (1994); and, a computerised sports 
counselling program (1994). Stephen Clarke (1994) 
also gave a keynote address on rating systems for 
racquet sports. Neville de Mestre continued his 
involvement as conference organiser and 
proceedings editor in 1994, assisted by Kuldeep 
Kumar in 1996, with both conferences being hosted 
at Bond University. The 1996 conference saw the 
first appearance at the conference of Tony Lewis 
who presented a paper on the famous Duckworth-
Lewis (D/L) method of calculating target scores in 
rain interrupted one-day cricket matches (Duckworth 
& Lewis, 1996). Tony Lewis has proved to be a 
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regular attendee at MCS conferences since then, 
with continual updates and explanation of the 
statistical modelling used in the evolving 
Duckworth-Lewis methods. Keynote speakers were 
Stewart Townend, whose presentation on 
Mathematical Principles was not published and 
Hugh Morton (1996) who delivered a paper on 
analysis of world records. The 1996 conference also 
saw papers on netball (Noble, 1996) and horse-
racing (Benter, Miel & Diane, 1996; Phatarfod, 
1996; Kumar, Ganesalingam & Ganesh, 1996) for 
the first time. 
 
Up to and Beyond the Sydney Olympics 
Bond University continued to host the conference in 
1998 where the decision was made to move the 
conference to Sydney in 2000, being the Sydney 
Olympic year. The 1998 conference saw the start of 
performance analysis papers through John 
Croucher’s keynote address on tennis (1998). Papers 
in this emerging area of sports science, at the time, 
proved to increase in number as the conference 
sequence progressed. In 1998 the other two keynote 
speakers were Tony Lewis about the D/L model 
(1998) and Chris Harman (1998), who delivered a 
lecture on optimal baseball running. The Olympic 
year conference was hosted by the University of 
Technology, Sydney, under the auspices of Graeme 
Cohen, ably assisted in editing the proceedings by 
Tim Langtry. Of the 25 papers presented the 
inextricable link between mathematics, physics and 
biomechanics came out in the two keynote addresses 
(Cross, 2000; Siff, 2000). Cricket and Australian 
rules football featured strongly again on the program 
and papers on teaching mathematics emerged here 
(Cohen, 2000; Byun, 2000). The conference added 
‘Australian’ to the title, becoming the ‘Australian 
Mathematics and Computers in Sport Conference’. 
The sixth conference in 2002 returned to the Gold 
Coast with Neville de Mestre taking up the 
organisational reins again, with proceedings editors 
again being Cohen and Langtry. Ray Stefani from 
California joined Australians Graeme Cohen and 
Stephen Gray as keynote speakers, who presented 
papers on rating systems (Stefani, 2002), chance in 
cricket (Cohen, 2002) and forecasting scores in 
cricket (Gray & Tuan, 2002) respectively. The 2002 
conference proved another watershed in terms of 
influential speakers appearing for the first time, in 
that Graham Pollard presented the first of many 
papers, with his colleagues, at MCS meetings about 
scoring systems in tennis (Pollard & Noble, 2002). 
 

Expanding Horizons 
In 2004 the conference moved away from Australia 
to be hosted by Massey University in New Zealand. 
Hugh Morton took on the organiser role and was 
assisted in the editing of the proceedings by 
Selvanayagam Ganesalingam. The program had now 
seen a steady increase in the number of papers being 
presented to reach 30 for the first time (see 
Figure 4).  
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Figure 4 Number of Papers presented at MCS conferences 1992-2008

 
With New Zealand input now becoming more 
prominent, organisers changed the title of the 
conference replacing ‘Australian’ with 
‘Australasian’. Both keynote speakers came to the 
conference with high level international reputations 
as experts in their field of sports science. Keith 
Davids (NZ) presented a paper on dynamic 
movement systems (Davids & Button, 2004) and 
Mike Hughes (Wales) took the area of performance 
analysis perspectives to a new height at this 
conference (Hughes, 2004). Richard Green also 
increased the exposure of delegates to computer 
science and its application to biomechanical analysis 
(2004). In 2006 the eighth conference moved back to 
the Gold Coast in Australia but under the 
independent auspices of the MathSport group. 
Neville de Mestre and John Hammond shared both 
the organisation of the conference and editing of the 
proceedings. Roger Bartlett travelled from New 
Zealand to present his keynote paper on artificial 
intelligence and how it relates to biomechanics 
(2006). Stuart Morgan from the Victorian Institute 
of Sport, gave the second keynote address on 
synergies in high performance sport (2006). 
Following Mike Hughes’s lead at the previous 
conference and Stuart Morgan’s keynote talk, papers 
featuring performance analysis were more prolific at 
this event with Aaron Silk (Silk, Hammond & 
Weatherby, 2006) Didier Seyfried (2006), Martin 
Lames (2006) and John Hammond (Hammond & 
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Smith, 2006; Smith, Gilleard, Hammond & Brooks, 
2006) providing a variety of applications of this 
increasingly influential sub-discipline. In addition to 
the proceedings, selected papers from the 2006 
conference were published in a special edition of the 
Journal of Sports Science and Medicine.  
At the 2008 conference Arnold Baca (President of 
the International Association of Computer Science 
in Sport) and Ian Renshaw (QUT) gave the invited 
keynote addresses on ‘Tracking Human Motion in 
Sport’ and ‘Performance and Learning of Motor 
Skills’ respectively. This conference saw a re-
emergence of water-based sport science with papers 
on Bodysurfing (de Mestre, 2008) Sailing (Tonkes, 
2008) and Kayaking (Janssen, Sachlikidis & Hunter, 
2008) as well as scoring and prediction systems for 
tennis and cricket (Lewis, 2008; Stern, 2008; Bailey 
& Clarkea/b, 2008; Lisle, Pollard & Pollard, 2008; 
Pollard & Pollarda/b, 2008; Brown, Barnett, Pollard, 
Lisle & Pollard, 2008). There were a record number 
of presentations at this conference of 34 (see Figure 
4).  
Also of note, across the period that the MCS 
conferences have been scheduled, are the following 
outstanding contributions by authors, not previously 
mentioned in the chronological sequence presented 
above: 

• Cogill's papers on the mathematics of cycling 
(1994 & 1998);  

• Norton's papers on prediction models and 
advantage in Softball (1994), Tennis (1996 & 
2002), Netball (2000) and Basketball (2004); 

• Heazlewood's papers on predicting Olympic 
games performance (1996 & 1998); 

• Bedford's papers on ratings-based models 
applied to World Cup handball (2004) and soccer 
(2004);  

• Norman's papers on batting on ‘sticky wickets’ 
(2004) and fell walking  (2006); 

• Ovens's papers on mathematical modelling 
applied to one-day cricket (2004 and 2006).  

 
Summary of the Presentations 
The number of presentations at MCS conferences 
across the years 1992-2008 was illustrated in Figure 
4. There has been a wide variety of sports and topics 
presented at MCS conferences. In breaking down the 
numbers into convenient categories, as can be seen 
from Figure 5, cricket heads the list at 39 with 
Tennis (32) and Australian Rules Football (29) 
following closely behind.  
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Figure 5 The Most Popular Topics at MCS conferences 1992-2008
 

Categorisation for the data presented in Figure 5 is 
mainly based on specific sports, for simplification. 
However, re-analysis of the data into different ways 
of categorisation would also see categories such as 
mathematical modelling, rating and scoring systems 
emerge as prolific as the top three sports categories. 
This is because papers often addressed more than 
one focus, such mathematical modelling of sports 
betting, player rating systems across or within 
sports, scoring systems across racquet sports and the 
like. 
 
 
3. CONTEXTUAL SYNOPSIS 
 
The extent and diversity of topics described here, 
demonstrate that mathematics and computers have 
an important role to play in adding to the body of 
knowledge of sports science in the Australasian 
setting. The role of these disciplines in sport can be 
viewed in three overlapping contexts:  performance, 
social and pedagogical. This view is depicted in 
Figure 6 where the place of sport and its association 
with mathematics and computers is seen in a 
dynamic and interactive model. The levels of 
complexity, interconnectivity and dynamism 
represented in a simple two-dimensional model, 
such as this, cannot accurately be depicted here. 
However, Figure 6 does seek to provide an 
illustration, albeit simplified, of the mathematics, 
computers and sports contributions within these 
contexts. 
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In the performance context there is a broad scope of 
sports that already use or can use mathematical and 
computer analysis, such as performance analysis 
technology or in the measurement of the physical 
capacities that can enhance performance. Research 
into every aspect of performance, relies heavily on 
these disciplines, particularly in the recording of and 
the analysis of data. In the social context, more 
widely based issues such as the place of sport in 
society or the enhancement of health, can be aided 
indirectly, via sport and exercise sciences, and 
directly through the use of mathematics and 
computers. In the pedagogical context, analysis and 
research into coaching methods can lead to 
improvement in coach education and methods. In 
addition, the use of sport as medium through which 
to teach mathematics and computer science at all 
levels of education is invaluable and reciprocal. The 
function of computers and mathematics in teaching 
sports science is obvious. 
 
4. CONCLUSION 
 
This paper considered the place of mathematics and 
computers in a wider sports science context as a 
background to the history in Australasia of this area. 
Models of the performer in the sports science 
context, sports science in a wider scientific context 
and how mathematics and computer science 
contributes to sports science were proposed. The 
links between each of the models were described 
and it was suggested that mathematics and 
computers have both a direct and indirect 
contribution to scientific support of the sports 
performer. A history of the MathSport group’s 
initiatives in promoting mathematics and computers 
in sport (MCS) was set out. The MCS conferences 
have grown in size from 12 papers in 1992 to a 
program of 34 papers in 2008 and the forthcoming 
conference in 2010 will continue the trend of 30+ 

papers. Among the many presenters at the 
conference over the years there has been a 
significant number of scholars of international 
repute, both as keynote speakers and as ordinary 
delegates and presenters. Whilst this is still a 
relatively small conference in comparison to some 
scientific conferences, its diverse nature in terms of 
sports discussed and strategy of non-parallel 
sessions has been productive. From this it can be 
reasonably suggested that the MathSport group has 
progressed research and scholarship in MCS both 
within Australasia and in the international sports 
science community in general.  
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Abstract 
This research demonstrates how Australian Football League (AFL) players can be accurately and efficiently 
classified into four recognised playing positions (Defence; Midfield; Forward; Ruck) after each match, using 
only a handful of collected game-related performance variables. By maximising the Mahalanobis distance 
between a linear combination of thirteen performance variables and their respective centroids, 7,744 individual 
player cases in the 2009 AFL season are assigned to one of the four positions, without any prior knowledge of 
that player’s movement within the match. Once the discriminant functions have been developed, Bayesian 
probabilities are then calculated to highlight each player’s level of activity across the four positions in each 
match. This information is crucial when developing a set of position-dependent rules with which to measure 
AFL player performance. The research then progresses to intra-position analysis where each player is further 
classified based on the Squared Euclidian distance between position-specific elements derived from that 
player’s performance covariance matrix (PCM). A case study details how forwards can be segmented into 
discrete and continuous playing roles based on the distances between covariance couplets. This information is 
of high importance for coaching staff and pundits alike as post-match deductions can be made, not only about 
a player’s influence on the match, but also a player’s influence within each position. An appealing aspect of 
the research is that only a few simple game-related statistics are required to gauge a player’s positional 
performance, without having to resort to audio-visual tools and complex mapping.   
 
Keywords: Classification, Mahalanobis distance, Euclidian distance, Covariance matrix 
 

 
1. INTRODUCTION 
 
Australian Rules football, or AFL, is a game played 
between two teams with twenty-two players each; a 
regular season consisting of sixteen teams playing 
twenty-two matches. Eighteen players per team are 
on the field at any one time – six forwards, six 
defenders, four midfielders and two “ruckmen”, 
responsible for giving their team advantage at “ball-
ups” (similar to a jump ball in basketball), with four 
reserves on an interchange. The ultimate goal of the 
game is to kick an oval ball between two taller sets 
of posts at either end of an elliptic ground; a goal is 
worth six points. The team with the most points at 
the end of the match is declared the winner. The 
dynamics of the game are similar to world football 
(soccer), the main exception being that AFL players 

are permitted to you use their hands to punch the 
ball (handball) to the advantage of another player.  
The continuous nature of AFL makes accurate 
statistical analysis of team and in particular player 
performance exceedingly difficult. Oliver (2004) 
makes mention of the relative ease of analysing 
discrete games such as baseball due to the game’s 
slow pace, incremental progress towards score 
advantage (runs) and limited interaction between 
players. He goes on to describe (American) football, 
from an analytical perspective as definitely more 
elegant and complex than either of basketball or 
baseball. AFL, it can be argued is more complex 
than all three of these sports. Of the world’s most 
recognised football codes (world football or soccer, 
rugby and gridiron), AFL boasts the most number of 
players on the field at any one time (36 with a 
further four on the bench per side for rotations). 
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Players are selected to play in particular defensive, 
attacking or midfield positions on the ground, 
however the frenetic nature of the game demands 
that a player must operate in different zones at 
different match stages. One flaw in the measurement 
of AFL player performance is the assumption that a 
recognised positional player will play the entire 
match in his expected position. Quantitative analysts 
may assume prior to a match that an established 
forward will play entirely at the attacking end of the 
ground, however he may play a temporary defensive 
role which demands an additional set of rules by 
which to measure his performance in the defensive 
position. Without match vision, how is it possible to 
realise, let alone measure this change in position? 
This paper demonstrates that by maximising the 
Mahalanobis distance between thirteen recorded 
AFL performance variables and their positional 
centroids, it is possible to quickly and efficiently 
allocate each player to one of four positions 
[Defence (D); Forward (F); Midfield (M); Ruck 
(R)]. Bayesian probabilities are then applied to 
establish a player’s “time spent” in each of the four 
positions in each of his matches. Analysis is carried 
out on every player’s m x Xi performance covariance 
matrices (PCM) from the 2009 season where Xi is 
performance variable i = 1,..,13 for match m. Intra-
position characteristics are then examined using 
Squared Euclidian distance to further demonstrate 
the differing roles assumed in the four groups. A 
case study is provided using the covariance matrices 
of players allocated to the forward group.  
Classification analysis is not uncommon in team 
sports. Mahalanobis distances are used effectively 
by Chatterjee and Yilmaz (1999) to observe 
differences in the performance characteristics of 
MVP players in the NBA. Sampaio et al (2006) 
employ discriminant analysis to maximize the 
average dissimilarities in game statistics between 
guards, forwards and centres in the National 
Basketball Association (NBA). Also with the aid of 
discriminant analysis, Fratzke (1976) was able to 
determine basketball player ability and position 
using varying biographic data, while Marelic et al 
(2004) observed “block” and “spike” in volleyball 
were the most important predictors of team success. 
Pyne et al (2006) concluded fitness assessments at 
the AFL draft involving statistical analysis on 
physical qualities such as height, mass and agility 
were useful in determining future player position.  
The information drawn from this research becomes 
important for coaching staff and pundits alike as 
immediate post-hoc deductions can be made, not 
only about a player’s influence on the match, but 

also a player’s influence within each position. Player 
rating systems become more accurate as 
performance variable weights can be adjusted to 
reflect the relative influence of covariates in the 
position in which a player is classified (Sargent and 
Bedford, 2007). Another appealing aspect of the 
research is that only a handful of simple game-
related statistics are required to gauge a player’s 
positional movements; no prior knowledge or vision 
of an AFL match is required. This is particularly 
advantageous when analysing previous seasons’ 
match data.    
 
2. METHODS 
 

i. Classification by performance 
 
Hughes and Bartlett (2002) identify performance as 
any combination of quantifiable variables within a 
sporting match that, when aggregated constitute 
team play. Moreover, they discuss the concept of 
notational analysis, or the performance of a team or 
its individual members based on “open skills” 
(kicks, goals etc). The combination of game-related 
skills is an important determinant in classifying team 
success (Ibanez et al, 2009) as well as in the 
measurement of individual performance in team 
sports (Koop, 2002). This paper introduces an 
important concept for improving quantitative 
estimates of team player performance by assigning 
each player, post-match to one of k game-related 
positions, where k depends on the sport in focus. The 
classification method outlined in this paper made it 
possible to assign each AFL player to the group 
vector Pos = k = [D,F,M,R] by linearly combining 
thirteen recognised AFL performance variables, Xi: 
Kick (KCK); Mark (MRK); Handball (HBL); 
Handball Receive (HBR); Inside 50 (I50); Rebound 
50 (R50); Goal (GLS); Tackle (TKL); Clearance 
(CLE); Loose Ball Get (LBG); Hard Ball Get 
(HBG); Spoil (SPL); Hit-out (HIT). Each variable 
was entered into a stepwise model to arrive at k – 1 
discriminant functions: 

                       imp

i

ioup Xbbd ∑
=

+=
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      (1) 

where dup is the uth discriminant function for player 
p, Ximp is the value of player p’s performance 
variable i after match m, bo is a constant and bi are 
discriminant coefficients selected in the first 
discriminant function to maximise the Mahalanobis 
distance between the four positional centroids in k. 
The second discriminant function is selected so as to 
be orthogonal to the first, and the third discriminant 
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function orthogonal to the second (Johnson & 
Wichern, 2007). Each player was assigned to the 
position to which his Mahalanobis distance from the 
positional centroids was the smallest (Sampaio et al, 
2006). The Mahalanobis distance is a measure of 
distance between two points in the space defined by 
two or more correlated variables, and is in some 
sense a multidimensional z-score (James, 1985) 
measured by: 
 

         )()()( 1 µµ −′−= − XSXXDm       (2) 

 
where X = (X1,…,X13), µ = (µ1,…,µ13) and S is the 
common covariance matrix (see (5)).  
The classification judgements were also supported 
on the values of the overall structure coefficients bi; 
higher values were better contributors to the 
classification process (Sampaio et al, 2006). Table 1 
displays the overall model classification coefficients 
by position, with (*) indicating the strongest 
discriminatory positional predictors. 
 

Position k 

Xi D F M R 

KCK 0.431 0.460 0.366 0.320 
HBL 0.414 0.386 0.449 0.402 
GLS 0.453 1.206 * 0.532 0.683 
TKL 0.513 0.532 0.620 * 0.333 
HIT 0.036 0.048 -0.045 1.386 * 
R50 0.516 0.140 0.228 0.128 
I50 0.099 0.253 0.230 -0.028 

CLE -0.600 -0.609 -0.337 -0.464 
HBG 0.056 0.085 0.227 0.015 
LBG 0.148 0.136 0.233 0.020 
HBR -0.169 -0.248 -0.083 -0.216 
SPL 0.935 * 0.552 0.389 0.498 

Constant -6.756 -6.356 -7.030 -15.74 

Table 1: Classification function coefficients by position 
 
Mark (MRK) was not a significant predictor in the 
classification process and was removed from the 
model. Figure 1 displays how the first (d1) and 
second (d2) discriminant functions from our model 
have classified a random sample of 200 player 
matches from Round 22 into the four positions. 
Higher values for d1 were associated with 
classification of the ruck position (it is safe to 
conclude the ruck position was the most accurately 
classified based on their unique role), while higher 
d2 values classified the midfield positions. Defenders 
were best classified by negative values of d2 while 
forwards fell at the intercept. 
 

 
Figure 1: Canonical discriminant function graph of n=200 
players 
 

ii. Posterior Probabilities 
 
Where much classification research is content to 
draw conclusions from the predictive path to the 
classified groups, a measure of classification 
assurance is an interesting and important extension 
(James, 1985). For the purposes of AFL player 
performance measurement, a player may be 
correctly assigned to a position, but how realistic is 
it to assume he played the entire match there? To 
mathematically ascertain this knowledge, posterior 
probabilities were calculated for each player’s 
defensive, forward, midfield and ruck roles in each 
match. Once the discriminant functions (1) have 
been calculated these probabilities are produced by: 
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and: P(Posk) is the prior (pre-match) probability of 
playing in position k. 
The research found significant correlations between 
the posterior probabilities of classification to 
positions D, F and M and the number of disposals 
(KCK + HBL) the player achieved in the defensive, 
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forward and midfield zones respectively. In Table 4, 
Jonathan Brown of the Brisbane Lions is abundantly 
classified as a forward for the first 5 rounds of the 
2009 season, but in a smaller capacity for Round 4 
where he played a greater midfield role than the 
other matches [P(M  |  x) = 38.12%]. The majority of 
his disposals are in the forward zone for higher P(F | 
x) but for Round 4, his Forward to Midfield disposal 
ratio (For:Mid) decreases below 1.0 in line with his 
decrease in P(F | x) and increase in P(M | x). 
Conversely, Brown’s most prominent forward 
performance [P(F | x) = 99.31%] in Round 3 
returned his highest For:Mid ratio for the 5 rounds.  
This data supports our discriminant model selection. 
 

iii. Intra-Position Analysis 
 
With the discriminant model accurately classifying 
each player into position by his accumulation of 
performance variables, the research benefitted from 
further investigation into the performance 
characteristic differences exhibited by players within 
the established positions. With this approach it was 
worthwhile considering the variability in each 
player’s performance variables (Chatterjee and 
Yilmaz, 1999). Considering the pair of performance 
variables {Xi, Xj} for player i to match m, the 
covariance Cov(Xi, Xj) is a measure of the linear 
coupling between Xi and Xj  (James, 1985). If entries 
in the column vector: 

















=

mX

X

X ⋮

1

          (4) 

are random variables, each with finite variance, then 
the covariance matrix Σ is the matrix whose (i, j) 
entry is the covariance:  
 

)])([(),cov( µµ jkmjikmi
ij

ji XXEXX −−==∑    (5) 

 
where µikm = E(Xi) in position k in match m, and µjkm 

= E(Xj) in position k in match m are the expected 
values of the i th and j th entry in (4).  Incorporating 
the match mean vector in (5) for variable Xi rather 
than the league mean at Round n standardises the 
distances from the performance variable mean 
vectors for matches that may exhibit unusually high 
or low variable means, for example, wet weather 
having a negative impact on total disposals.  
Chatterjee and Yilmaz (1999) favour the use of 
covariance matrices, rather than correlation matrices, 
in performance measurement, because they express 

variability in the performance variables’ commonly 
used scales. With (5) covariance matrices were 
established at a league, position [from (1)] and 
player level (see Table 5) allowing analysis of 
matrix elements, for example the covariance 
between Kicks and Goals [KCKGLS]. Figure 2 
illustrates how it is possible to compare sets of 
covariate couplets, for example, [KCKGLS, 
HBRGLS] hence, allowing analysis of four 
covariates in a two-dimensional space (Gordon, 
1981). Moreover, by assessing the Squared 
Euclidean distances between these covariate 
couplets, the positions classified by (1) could be 
further segmented to enhance the knowledge of 
intra-position performance characteristics. The 
Squared Euclidean distance formula is defined as: 

             ∑
=

−=
n

p
jpipij xxd

1

2)(         (6) 

 
where: xip and xjp denote the values taken by the pth 
player on covariate couplet i and j respectively.  
 
3. RESULTS 
 
Having used (1) to classify all players after Round 
22, a dissimilarity matrix was defined using (6) to 
determine robust classifiers within the forward 
position (Table 2). The largest distance (*) was 
between MRKGLS and HBRGLS, implying 
forwards could be classified into two further groups: 
discrete play forwards who predominantly kick 
goals after taking a mark (MRKGLS), and 
continuous play forwards who set up or kick goals 
through handball receives (HBRGLS).   
 

  
HBR- 
GLS 

MRK- 
GLS 

LBG- 
GLS 

HBG- 
GLS 

TKL- 
GLS 

HBR -
GLS 

0.00     

MRK-
GLS 

335.74 * 0.00    

LBG-
GLS 

108.53 257.77 0.00   

HBG-
GLS 

72.67 229.84 48.06 0.00  

TKL-
GLS 

84.07 283.08 65.02 41.13 0.00 

Table 2: Dissimilarity matrix of Squared Euclidean 
distance between forwards’ cov(Xi,Xj). 
 
Figure 2 displays how all forwards are positioned 
after the final round in 2009 based on MRKGLS and 
HBRGLS. By maximising the Mahalanobis distance 
between the centroids for these covariate couplets 
using (2), it was possible to segment the forwards 
into sub-positions, F1 and F2, where F1 contains the 
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discrete play forwards and F2 contains the 
continuous play forwards. A small cluster of players 
around [HBRGLS=0] and [MRKGLS=0], implying 
little variability through the season, proved difficult 
to classify. Recognised forwards however, show the 
highest variability and largest distance from the 
couplet centroids. Jonathan Brown could be 
considered the best discrete play forward based on 
his largest distance from the MRKGLS centroid. 
Akermanis could be considered the best continuous 
play forward resulting from his distance from the 
HBRGLS centroid. However, Brown and Akermanis 
are contrasting forwards, given the large distance in 
Table 3, measured by (6). This hypothesis is 
supported by Brown being considered a highly rated 
key forward and Akermanis, a highly rated small or 
roving forward by the AFL. 
 

  16 Br Brown     

1    12 St Riewoldt   2.933 
2    16 Br Brown      0.000 
3    12 Ri Richardson 4.897 
4    25 Ca Fevola     7.708 
5    23 St Koschitzke 10.814 
6    16 Po Tredrea    14.671 

: : 
44  21 Wb Akermanis  48.317 

Table 3: Dissimilarity matrix of Squared Euclidean 
distance: Brown and Akermanis [MRKGLS, HBRGLS] 
 
The right mixture of these two types of forwards in a 
team is important from a coaching perspective. 
Successful sides generally have two key forwards 
and at least two small forwards. This modelling can 
assist in the selection process. 
 
4. CONCLUSIONS 
 
The classification model described in this paper 
transforms a typical AFL match statistics sheet into 
a meaningful and accurate representation of the 
central and transitory responsibilities that different 
players assume within a match. Positional 
classification is important for player rating models, 
while intra-position distance analysis allows 
coaching staff to assess the optimal structure for 
their defensive, attacking and midfield zones. This 
classification model is accurate whilst only requiring 
a small post-match set of game-related statistics for 
each player. 
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Disposals 
Player Round 

Classified 
Position P(D | x) P(F | x) P(M | x) P(R | x) Defence Forward Midfield For:Mid 

16 Br Brown 1 F 0.86% 80.95% 17.67% 0.51% 0 8 7 1.14 

16 Br Brown 2 F 0.19% 94.18% 5.46% 0.17% 2 10 6 1.67 

16 Br Brown 3 F 0.02% 99.31% 0.62% 0.05% 0 8 4 2.00 

16 Br Brown 4 F 4.62% 56.45% 38.12% 0.82% 1 4 8 0.50 

16 Br Brown 5 F 1.07% 81.69% 16.76% 0.48% 1 5 4 1.25 

 
Table 4: Classification posterior probabilities for Jonathan Brown 
 
 
  KCK HBL MRK HBR GLS TKL HIT I50 R50 CLE HBG LBG SPL 

KCK 28.62                         
HBL 2.97 5.13                       
MRK 19.22 0.92 16.26                     
HBR -2.54 1.54 -3.40 3.73                   
GLS  9.38 -0.07 7.13 -1.94 5.89                 
TKL -2.67 -0.07 -2.33 1.28 -1.69 1.23               
HIT 1.15 0.58 0.15 0.39 -0.06 0.11 0.65             
I50 4.24 1.72 2.46 0.31 0.48 -0.14 0.58 2.06           
R50 -1.05 -0.21 -0.91 0.34 -0.59 0.24 -0.01 -0.13 0.17         
CLE 1.41 0.79 0.24 0.33 0.43 0.08 0.00 0.38 0.04 0.83       
HBG 1.76 0.28 0.79 -0.52 0.85 -0.19 0.23 0.36 -0.09 0.22 1.10     
LBG 5.04 1.93 2.27 0.00 0.72 0.17 0.38 0.69 -0.22 0.55 0.48 3.03   
SPL 0.47 0.46 0.21 0.16 0.19 0.03 -0.06 0.03 0.03 0.32 -0.10 0.23 0.29 

 
Table 5: Performance covariance matrix (PCM) for Jonathan Brown 
 
 
 

 

 
     Figure 2: Reclassification of forwards using Squared Euclidean distance

F1 

F2 
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Abstract 
 
The existing method of allocating draft selections in the AFL is based on inverse ladder position at season’s 
end. A criticism levelled at this system is that it provides teams who are unlikely to figure in the finals with an 
incentive to lose, with greater rewards being provided to teams who win fewer matches. In 2006, we proposed 
a probability-based system that allocates a score when a team wins an ‘unimportant’ match. Calculation of 
unimportance was based on the likelihood of a team making the final eight following each round of the season. 
A limitation of this model was that higher picks were awarded to teams who won a string of matches late in 
the season and just missed out of playing in the finals. Furthermore, teams who won very few matches and 
finished in the bottom ladder positions were awarded few draft allocation points, and thus were unlikely to 
receive high draft selections. In this paper, further refinement of the original model is undertaken to address 
these shortcomings. Draft point allocations are moderated based on the quality of opposition being played and 
the number of matches the team has won during the season to date. Using this revised approach, we simulated 
100,000 seasons based on actual season data for the 2009 AFL home-and-away season. We investigate the 
distribution of draft picks awarded to each ladder position, and highlight teams who are more or less likely to 
be awarded top draft picks under the revised system. 
 
Keywords: AFL, Draft, Importance, Incentives, Probability 
 

 
 
1. INTRODUCTION 
 
Several issues remain within the AFL code that 
generate controversy year after year. These include 
an uneven fixture, frequent rule changes, and a draft 
system that provides teams who are unlikely to 
figure in the finals with an incentive to lose. In 2006, 
we proposed a probability-based system that rewards 
teams for winning ‘unimportant’ matches (akin to 
Carl Morris’ definition of importance; Morris, 
1977). Calculation of unimportance was based on 
the likelihood of a team making the final eight 
following each round of the season (Bedford & 
Schembri, 2006). Since this model was first 
published, the system utilised by the AFL to allocate 
draft selections has remained unchanged, with first 
round draft picks allocated on the basis of reverse 
ladder position at the end of the season. Subsequent 

rounds of the draft replicate the first round. Up until 
2006, teams who won fewer than five matches 
received a priority pick that was awarded before 
pick 1, and thus a team who finished last with fewer 
than five wins would essentially receive the first two 
picks in the draft. To address such as high incentive 
being available for teams to not win five matches, 
the AFL revised the priority pick system to only 
grant teams a priority pick if they won fewer than 
five matches for two consecutive seasons 
(www.afl.com.au). 
Whilst it was hoped that implementation of this new 
priority pick system would eradicate much of the 
controversy that has surrounded the AFL draft, 
disillusionment remains high in AFL channels given 
the events of the 2007, 2008, and 2009 seasons. In 
the final round of the 2007 season, Melbourne 
played Carlton in a match that triggered significant 
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debate within the AFL community. A win to 
Melbourne would see the club receive fourth pick in 
the draft rather than second pick, and the club would 
also lose the right to a potential priority pick in 
2008. The stakes were much higher for Carlton, with 
a win costing them a priority pick and first pick in 
the draft. The eventual result was a win to 
Melbourne by 33 points, a result which was met 
with despair rather than elation by many Melbourne 
club members and supporters. In the final Round of 
2007, Richmond entered a match against St Kilda 
knowing that a win would cost the club Pick 2. 
Months after the game, Richmond coach Terry 
Wallace conceded that he did little to coach the 
Richmond side to win, stating that “It was a no-win 
situation for everyone in the coach’s box. We 
decided the best way to operate was just to let the 
players go out. I didn’t do anything. I just let the 
boys play” (Stevens & Ralph, 2009). By 2009, the 
Melbourne Football Club could win only one of its 
final seven matches in order to receive a priority 
pick and the first pick in the national draft. At the 
end of the season, Melbourne forward Russell 
Robertson commented “I know this whole tanking 
vibe has disgruntled a few players at the Melbourne 
Football Club. You can’t blame the coach. It is more 
just the way the AFL is at the moment with the 
[priority pick] systems that are in place. I’m not 
saying we tanked, I’m just saying players were 
played out of position…I don’t think it was in our 
best interests to win” (Stubbs, 2009). 
The AFL code is not alone with respect to 
controversy surrounding player draft selections. The 
American National Basketball Association (NBA), 
National Hockey League (NHL), Major League 
Baseball, and the National Football League (NFL) 
have encountered criticism regarding the draft 
systems utilised in their respective sports. Refer to 
Bedford and Schembri (2006) for a review of these 
draft systems. Although reverse ladder position and 
lottery based systems dominate player draft systems 
worldwide, neither system is considered ideal 
(Bedford & Schembri, 2006), yet despite the need 
for a revised system, a paucity of research existed in 
this area in 2006, and very few studies have been 
published in more recent years. In one study, Gold 
(2010) suggested that losing can assist teams in the 
NHL with an opportunity to acquire more tickets for 
the draft lottery, thus encouraging supporters to 
cheer for opposition teams. This author employed a 
mathematical elimination technique to enforce a 
competitive atmosphere on teams who performed 
poorly, whilst those teams eliminated earliest had 
more opportunity to earn higher draft picks. 

Borland, Chicu, and Macdonald (2009) presented on 
an exploratory study into trends in the AFL prior to 
and following the introduction of the current draft 
system. Results indicated that there was no evidence 
that clubs had engaged in ‘tanking’ (a colloquial 
term used to describe a club that is losing 
intentionally). Several reasons were highlighted for 
this finding, including the few benefits that exist for 
clubs who engage in tanking, and that few 
opportunities exist for tanking to occur in AFL 
football. Despite these findings, controversy and 
general disenchantment remains in the AFL 
community, with journalists, players, coaches, and 
general supporters of the game expressing their 
concerns in recent years. The introduction of two 
new teams into the AFL in 2011 and 2012 will result 
in draft concessions being available to the new 
teams, and therefore even fewer incentive to tank 
exists for AFL clubs. Many have argued that this 
presents the AFL with a period of respite, and an 
opportunity to revise the current draft system, whilst 
others have suggested that the tanking issue will 
escalate following introduction of the new clubs 
(Leech, 2008). 
In this paper, we build upon the draft model 
presented in Bedford and Schembri (2006). Several 
weaknesses of the original model are addressed, 
with a series of moderating variables being 
introduced to ensure that poorer teams receive 
adequate reward for winning unimportant matches. 
We will begin our work by defining the criteria used 
to develop our original model, and the modifications 
made for the revised system. Simulation data is then 
presented in consideration of the operational aspects 
of the revised model 
 
2. METHODS 
 
To begin, we present the mathematical and 
probabilistic elements that were fundamental to the 
original DScore model published in 2006. 
A large amount of detail is given in our earlier work 
(Bedford and Schembri (2006)) on the finer details 
of the model. Here we summarise it briefly. At its 
heart, the model simply aimed to reward teams with 
a reduced probability of making the final eight with 
a higher draft score (DScore) if they win. Firstly, the 
projected wins (ParWins) to make the final eight is 
calculated, and from this the binomial distribution is 
used to determine each teams chance of making the 
final eight. The unimportance of a match is then 
calculated simply by 

)),1(22;(1)( 1 prParWinsbrU i +−−=  (1) 
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where b(x,n,p) is the discrete binomial distribution 
function. From this the DScore is given by the sum 
of the draft points reward for team i , so 

( )∑
=

−=
r

i
ii rFPrUrDScore

7

)|8(1)()(  (2) 

noting that points are only awarded if a team wins 
and r > 6. F8 is the number of wins needed to make 
the final 8, and r the round. 
Although this model provided several positive steps 
in the development of the DScore draft system, 
several weaknesses were evident. Firstly, the top 
pick in the draft was frequently awarded to a team 
who, whilst unlikely to figure in the finals, won a 
string of matches at the end of the season. Whilst 
these teams typically finished between ninth and 
twelfth on the ladder, they were awarded the top 
draft pick due to the high number of unimportant 
matches that they had won. Another limitation of the 
model was that teams who performed poorly and 
won very few matches for the entire season were 
only able to obtain a maximum of one DScore point 
for every game that they did win. This limited their 
opportunity to climb the DScore ladder and receive a 
top five draft pick at the end of the season. 
 
Moderator Variables in the 2010 DScore Model 
In order to address these shortcomings, several 
moderating variables were introduced into the model 
to reduce the magnitude of reward for teams who 
were climbing the ladder late in the season, and also 
to amplify DScores for those teams who won very 
few matches throughout the season, particularly late 
in the season when there was little incentive to win. 
The following moderators were introduced into the 
revised model: 
 
Quality of opposition measure.  
To obtain a measure of the quality of opposition 
being played and in order to reward the poorly 
performing team accordingly, a moderator was 
introduced based on the ratio of the opposition 
team’s pre-match percentage and the team in 
question’s percentage prior to the match being 
played. As an example, Melbourne (16th) played 
Port Adelaide (9th) in Round 15 of the 2009 season 
(refer to Table 1). 
Melbourne’s percentage going into the game was 
71.5% whilst Port Adelaide’s was 92.1%. For 
Melbourne, dividing Port Adelaide’s percentage by 
their own percentage results in a DScore scaling 
factor of 1.288, whilst for Port Adelaide, dividing 

Melbourne’s percentage by their own percentage 
results in a DScore scaling factor of 0.776. 
Introduction of this variable enabled the DScore 
model to take the quality of the opponent into 
consideration for each round. 
 

Position Team W D L % 

9 Port Adelaide 7 0 7 92.1 

16 Melbourne 2 0 12 71.5 

Table 1. Ladder position of Melbourne and Port 
Adelaide prior to Round 15, 2009. 

 
Difference in wins when compared with 8th 
position. 
To further unearth the team in question’s likelihood 
of making the finals at the time of each match, and 
in essence, measuring the unimportance of each 
match, the ratio of the number of wins obtained by 
the team in eighth place and the number of wins 
obtained by the team in question was considered. 
The following equation was utilised to compute this: 

WinsPosition

winsiTeamWinsPosition
th

th

8

8 −=Ω  (3) 

For example, going into the Round 15 encounter 
with Port Adelaide, Melbourne had won two 
matches up to that point in the season. Going into 
the round, Essendon was in eighth place with seven 
wins. For Melbourne, the ratio of Essendon’s wins 
to their own resulted in a scaling factor of 0.714 
(that is, [7-2]/7 = .714). Relative to teams who had 
won more matches up to that point in the season, this 
scaling factor would further amplify Melbourne’s 
Draft Point Reward (DPR) for the round if they were 
to beat Port Adelaide. 
 
Moderating factor based on ladder position.  
To ensure that teams in the bottom four positions of 
the ladder (13th, 14th, 15th and 16th) receive 
maximum reward for winning late in the season, and 
to reduce the reward received by teams in 12th 
position and above, a third scaling factor was 
introduced. Simply put, those teams who are placed 
in the bottom four positions of the ladder at the time 
they won a match receive their allocated DScore 
multiplied by one (that is, it remained unchanged), 
however those teams placed in 12th position and 
above have their allocated DScore for that round 
halved. This scaling factor was introduced to prevent 
teams who are of sufficient quality from receiving a 
top draft pick. For example, during the 2009 season, 
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West Coast won 4 of its first 17 matches, and 4 of its 
last 5 matches. For this latter string of wins, the first 
two matches were won in 13th and 14th position on 
the ladder, however the final two were won from 
12th position. By implementing the moderating 
factor based on ladder position, West Coast received 
their full DScore compliment for the first two wins, 
yet their DScore was multiplied by 0.5 for the wins 
where they were in 12th position, that is, when they 
were not one of the bottom four teams on the ladder. 
 
Other moderating factors that were trialled.  
Several  alternative moderating factors were also 
trialled and not implemented into the final model. To 
ensure that the top four draft picks were more likely 
to be awarded to the bottom four teams, a trial 
simulation was undertaken whereby only teams who 
were in the bottom four positions on the ladder at the 
time they won a match would receive a DPR for 
winning the match. Simulation results revealed that 
this approach reduced the number of teams in 
contention for the top four draft choices, and also 
resulted in most teams not receiving a DPR for the 
entire season, given that only a handful of teams are 
actually in the bottom four between rounds eight and 
22. 
Introduction of a cumulative DScore was also 
considered whereby teams would be awarded all 
possible DScore points that had accumulated since 
their last win. For example, a team in 16th position 
who has not won a match for five rounds upon 
entering Round 20 would be rewarded with their 
DPR for Rounds 15, 16, 17, 18, 19 and 20. 
Simulation results indicated that this variable 
increased the volatility of the entire draft system, 
since lowly teams who had performed consistently 
(e.g., winning one in every four matches) were 
overhauled by a team who did not win many 
matches during the year, but won a match late in the 
season (e.g., did not win between rounds eight and 
20, but won a match in Round 21). 
The allocation of DPR based on a countback system 
at the end of the season was also contemplated by 
the authors however this had the potential to reduce 
the competitive nature of the DScore system 
throughout the season, given that teams would not 
be aware of their current standing at the end of each 
round. 
 
3. RESULTS 
 
We begin our review of the revised DScore model 
by examining the 2009 season in detail. Where 
possible, the revised model is compared with the 

current AFL draft system and the 2006 DScore 
model. 
 
 
The 2009 AFL Season 
In 2009, the AFL season was highly competitive, 
with the makeup of the finals uncertain until the 
final round. With five rounds remaining in the 
season, eleven teams were still vying for a finals 
position. In addition, only six premiership points (or 
one and a half wins) separated 12th and 16th on the 
ladder, and thus the race for the wooden spoon 
(awarded to the team that finishes last) was still wide 
open. At seasons end, Melbourne finished last on the 
ladder with only four wins, and was granted a 
priority pick given that they had only won three 
matches in 2008. Table 2 presents a summary of the 
2009 AFL ladder at the end of the home-and-away 
season, with results of the AFL Draft system, the 
2006 DScore model, and the revised 2010 DScore 
model. 
Under the 2006 DScore model, West Coast were 
awarded the top draft pick following a string of wins 
late in the season. A series of back-to-back wins was 
also achieved by North Melbourne, and therefore 
they received pick 2 under the 2006 model and pick 
3 under the revised 2010 model. The bottom two 
teams won four and five matches respectively in 
2009, with the majority of these wins being achieved 
in the second half of the season. Based on the 
DScore model being fundamentally based on poorly 
performing teams having an incentive to win, the 
newly introduced moderating factors had a desired 
effect in the 2009 season, with the bottom two teams 
being awarded picks 1 and 2 under the revised draft 
model. Under the revised system, North Melbourne 
and West Coast were rewarded substantially for their 
performances late in year, receiving picks 3 and 4. 
The 2006 DScore model plot demonstrates the 
effects of teams winning a string of consecutive 
matches late in the season, with West Coast and 
North Melbourne rising to the top of the DScore 
ladder late in the season. This was not the case under 
the revised model, as only moderate increases in 
DScore rankings were evident late in the season. 
This finding demonstrates that the revised model has 
the potential to take the quality of the team into 
consideration, by moderating the DScore value 
being awarded to teams who finish between 9th and 
12th position on the ladder. 
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Figure 2. Probability distribution of draft choices for each ladder position at the conclusion of the 2009 AFL 
home-and-away season. 
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Figure 1. Progressive DScores for the 2009 AFL season for the 2006 and 2010 DScore Models. 
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   2010 Model 2006 Model 

Team W-D-L % 

A
F
L 
 

DScore Pick DScore Pick 

St 20-0-2 155.7 16 0.0002 16 0.0000 16 

Ge 18-0-4 127.4 15 0.0002 15 0.0000 15 

Wb 15-0-7 122.6 14 0.0069 14 0.1775 14 

Co 15-0-7 122.3 13 0.0196 13 0.4903 13 

Ad 14-0-8 117.6 12 0.0233 12 0.4903 12 

Bri 13-1-8 106.7 11 0.0291 11 0.5545 11 

Ca 13-0-9 110.5 10 0.0404 10 0.9961 10 

Es 10-1-11 97.8 9 0.1553 9 2.6049 9 

Ha 9-0-13 92.5 8 0.2064 7 1.8065 7 

Po 9-0-13 88.7 7 0.0618 8 1.0196 8 

Wc 8-0-14 93.3 6 2.3197 4 4.8790 1 

Sy 8-0-14 93.1 5 0.5136 6 2.1548 6 

Ka 7-1-14 83.4 4 2.3219 3 3.9768 2 

Fr 6-0-16 77.3 3 2.2111 5 3.0001 5 

Ri 5-1-16 74.3 2 2.9037 2 3.9249 3 

Me 4-0-18 74.7 1 3.0613 1 3.0002 4 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2. Draft Pick Comparison. 
(W=win; D=draw; L=loss, %=score for team/score against team) 
 
Simulation results based on the 2009 AFL season 
As described in the methodology, a 100,000 iteration 
simulation was conducted on the 2009 AFL season. 
The purpose of the simulation was to examine the 
distribution of scores obtained under the revised 
DScore model, and the likelihood of teams finishing 
in different ladder positions receiving high or low 
draft choices. Figure 2 displays the probability 
distribution of obtaining each draft pick for every 
ladder position at the conclusion of the 2009 AFL 
home-and-away season. 
As shown, the team that finished last on the ladder 
had a probability of .77 of obtaining the first draft 
pick, and a probability of .15 of obtaining the second 
draft choice. Ladder positions 13th to 15th had a 
high probability of obtaining a top five draft choice, 
however the team who finished 13th was most likely 
to receive pick 4 or 5. Part b of Figure 2 
demonstrates that it was most probable for ladder 
positions 9th to 12th to receive picks 6 to 8, however 
teams who finished 11th or 12th regularly received 
picks 2 or 3. Parts c and d of Figure 2 indicate that 
teams who finish between 6th and 8th position 
receive an assortment of picks 9 to 11, whilst those 
teams who finish in ladder positions 1 to 5 have a 
very high probability of obtaining a draft pick that 

corresponds to their reverse ladder position (e.g., 
first position on the ladder receives pick 16). Figure 
3 displays the cumulative probability of obtaining a 
top five draft pick for teams finishing in the bottom 
eight positions on the ladder, that is, those teams 
who did not qualify for the finals.  
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3. Cumulative probability of obtaining a top 

five draft pick for ladder positions 9 to 16. 
 
Teams who finished between 13th and 16th had a 
very high probability (between .97 and .99) of 
obtaining a top 5 draft pick, however the order of the 
top 5 picks varied considerably. To illustrate, ladder 
positions 13 and 14 were unlikely to receive a top 2 
pick (below .20), whilst positions 15 and 16 had a 
respective probability of .55 and .85 of receiving one 
of these picks. Of note, it was very unlikely that 
teams who finished in positions 9th through to 12th 
would receive a top two draft pick, however a top 
five pick was possible for these teams. In effect, the 
distribution of cumulative probabilities in this figure 
demonstrates that all teams in the bottom five 
positions on the ladder have great incentive to win 
matches late in the year under the revised DScore 
model, with the greatest incentive being for those 
teams in the bottom two positions on the ladder. 
 
Distribution of actual DScores and difference 
scores for the 2009 AFL season 
In addition to examining the distribution of ladder 
position and corresponding draft choice allocations, 
a review of the distribution of actual DScores is 
necessary. Examination of the difference in actual 
DScores enables an assessment of the number of 
teams who are in contention to receive draft 
selections. Table 3 presents mean and standard 
deviation scores for the DPR allocated to each team 
over the course of the 2009 AFL home-and-away 
season for the 100,000 iteration simulation. 
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AFL Pos. 
Min. Max. Mean SD 

16 .4139 4.6186 2.8850 .5115 

15 .1527 4.5644 2.5831 .6578 

14 .5616 3.8516 2.1037 .3228 

13 .2152 3.5411 2.0054 .3577 

12 .0590 3.5476 1.4367 .9053 

11 .0306 3.5405 .9770 .9538 

10 .0302 3.5196 .4888 .6423 

9 .0283 2.6995 .3699 .4530 

8 .0284 2.3196 .1986 .1682 

7 .0100 .3392 .0404 .0318 

6 .0002 .1493 .0352 .0241 

5 .0002 .2078 .0300 .0278 

4 .0002 .0244 .0159 .0070 

3 .0002 .0239 .0075 .0060 

2 .0002 .0198 .0004 .0007 

1 .0002 .0002 .0002 .0000 

 

DScore allocations decreased as ladder position 
increased, with the team finishing on top of the 
ladder having a mean DScore of .0002 and a 
standard deviation of 0.0000. All teams that finished 
in the bottom four positions on the ladder had a  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 3. Draft point allocation descriptive statistics 

for each ladder position following the 100,000 
iteration simulation. 

 
mean DScore between two and three points, and 
therefore each have the potential to receive the top 
draft choice. As would be expected based on the 
newly introduced scaling factors, a marked decrease 
in mean DScores was evident for teams who 
finished in 11th or 12th position, with a further 
decrease for those teams who finished in 10th 
position or above. It is likely that teams finishing in 
11th and 12th position won a proportion of their 
matches whilst in the bottom four positions on the 
ladder, thus their DPR was somewhat higher than 
teams who finished higher on the ladder. However, 
winning a proportion of matches when outside the 

bottom four resulted in these teams having 
substantially lower DScores than teams in the 
bottom four ladder positions. This finding is further 
evidenced by the higher standard deviation scores 
for teams finishing in 11th or 12th, with results 
indicating standard deviations of almost one DScore 
point. 
To further analyse the distribution in scores and the 
number of teams in contention to win the top draft 
pick, the difference between the top DScore (Rank 
1) and DScore ranks 2 to 8 were computed, refer to 
Figure 4. 
On average, difference scores between ranks 1 and 2 
were approximately 0.6 DScore points, which is the 
equivalent to one win. This finding indicates that the 
second highest DScore rank could have potentially 
won the top draft pick in the majority of cases had 
the team won one more match. The difference in 
DScores between Rank 1 and ranks 2 and 3 were 
approximately one DScore point, which equates to 
between one and two wins. Teams between ranks 1 
and 5 were clearly in contention for the top draft 
choice based on difference scores, however a 
substantial increase in difference scores was evident 
for ranks 6, 7, and 8, with difference scores 
exceeding 2.5 DScore points (equivalent to between 
three and four wins). 
As such, teams who finish in the bottom five 
positions on the ladder are typically in contention for 
the top draft choice, however on average, this is not 
likely for teams with a DScore ranking from rank 6 
and above. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Difference between simulated DScore 
ranks for the 2009 AFL home-and-away season. 

 
Implications of the DScore Model on Consistently 
Poor Performers 
One criticism that has been levelled at the DScore 
model relates to teams who are very poor and thus, 
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are not capable of winning many matches 
throughout a season. These teams do not have the 
capacity to obtain DScore points and subsequently, 
do not receive high draft choices. It could be argued 
that these are the teams that require high draft 
choices the most given that they lack sufficient 
player quality to win matches. Figure 5 displays an 
example of this occurring in an actual season, that 
being the 2007 AFL home-and-away season. In this 
season, Carlton (finished 15th on the ladder) won 
three matches and had one draw in the first eight 
rounds, but did not win a match for the remainder of 
the season. 
In this season, Richmond (finished 16th on the 
ladder) received the top draft pick, followed by 
Melbourne who finished 14th. There was a close 
battle for picks 3, 4, and 5 between teams who 
finished between 9th and 13th on the ladder. Of 
note, Carlton did not receive any DScore points 
throughout the season given that they did not win a 
match from Round 11 onwards, which is the round 
where the DScore model commences. Whilst it 
might be argued that Carlton lacked sufficient team 
strength to win matches, they did win three matches 
and draw another in the first eight rounds. In 
addition, the team had little incentive to win based 
on the current draft system since any more wins in 
the final 14 rounds would have made the club 
ineligible to receive a priority pick at the end of the 
season. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Progressive DScores for the 2007 AFL 
season for the 2010 DScore Model. 

 
This season exemplifies that poorly performing 
teams need to win at least one to two matches to 
obtain a high draft choice, given that in this season, 
Richmond won only two matches after the DScore 
model commenced, yet had sufficient DPR without 
their win in round 21 to be awarded the top draft 
choice. 
 

4. DISCUSSION 
 
Results of the current paper have indicated that the 
revised DScore model builds on the model presented 
in 2006 in several ways. Firstly, the quality of the 
opposition being played is taken into consideration 
prior to each match. The inclusion of this 
moderating variable enables the DScore model to 
reward a team with additional DPR if a superior 
team is defeated (e.g., last defeating a team who is 
currently in the top eight) as opposed to a team who 
is of similar quality (e.g., last defeating second last 
on the ladder). Taking into account current ladder 
position also prevents teams who win a series of 
consecutive matches late in the season from 
receiving the top draft choices, when clearly there 
are other teams in the league that are in greater need 
of such high draft picks. Despite this, teams who win 
a string of matches are not penalised, but rather the 
simulation results indicate that these teams are 
awarded a pick in the latter half of the top 5 (e.g., 
pick 3, 4, or 5), thus there is still a strong incentive 
to win consecutive matches and finish higher on the 
ladder for teams capable of doing so. 
Examination of the distribution in scores indicates 
that under the revised model, teams who finish in the 
bottom four positions of the ladder, yet win between 
three and five matches, typically receive very high 
draft choices. Whilst it could be argued that little 
difference exists between the results of the revised 
DScore system and the current reverse order model 
employed by the AFL, a fundamental principle 
differentiates the two approaches to allocating draft 
selections. This difference lies in the incentive of 
each team to win. The current AFL model promotes 
teams who are out of finals contention to lose 
matches, and recently retired players and coaches 
have attested to this. By contrast, the revised DScore 
model provides teams in the bottom half of the 
ladder with a strong incentive to win football 
matches right up to the final match of the season. 
Simulation results have demonstrated the stability of 
the revised DScore model, with additional trials 
undertaken by the authors over the past 10 AFL 
seasons demonstrating the robustness of this draft 
system. Analysis of difference scores indicates that, 
in most cases, the bottom five teams are all in 
contention for the top draft pick, and the possibility 
of a bottom five team receiving a top five pick is 
very high (exceeding 0.90). In effect, the 
introduction of several moderator variables into the 
revised DScore model has enabled lowly teams with 
a greater opportunity to receive high draft picks. 
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Additional work may also pertain to adopting the 
DScore model to other sporting codes, including 
NBA basketball, the NHL, and the Australian 
National Rugby League.  
 
 
5. CONCLUSIONS 
 
In conclusion, the current paper has presented on a 
revised DScore model that provides a unique system 
for the allocation of draft choices in AFL football. 
This model provides poorly performing teams with 
an incentive to win matches throughout a season, 
which is particularly critical once a team is no longer 
in contention to play in the finals. By incorporating 
Morris’ (1977) definition of unimportance, this 
model vastly reduces the frequency of ‘dead 
rubbers’, that is, matches which have no 
consequence on the season. Most importantly, this 
model provides coaches and players with a reason to 
be motivated to win, and club supporters with an 
opportunity to continue encouraging their team to 
win. 
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Abstract 
 
AFL (Australian Football League) clubs are allocated player selections (“picks”) in the National Draft in 
reverse order of their final position in the preceding season. Clubs which perform below a certain threshold in 
a single season are allocated an additional pick, while clubs which meet that threshold in two successive 
seasons receive a more valuable pick. These somewhat arbitrary thresholds lead to a discontinuous 
performance / reward relationship, where it is clearly in a club’s best interest to lose certain matches. The 
natural suspicion and speculation around “tanking” detracts from the integrity of the game, in the eyes of the 
AFL. However, a recent paper by Borland, Chicu & Macdonald (2009) concludes that there is little evidence 
of systematic “losing to win” in that league. 
 
A natural and flexible valuation scheme for draft picks is proposed and tested, using extreme value statistics 
pioneered by Gumbel (1954) in what could be regarded as a variation on Galton (1902)’s Difference Problem. 
It removes the arbitrary discontinuities while continuing to support competitive equalisation via higher picks 
for genuinely struggling clubs. This draft pick method does not enforce a constant order to be followed in 
every round. As a corollary, the scheme suggests a method for clubs to value their picks when developing 
trading strategies. It could also furnish the AFL with an alternative means of compensating clubs for the loss 
of key players to start-up teams, and penalising clubs for transgressions. 
 
While this scheme has direct applicability to the AFL, it is easily portable to other sports’ player drafts, such as 
the NFL, MLB and NBA. 
 
 

Keywords: Australian Rules Football, AFL, Player Draft, Extreme Value Theory, Galton’s 
Difference Problem 
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1. INTRODUCTION 
 
The Australian Football League (AFL)’s annual 
National Draft is the only way for existing clubs to 
add players to their squads1, and is therefore 
crucially important to their prospects. In common 
with many other sports, as part of its competition 
equalisation policy the AFL allocates draft picks in 
order of reversed final position on the ladder (AFL 
Development, 2010). More controversially (see e.g. 
Sheahan (2009)), clubs are allocated “priority” picks 
if they are considered to be direly uncompetitive. A 
team which fails to win more than four matches is 
given an extra pick between the first and second 
rounds of the draft, while a team falling below this 
threshold in two consecutive seasons has its priority 
pick upgraded to above the first round. In this way 
Melbourne Football Club received both of the first 
two draft picks in the 2009 draft after finishing last 
with exactly four wins in the second of its dire 
seasons. Certainly the reward for Melbourne losing 
just its last game was immense: access to the two 
best players in the country, rather than one. 
With the addition of new clubs over the next two 
years, the AFL has proposed a formula to 
compensate existing clubs for the loss of star 
players. Wilson (2010) suggests that for the very 
best players, the AFL may provide two first-round 
picks instead of one, with the club able to choose 
which year it exercises the extra picks, but only after 
its existing first-round pick (the position of which 
will vary from year to year). For a club in this 
situation, there is a great deal riding on the AFL’s 
decision, and the quantum of compensation is rather 
large – they cannot have 1.5 first-round picks, for 
instance. 
In this paper I develop a valuation system for draft 
picks and advise how the arbitrary thresholds in the 
system might be abolished without losing the ability 
to help truly uncompetitive teams. 
 
AFL Draft Research 
Borland, Chicu & Macdonald (2009) examined the 
teams faced by these perverse incentives for 
deliberately losing (also known as “tanking”) and 
concluded that there is no significant change in 
behaviour. A dreadful season can lead to loss of 
sponsors and members, and fewer lucrative TV slots 
when the fixture is drawn up. Rielly (2009) reported 
on commissioned research by Mitchell et al (2009) 
that found good correlation between draft order and 
subsequent player performance for the first round 

                                                
1 Player trading is only permitted within the framework of 
the Draft, and usually in exchange for draft picks 

only, with very weak correlation after pick number 
16. Bedford & Schembri (2006) proposed a system 
where clubs not in contention for finals are rewarded 
for winning formally unimportant matches with an 
improved draft position. 
 
Other Leagues’ Draft Research 
Professional US leagues such as the NFL, NBA and 
MLB have similar annual drafts. Burger & Walters 
(2009) point out that there is high risk and a lot of 
money at stake: only 8% of players picked in the 
first ten rounds of the MLB draft become established 
Major League players. Barzilai (2007) thoroughly 
analyses the empirical value of NBA Draft pick 
players. Berri & Simmons (2009) give an example 
of teams not using their choices wisely, with only a 
weak correlation between NFL amateur draft order 
and performance. Massey & Thaler (2005) state that 
NFL clubs overvalue the right to choose, and pay 
too much for the first pick in the draft. 
The NFL Draft appears to receive the most attention, 
likely due to a famous “Draft Value Chart” 
developed around 1990 (Trotter, 2007) under Dallas 
Cowboys head coach Jimmy Johnson, anecdotally 
(Crowe, 2009) with help from mathematicians 
although the exact derivation is unknown. The chart 
gives a rule-of-thumb value that clubs should place 
on their draft picks when they are considering 
trading, so for instance the 1st pick is worth 3,000 
points, 2nd pick 2,600, 16th pick 1,000, etc., down to 
the 224th pick worth 2 points. Recently there have 
been a number of comprehensive analyses assessing 
and adjusting this chart (e.g. Stuart (2008), Patterson 
(2009), Vance (2009)), based on performance 
ratings of the players picked at those positions, but 
none presenting an underlying theoretical model. 
 
Extreme Value Theory 
Francis Galton (1902) asked the question: if a 
competition has a £100 pool and there will be prizes 
for first and second, “How should the £100 be most 
suitably divided between the two?” His answer of 
roughly £75 : £25 is based on the expected value of 
the “excess merit” of someone in those positions, 
compared to the third-place competitor. Subsequent 
extensions to n prize-winners in large pools of 
competitors grew into a branch of Extreme Value 
Statistics, pioneered by Gumbel (1935) and Fisher & 
Tippett (1928). 
I draw a parallel to the “competition” between 
potential draftees. The potential talent pool consists 
of young men with diverse aptitude for football. In a 
demographic sense, it is reasonable that an aptitude 
score for the population cohort of 18-year-old 
Australian men should be approximately normally 
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distributed2, like many other broad-based attributes. 
The players drafted would then form one extreme 
tail of that distribution, assuming that clubs can 
make an efficient assessment of that aptitude. 
I propose a system in which the kth draft pick has a 
value proportional to the kth order statistic of a 
suitably large normal population. This paper shows 
the necessary calibrations and consequences. 
 
2. METHODS 
Galton’s method of allocating prizes considered 
firstly a population of n=10. His simple assumption 
was that the most probable values of merit Θ for the 
ten competitors correspond to equidistant values of 
the cumulative distribution function (CDF), namely 
0.05, 0.15, 0.25, 0.35, 0.45, 0.55, 0.65, 0.75, 0.85, 
0.95. By looking up numerical probability integral 
tables, he discovered that the ratio of first’s 
advantage over third compared to second’s 
advantage over third was about 72.8:27.2. As he 
increased n, the ratio approached a limit of about 
75.4:24.6. Therefore his proposal was that the most 
appropriate prize for first is about 75% of the pool. 
 
Estimates for Extremal Values 
ABS (2009) shows that at September 2009 there are 
approximately 772,070 males between the ages of 
15-19 in Australia. The eligible demographic 
passing through the annual AFL Draft window is 
approximately one-fifth of that, indicating an 
appropriate n = 155,000. While men can nominate 
for multiple drafts, in theory they should be drafted 
when first eligible as their inherent aptitude is 
considered to be constant. 
The modal value of the kth extremal of a normal 
distribution is (Gumbel, 1954, equation (3.32)): 

 
(1) 

where Φ is the CDF of the normal distribution with 

PDF ϕ. The mean is slightly higher (ibid.): 

 
(2) 

where γ ≈ 0.577216 is the Euler-Mascheroni 
constant and 

                                                
2 Galton makes the same proposal for merit 

 

 
(3) 

is the kth harmonic number. Blom (1958) generalised 
the different equidistant formulas of Galton and 
Gumbel into an approximant for the mean: 

 

(4) 

and proposed  as a rule-of-thumb constant 

between Galton’s  and Gumbel’s modal 
, although Harter (1961) pointed out that α 

actually varies with n. 
With such a large n, it is worth considering whether 
the asymptotic (n→∞) form3 is appropriate. Ideally, 
there should not be a dependency on the ABS’s 
latest demographic trends each year in order to 
calibrate the draft. Fisher & Tippett (1928) point out 
that the tendency toward asymptotic form is 
exceedingly slow in the normal case (David & 
Nagaraja, 2003), while Dronkers (1958) proposes 
that it should only be used when the extremal index 

. 
Cramér (1946) equation (28.6.16) gives the 
asymptotic formula for the mean of the kth extremal: 
 

 

 
(5) 

The choice of formula to measure the value of each 
draft pick makes a significant difference to the first 
few picks, but little difference to the rest. In the table 
below, the difference between pick one and pick two 
is compared to the difference between pick two and 
pick ten. 
 

 
Method of Valuation 
 

 

 

Galton (α = 0.5) 0.55 
Mode (α = 0) 0.41 
Mean (n = 155,000) 0.63 
Asymptotic Mean (n → ∞) 0.70 
Table 1: Relative Value of First Pick by Method 

 
Under the assumptions outlined, the average aptitude 
or merit of the best young players in the country 
should follow the “Mean” valuation method. 
Consider however the assumption that clubs have 
perfect skills in assessing that hidden variable. If 
clubs are not efficient assessors, the impact of the 

                                                
3 The characteristic distribution of the extremal is the 

Gumbel Distribution with CDF =  
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error will fall most heavily on the clubs with the 
early picks. In particular, the club with the first pick 
can only obtain full value by choosing the best 
player in the pool. The club with the second pick has 
a non-zero chance of doing better than its allocation, 
if the first club makes an error of choice, but could 
also make an error and choose a player worse than 
the second-best. Perhaps this effect is evident in the 
findings discussed in the introduction, where the 
first pick is empirically overvalued. 
I therefore propose to use the modal (or most likely) 
value in the valuation method. This keeps the 
dependency on n, but the valuation ratios do not 
vary materially from year to year. 
 
The Worthless Pick 
Galton decided that in the simplest version of his 
question, there should only be two prizes. Every 
competitor from third onwards was treated the same. 
Having decided on the shape of the valuation 
method, I also need to set the zero. Every potential 
player below a certain level of aptitude is the same, 
as far as the clubs are concerned. This is essentially 
an empirical judgement – when do the clubs decide 
their next pick is worthless? 
In the AFL National Draft, clubs may take between 
four and eight players. In 2009, both Melbourne and 
Fremantle elected not to use their early fifth-round 
picks (#66 and #68 respectively), effectively 
declaring them valueless. The last pick used was 
#95, compared to #83 in 2008 and #75 in 2007. 
Geelong traded away two unwanted players (Steven 
King and Charlie Gardiner) in 2007 for pick #90, 
which they did not use. For the purposes of 
constructing the model, I will draw the line after six 
rounds, i.e., pick #97. The exact zero point does not 
have much of an effect on the valuation scheme, 
because the difference between subsequent picks 
near the zero is quite small. 
At the other end of the scale, I will conform to the 
NFL convention and arbitrarily value the first pick at 
3,000 “Draft Points”. Therefore the linear 
transformation to pick values vk (0 < k < 97) is 

 
(6) 

 
Allocating Draft Picks to Clubs 
Based on their season performance, clubs are 
allocated a certain number of Draft Points. The 
simplest version of the model replicates the current 
draft, with club c (numbered from 1st on the ladder 

to 16th) receiving Draft Points Pc,1 according to: 

 

 
(7) 

The second index indicates the number of Draft 
Points club c has prior to pick i. To determine the 
draft order after the season, the following algorithm 
is run for each pick i: 
1. Find the club t with the most remaining Draft 

Points, i.e., t : Pt,i = maxc{ Pc,i} 
2. Club t owns pick i and has vi Draft Points 

removed from its total: Pt,i+1=Pt,i − vi 
In this simple model, each club receives a pick in 
reverse ladder order for every round. 
Note that Draft Points are positive real numbers. 
 
Measuring Need 
Draft Points could also be allocated in a completely 
different way, for instance through a formula which 
rates a team for its ladder position, number of wins, 
and/or percentage (points for / points against). Often 
there are a number of clubs in the middle of the 
ladder with similar win-loss records. In 2009, 
Sydney won just one fewer match than Hawthorn 
and had a better percentage, yet received picks 6, 22, 
38, … compared to 9, 25, 41, … because they 
finished three rungs lower on the ladder. On the 
Draft Point scale, Sydney were allocated 4,435 
points to Hawthorn’s 3,938 – 12.6% more – despite 
the difference in quality between the two being 
virtually undetectable. A formula which rated the 
middling teams closer together would see a more 
balanced allocation of draft picks. 
The philosophy of the draft is to adequately support 
struggling clubs, so that they can become average 
clubs. In the past, the reward for finishing last in 
consecutive seasons has tended to overcompensate 
the dire clubs and allowed them to compete at the 
top of the ladder within 6-8 years (Mitchell et al, 
2009). It should not unduly punish the premier – the 
current allocation of the last pick in each round 
would remain the standard. 
A possible formula to achieve these ends is as 
follows: 
• The eight finalists are allocated Draft Points as 

per (7) 
• Non-finalists are given an initial “Need Rating” 

(8) based on their number of wins and 
percentage. Points for-versus-against percentage 
is considered a safe indicator, as teams do not 
deliberately set out to be thrashed. It is 
demoralising for the players and supporters, and 
a percentage below 70% points to dire need 

• The Need Rating is topped up with a fraction of 
the club’s previous season Need Rating, from 
7.5% (9th) to 60% (16th). Clubs which made the 
finals in the previous season have no carry-over 
rating 
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• The Need Rating is linearly transformed into 
Draft Points (9) using constants dependent on 
(6) 

     Need Rating  
(8) 

where PC is the club’s percentage and PP is their 
premiership points (four for a win and two for a 
draw). 94 is chosen so that a team with the 
competition average 44 points and 100% is not 
considered in need. If NRc is calculated at less than 
zero, it will be taken to be zero.  

 

 
(9) 

3. RESULTS 
Table 2 displays the complete set of Draft Points for 
a 16-club, six-round draft. 
 

Pick Points Pick Points Pick Points Pick Points 
1 3,000 25 977 49 504 73 213 
2 2,593 26 950 50 489 74 203 
3 2,348 27 924 51 475 75 193 
4 2,171 28 899 52 461 76 183 
5 2,032 29 874 53 447 77 173 
6 1,918 30 851 54 434 78 164 
7 1,820 31 828 55 420 79 154 
8 1,734 32 806 56 407 80 145 
9 1,658 33 784 57 394 81 135 
10 1,590 34 763 58 382 82 126 
11 1,528 35 743 59 369 83 117 
12 1,471 36 723 60 357 84 108 
13 1,418 37 704 61 345 85 99 
14 1,369 38 685 62 333 86 91 
15 1,323 39 667 63 321 87 82 
16 1,280 40 649 64 310 88 73 
17 1,239 41 631 65 298 89 65 
18 1,201 42 614 66 287 90 56 
19 1,164 43 597 67 276 91 48 
20 1,129 44 581 68 265 92 40 
21 1,096 45 565 69 254 93 32 
22 1,065 46 549 70 244 94 24 
23 1,034 47 534 71 233 95 16 
24 1,005 48 518 72 223 96 8 

Table 2: Value of the kth Draft Pick 
 
The only publicly available comparison for this 
theoretical model is the NFL Draft Value Chart: 
 

 
Figure 1: The NFL Draft Value Chart (Crowe, 2009) compared to 
the proposed valuation scheme. 
 

 
Figure 2: The NFL Draft Value Chart compared to the proposed 
valuation scheme on a logarithmic scale. 
 
The extreme-value model clearly does not fit the 
published NFL charts, even after taking the USA’s 
larger population into account. The mid-range 
choices on the chart are substantially undervalued in 
comparison. It appears from the log-scale Figure 2 
that the NFL chart may have been drawn from a 
simple logarithm then smoothed from about pick 
130 to asymptotically approach zero. Potentially 
there is merit in this smoothing, as late picks have 
some residual value due to the rare good player who 
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is still uncovered at that late stage, but most will be 
close to the minimum league standard. 
The divergence between the two curves is similar to 
that seen by Stuart (2008), who used empirical 
career data to rate the actual picks from 1970 to 
1999. 
 
2009 Season Example 
Table 3 compares the number of Draft Points clubs 
would receive under various scenarios. The second 
column is a regular ladder without any priority 
picks, the third column is how the points were 
allocated after Melbourne received the priority pick, 
and the fourth column shows what clubs would have 
received under the formula of the previous section. 
 

Club Regular 2009 Draft Proposed 
Geelong 3066 2961 3066 
St Kilda 3176 3066 3176 
W Bulldogs 3289 3176 3289 
Collingwood 3407 3289 3407 
Adelaide 3530 3407 3530 
Brisbane 3659 3530 3659 
Carlton 3795 3659 3795 
Essendon 3938 3795 3938 
Hawthorn 4091 3938 4324 
P Adelaide 4256 4091 4446 
West Coast 4435 4256 4687 
Sydney 4633 4435 4422 
North Melb 4858 4633 4603 
Fremantle 5123 4858 5132 
Richmond 5459 5123 4978 
Melbourne 5961 8459 6225 

Table 3: Draft Points comparison 
 
The extraordinary boost received by Melbourne for 
not winning its last game of 2009 is evident here: an 
extra 2,498 Draft Points. There are several 
differences in the proposed scheme, with Fremantle 
and West Coast (14th and 15th in 2008) carrying 
some Need Rating over to 2009. Melbourne would 
have received 6475 Draft Points in 2008, before 
winning an extra game with a substantially superior 
percentage in 2009. 
 
Figure 3 shows how the picks are allocated in a 
traditional draft (left) compared to one derived from 
the points of the last column of Table 3: 

        
Figure 3: A regular draft (left) compared with one run according 
to the proposed valuation scheme. Columns are the clubs in 
reverse ladder order; each row is a draft pick from top to bottom. 
 
Melbourne receives picks #1, #15, #31, #47, #64 and 
#77 in the proposed scheme. Its second pick pre-
empts (c=2) St Kilda’s first pick, which becomes 
#16. As compensation, St Kilda receives its third 
pick ahead of Western Bulldogs (c=3). Note also 
that although Fremantle received pick #2, the 
subtraction of that pick’s value means its next pick is 
not until #22 (6th in the “round”). By the time the 
draft gets to the last round, the order is 
unrecognisable. 
 
4. DISCUSSION 
 
Applications of the Draft Point valuation scheme are 
numerous. They provide trade utility, not being 
grossly quantised like players or full picks. 
Additionally, clubs that lose a star player to a new 
franchise could be appropriately reimbursed with 
Draft Points by making the existing discrete 
compensation formula continuous. 
Clubs which transgress against salary cap 
regulations or other AFL rules could be penalised in 
Draft Points, not necessarily completely excluded 
from the draft. 
The AFL National Draft is followed by a Rookie 
Draft and Pre-season Draft. While these have not 
been mentioned in the methodology, they should be 
brought into the same system. Mitchell et al (2009) 
assert that players selected early in the Rookie Draft 
can have an impact similar to a second-round 
National Draft pick. 
We may also judge past and future trades and player 
selections against the measuring stick of Draft 
Points. As an example, during 2009 Trade Week 
complex negotiations between Hawthorn, Essendon 
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and Port Adelaide involving star players Shaun 
Burgoyne and Mark Williams had reached an 
impasse because the teams could not agree on the 
number of the draft pick. Geelong entered the 
discussions and provided an acceptable draft pick in 
exchange for a number of lower selections. 
Geelong’s contribution can be accounted for thus: 
 

Transaction Draft Points 
Sell pick #33 -784 
Sell pick #97     -0 (not used) 
Receive pick #40 +649 
Receive pick #42 +614 
Receive pick #56 +407 
Net Gain +886 

Table 4: Geelong’s Pick Trading in 2009 
 
Geelong made an extraordinary 886 point gain on 
the trade, the equivalent of an extra #29 pick. One 
might think they had a mathematician in the 
negotiations! 
 
5. CONCLUSIONS 
 
This paper has presented a mathematical basis for 
valuing selections in a sports league draft. 
Potentially there are other applications where 
allocations of choice are made, for instance in game 
theory. Calibration of the model for other sporting 
leagues should be relatively easy and robust. 
Mitchell et al (2009) have examined AFL 
performance data relative to draft position and 
identified two disjoint trends, for high and low 
picks. It would be interesting to re-examine their 
data for fit against this model. 
A possible extension would be to include a 
stochastic model of the clubs’ ability to choose the 
next most talented player in the pool. Another 
candidate for adjusting the model would consider 
that many draftees never play, despite having an 
aptitude very close to AFL standard, so their actual 
value to the club is lower than the extreme-value 
model suggests. These may smooth the characteristic 
curve in a way similar to the NFL Draft Value Chart. 
It is hoped that mathematicians can play our part in 
removing the taint of tanking from the AFL, if only 
to give journalists something more edifying to write 
about. 
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Abstract 
 
In this research a Generalized Logistic Model (GLM) is used to model outcomes of Australian Rules football 
matches in real-time. Incorporating difference in team quality and score difference the outcome of the model is 
the probability of victory at each of the quarter time breaks. The parameters of the GLM are a function of 
opponent quality and are optimized via simulation for each quarter. Archival AFL data was obtained from 
seasons 2000 to 2009 which consisted of year, round, quarter, (nominal) home team, away team, home team 
score and away team score. Seasons 2000 to 2004 are used as a training set for the forward prediction of 
seasons 2005 to 2009. Comparisons are made throughout against a simple Brownian motion model. Both 
models are then evaluated on predicted and actual probabilities of winning.        
 
Keywords: AFL, real-time, optimization, generalized logistic model, curve fitting, prediction 
 
 

 
1. INTRODUCTION 
 
Sports commentators in game sports constantly 
talk about the likelihood of either team winning at 
any point in time rarely with any empirical 
evidence to support their suggestions. Comments 
such as “Boston Celtics rarely loses the match if 
they are leading at three quarter time” are very 
common. It has been shown by Cooper, DeNeve 
and Mosteller (1992) that either team leading after 
three quarters of the game in Basketball (NBA), 
Football (NFL) and Hockey (NHL) won 
approximately 90% of the time. This is of course 
without making any adjustments for quality of the 
two competing teams. However, Australian Rules 
football (AFL) is known for its high level of 
uncertainty intra-match with the team leading at 
three quarter time winning approximately 85% of 
matches. The colloquial saying “the match is not 
over until the final siren is blown” has never been 
more appropriate. It is this uncertainty that draws 
spectators to matches and entices academics to try 
and explain it.        
     
The outcome of an AFL match is dependent on 
several important factors which may include but 
not limited too: home ground advantage, injuries, 
current form, the opposition, weather and match 

time (day, night and twilight). Some factors may 
have more effect than others while others may 
have no effect at all. However, once the match is 
underway these so called important factors are 
likely to have less and less influence as the match 
progresses. Other factors start to have more 
influence such as current score and time remaining 
in the match.  
 
Falter and Pérignon (2000) determined the in-
game probability of winning a soccer match using  
binary-probit models. Matches were split into five 
sub-periods of 15 minutes with the model being 
re-estimated after each period as more information 
becomes available. Objective (pre-game) variables 
included home advantage and the standing 
(ranking) of both teams, intra-match variables 
included goal differential dummy variables. The 
coefficients of the objective variables were not 
assumed to be constant (Bayesian updating 
process). As the game progressed home advantage 
had less influence on the outcome of the match. 
The team’s ranking was most critical in the first 
and the last period. Goal difference is increasingly 
crucial towards the end of the match. Notably, not 
much is known about the interaction between the 
objective variables and current score. 
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Bailey and Clarke (2008) predict run total of the 
batting team in One Day International (ODI) 
cricket matches while the game is in progress. 
Using multiple linear regression to obtain the pre-
match Margin of Victory (MOV) in conjunction 
with the Duckworth-Lewis method to determine 
resources remaining, an updated MOV could be 
obtained at the conclusion of each over. This 
model was then implemented to investigative the 
efficiency “in-play” betting markets in ODI with 
marginal evidence that punters may over/under bet 
particular teams relative to their chances of 
winning. 
 
Klaassen and Magnus (2003) develop 
TENNISPROB a computer algorithm which 
amongst other things instantaneously calculates 
the in-game probability of either playing winning. 
Provided points are independent and identically 
distributed (i.i.d) the match probability can be 
determined by the probabilities either player wins 
a point on their serve, the type of tournament, 
current score and the current server. A previous 
study by Klaassen and Magnus (2001) found that 
although points in tennis are not i.i.d. the 
deviations are so small that the i.i.d. assumption is 
justified. 
    
More relevant studies of intra-match prediction in 
game sports include Stern (1994) and Glasson 
(2006). Stern (1994) considered using a simple 
Brownian Motion Model (BMM) to provide an in-
game probability estimate of team’s chance of 
victory in baseball and basketball. The model 

incorporates a pre-game point estimate ( )µ  to 

adjust for home advantage, score difference ( )l  

and time elapsed( )t . For the BMM model to be 

valid the score difference ( )tX  is assumed to be 

normally distributed with meantµ and 

variance t2σ ; and ( ) ( )tXsX −  for some ts >  

is independent of ( )tX . Stern found reasonably 

evidence to suggest the data for basketball were 
reasonably consistent with BMM in the first three 
quarters with the home team outscoring the 
visiting team by approximately 1.5 points and a 
standard deviation of approximately 7.5 points. 
However the fourth quarter was remarkably 
different with only a slight advantage to the home 
team. A possible explanation given by Stern is that 
if a team has a comfortable lead they might ease 
up or use less skilful players.  
 
In basketball, observing the probability of the 
home team winning (y-axis) against score 

difference (x-axis) at each of the quarter time 
breaks reveals an inverted S-shape pattern [Stern 
(1994), p1132]. The shape of the two bumps in the 
S-shape pattern is more pronounced as the match 
progress which reflects the increase significance of 
being ahead on the scoreboard late in the game.    
 
Glasson (2006) builds on this and applies the 
model defined in Stern (1994) to Australian Rules 
football replacing the pre-game point estimate 

( )µ  with the bookmaker’s line to adjust for home 

ground advantage and the quality of the two 
teams. Again the data seemed relatively consistent 
with the BMM, with the errors for each quarter 
between the bookmaker’s line and the non-
cumulative score difference for each quarter 
approximately equal to zero. That is, 
 

 ( ) ( ) 0
4

1 ≈−−−= µε tXtXt        [1] 

 
However, the error term defined in [1] is biased 
because it measures the average error of the 
bookmaker’s line and score difference, and fails to 
take into account their interdependence. For 
example, consider two scenarios (1) a heavy 
favourite is ahead on the scoreboard at time t  and 

exceeding expectations at time 1+t , that is, 
( ) ( )[ ]4/1 µ>−+ tXtX  and (2) a heavy 

favourite is behind on the scoreboard at time t  
and falling short of these expectations at 

time 1+t , that is, ( ) ( )[ ]4/1 µ<−+ tXtX  
averaging these two scenarios out leads 

to ( ) ( )[ ]4/1 µ≈−+ tXtX . Table 2 shows the 

in-game scoring behaviour of Australian Rules 
football teams and provides evidence that 

( ) ( )tXsX −  for some ts >  is not independent 

of ( )tX .   

 
Quarter Favourite Next Quarter ( )tX   

1 Ahead +4.69 
 Behind +3.21 
2 Ahead +6.32 
 Behind +1.12 
3 Ahead +6.12 
 Behind +1.38 

 Table 1 Mean difference between the favourite 

and corresponding underdog team score ( )tX  in 

the 2nd, 3rd and 4th quarters as a function whether 
the favourite was ahead or behind at the end of the 
previous quarter, 2000 to 2009. 
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Although increasingly more research is being 
directed towards real-time predictions in game 
sports, no such literature to date takes into account 
the interdependence between opponent quality, 
current score and time remaining in the match. 
Therefore the purpose of this paper is to develop 
more statistically robust non-linear (S-shaped) 
functions for real-time prediction in AFL that 
provide a superior fit and account for the 
interdependence between score difference and 
quality of opponent at each of the quarter time 
breaks. 
 
This manuscript is divided into four sections; (2) 
describes the methodology of curve fitting and the 
reasoning of applying the Generalized Logistic 
Function to our data; (3) the methodology of 
finding the optimal parameters of the non-linear 
function to maximize the predicted probability of 
winning; (4) details the results of the model 
including predicted accuracy and describes the 
change in distribution of the non-linear function 
subject to time elapsed, score difference and the 
difference in quality between the two teams; (5)  
conclusions of the research including future 
directions.  
 
 
2. CURVE FITTING 
 
Akin to regression analysis, curve fitting is the 
procedure of fitting a probability distribution 
which gives the best fit to a series of data points. 
Typical probability distributions used in curve 
fitting include Beta, Exponential, Gamma, 
Generalized Logistic, Gompertz, Linear, 
Lognormal and Weibull. Kuper and Sterken 
(2006) apply the inverted S-shaped Gompertz 
function to model the development of world 
records in running. They find that the point of 
inflection, that is, the period of greatest gain 
[Nevill and Whyte (2005)] in running was in the 
1940’s and 1950’s. Due to the asymptotic 
behaviour of the Gompertz function, implied limits 
of world records could be deduced. 
 
To aid in the selection of a probability distribution 
to predict the outcome of an AFL match in real 
time, the actual probability of winning was plotted 
against the score difference at each of the quarter 
time breaks for varying differences of opponent 
quality. The results suggest a non-linear (S-
shaped) function as suitable with a lower 
asymptote of zero and an upper asymptote of one.    
 
 

Therefore, the four-parameter Generalized 
Logistic function was utilized which is given by  
 

 
[1] 

  
 

where ( )tSDi,Pr denotes the probability of team t 

winning at quarter i, for given score difference SD. 
Four parameters for each quarter i are estimated. 
B controls the rate of growth, M  shifts the time 
of maximum growth, Q  depends on the value 

( )ti 0,Pr  and v  affects which asymptote 

maximum growth occurs.   
 
Figure 1 illustrates the effect each of the 

parameters (excluding Q) has on ( )homePr,SDi  

keeping all the other parameters constant. 
 
3. METHODS 
 
This papers analysis is based on seasons 2000 to 
2009. AFL data was gathered from ProEdge a 
statistical package developed by ProWess Sports. 
Data consisted of year, round, quarter, (nominal) 
home team, away team and home team margin. A 
pre-game point estimate (or LINE) was calculated 
for each match for seasons 2000 to 2009 using the 
ratings model developed by Ryall and Bedford 
(2010). For example, in round 9 2010 Essendon 
(home) played Richmond (away) the LINE was 
+28 points in favour of Essendon. That is, prior to 
the start of the match Essendon are expected to 
win by 28 points. 
 
Four parametersB , M , Q  and v  of the 

Generalized Logistic function need to be 
optimized for each quarter i. However the model 
given in [1] does not incorporate opponent quality 
herein referred to as the LINE. Therefore each of 
these parameters is replaced by a simple linear 
equation. A linear model was selected for 
simplicity and also seemed suitable after plotting 
the data. Since Q  depends solely on the value 

( )ti 0,Pr , and ( ) 5.0Pr 0, =ti when 0=LINE  

(i.e. probability of winning equals 0.5 when scores 
are level and quality of both teams is the same), 
therefore 0=M  when this occurs and thus Q 
becomes a function of v  given by: 
 
 

   [2] 
 

( )
( )[ ] iii

vMSDBSDi
Qe

t
/1,

1

1
Pr

−−+
=

12/1 −= v
iQ
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Therefore we now have five variables to be 
optimized for each quarter i. 
 

 
 

[3] 
 
 

 
Since every match has a nominated home team 
and a nominated away team the sum of these two 
probabilities must equal one for quarter i and 
given score difference SD. That is, for every match 
 

  
    [4]  

 
Therefore,  
 

 
 
 

[5] 
 
 
 
 
 
 

As appose to Stern (1994), the probability of 
winning at time i given in [5] allows for the 
interdependence of team quality (LINE) and score 
difference (SD), since the contribution of team 
quality is dependent on score difference and vice 
versa. 
 
There are several different loss functions that can 
be utilized for evaluating prediction models 
(Witten and Frank, 2005). In this research we will 
concentrate on quadratic loss or more specifically 
the Brier Score (Brier, 1950) which is given by:  

 
 

[6] 
 

Where ip is the forecast probability and io is the 

outcome variable (win=1, draw=0.5, loss=0).  
Seasons 2000 to 2004 were used as a training set 
in the forward prediction of seasons 2005 to 2009. 
Simulations were carried out utilizing the Monte 
Carlo algorithm using RiskOptimizer an add-in for 
Excel.    
 
Several constraints are placed on the parameters 
given in [3]. Firstly the parameters 

121 ,, vBB and 2v should all be nonnegative (or 

zero) and 2M  should be negative (or zero) 

because as LINE increases so too 

should ( )homePr,SDi . Upper bounds are also 

placed on the parameters to reduce the total 
possible number of combinations and speed up 
convergence. These bounds were determined from 
figure 1. 
 
4. RESULTS 
 
Figure 2 displays the empirical probability of 
winning as a function of score difference (SD) at 
each of the quarter time break for varying levels of 
quality of opponent. Akin to Stern (1994) as the 
match progresses score difference (SD) has more 
influence whilst quality of opponent has less. 
 
Various measures can be used to evaluate the 
performance of prediction models in game sports. 
Some commonly used measures in the literature 
include Average Absolute margin of Error (AAE), 
number of predicted winners and Return on 
Investment (Bailey and Clarke, 2004). Since the 
number of predicted winners will tend towards one 
as the match progress an alternative measure is 
needed to evaluate the performance of the GLM.  
Akin to Stephani and Clarke (1992) this research 
will compare the predicted probabilities and actual 
probabilities winning and their corresponding 
proportions for the GLM compared to the BMM. 
Firstly the predicted probability of the in-game 
favourite winning is banded into five subgroups. 
The number of games and the actual probability of 
winning for each subgroup of predicted 
probabilities are shown in Table 2. For example, in 
the first quarter the BMM had 22.9% of all 
matches as a 50-59% favourite, teams that fell in 
this category had a 56.1% chance of victory on 
average. 
 
The importance of having a high level of predicted 
probabilities without compromising the actual 
probability of winning is critical from a betting 
perspective (Ryall and Bedford, 2010). Therein 
they show that long term profits are attainable 
when there is a significant advantage in the 
bettor’s favour where advantage is defined as: 

    
   [7] 

 
where A = advantage, P = predicted probability of 
winning, and MO = market odds. 
 
Although the number of winners predicted by the 
two different models is approximately equal the 
distribution of predicted probabilities for the GLM 
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is heavily skewed towards one (win). Interestingly 
the GLM increasingly outperforms the BMM as 
the match progresses. 
 
 

Similarly in some cases of the BMM the actual 
probability of winning falls above the predicted 
range particularly late in the game. This can be 
attributed to assumption that future scoring 
behaviour is independent of current score.  

  
Figure 1 The Generalized Logistic Function for varying parameter values keeping other parameters constant 
 
 
 
 

 Quarter 1 Quarter 2 Quarter 3 
Predicted 

Probability 
BMM GLM BMM GLM BMM GLM 

0.50 – 0.59 0.561(0.256) 0.468 (0.213) 0.602 (0.192) 0.574 (0.153) 0.500 (0.117) 0.588 (0.076) 
0.60 – 0.69 0.615 (0.225) 0.634 (0.206) 0.697 (0.171) 0.699 (0.127) 0.684 (0.107) 0.603 (0.071) 
0.70 – 0.79 0.756 (0.230) 0.713 (0.235) 0.815 (0.170) 0.740 (0.169) 0.802 (0.142) 0.720 (0.092) 
0.80 – 0.89 0.859 (0.167) 0.823 (0.228) 0.889 (0.212) 0.843 (0.222) 0.945 (0.163) 0.822 (0.152) 
0.90 – 1.00 0.959 (0.110) 0.958 (0.107) 0.968 (0.243) 0.951 (0.318) 0.980 (0.461) 0.970 (0.598) 

Note. BMM = Brownian Motion Model, GLM = Generalized Logistic Model. 
 

Table 2 Predicted and actual probabilities of winning and  
corresponding proportions (in parenthesis), seasons 2005-2009 
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Figure 2 Smooth curves showing the probability of winning an AFL match at 
quarter time, half time and three quarter time for given score difference SD 
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5. CONCLUSION 
 
This research shows that current score and 
opponent quality in Australian Rules football are 
interdependent variables which depend on time 
remaining in the match.  
 
This research opens the door for future research 
into the modelling of high scoring sports in real-
time. The authors suggest any future work in this 
area should incorporate time as a continuous 
variable and thus account for the interdependence 
between difference in opponent quality, score 
difference and time elapsed.    
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Abstract 
 
Elite sporting clubs are using advanced technology such as Global Positioning Systems (GPS) to assist with 
issues like fitness and strength conditioning, tactical and strategic analysis of the game and its players as well 
as rehabilitation (Catapult 2009). These issues have arisen as the game of Australian Rules Football has 
become more physically demanding and faster; leading to increased likelihood of injuries to elite athletes (Le 
Grand 2008). This is done by measuring and analysing data from sensors, including multi-axis accelerometers 
and heart rate monitors (Catapult Innovations Pty Ltd 2008).  
 
In this paper a conceptual framework is proposed as an outcome from a literature review and prototype study 
of Australian Rules Football Clubs in the AFL. The conceptual framework comprises of four models; 1) 
fitness and strength conditioning model, 2) tactical and strategic analysis model, 3) rehabilitation model and 4) 
injury management model. This paper explores the first two models in the conceptual framework showing 
clubs how GPS can be applied to fitness and strength conditioning as well as tactical and strategic analysis. 
 
The fitness and strength conditioning model is comprised of six components encompassing coaching staff 
setting benchmarks for players, the completion of specific fitness tasks before and after the game as well as 
determining if players are fatigued. The model assists coaching staff with player’s fitness and strength 
ensuring they are ready after the game to commence normal training and are not suffering any after effects of 
the game such as fatigue. 
 
The tactical and strategic analysis model captures the performance of individuals and teams live during the 
game assisting coaches in modifying tactical or strategic practices or determining if players are in the correct 
position on the field. It also assists coaching staff to make decisions about moving players to other positions 
based on the benchmarks they are or are not meeting. 
 
The outcome of this research has been to develop a model for each of the three Catapult Innovations (2008) 
research areas; fitness and strength conditioning, tactical and strategic analysis and rehabilitation as well as a 
model for injury management, which is another important application of GPS within the AFL. 
 
 

Keywords: AFL, Global Positioning Systems, Tactical and Strategic Analysis, Fitness and Strength 
Conditioning 
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1. INTRODUCTION 
The aim of this research is to develop a conceptual 
model for the application of GPS within the areas of 
fitness and strength conditioning and tactical and 
strategic analysis in the Australian Football League. 
This will be developed with information from a 
literature survey and then fine-tuned with results 
from a prototype study. At present there are no 
conceptual models that outlines the application of 
GPS within the two research areas fitness and 
strength conditioning and tactical and strategic 
analysis. 
 
2. BACKGROUND 
Fitness and Strength Conditioning 
Player performance can measured and monitored 
through GPS with systems measuring the velocity of 
a player and their movements; the distance players 
run; the accelerations a player makes throughout the 
game; the player load through both running and non-
running activities and the heart rate of the player 
(Catapult 2009). This allows coaches to replicate 
and simulate game demands allowing them to make 
more informed decisions based on a specific set of 
circumstances whilst aiding players in decision 
making (Dawson et al. 2004). Furthermore the 
physical intensity during training sessions can be 
measured by comparing data from games to the data 
received from the devices worn by players at 
training sessions. Coaching staff can then view data 
retrieved from the units in both situations and 
narrow down which areas players need to improve in 
order to replicate game demands, such as 100 meter 
sprinting, intensity, the force of tackles laid and 
player work rate. A study conducted by AFL 
researchers in 2008 tracking 1500 players using GPS 
devices during matches found that “players now 
were not running at top speed (above 25 km/h) as 
much as they were and they were running a slightly 
less overall distance and they were running at a 
higher average rate” (Gleeson 2009, para. 5). This is 
supported by information such as the average player 
“travel[s] approximately 15kms during a game but 
half of that is generally jogging or walking, so they 
run 8-10kms and run intensely for 3-4kms” (Sydney 
Swans 2006, para. 10). This allows coaching staff to 
determine how far a player can travel at a particular 
speed during a match before coaching staff need to 
rest them and rotate them on the field for a player 
who can perform more optimally. 
 
“At the most basic level, the strength and 
conditioning professional is concerned with 
maximising physical performance and must 
therefore conduct programs that are designed to 

increase muscular strength, muscular endurance, and 
flexibility” (National Strength and Conditioning 
Association 2008, p.4). When examining fitness and 
strength conditioning GPS devices allow coaching 
staff to measure players’ physical effort and 
compare it to the effort of the players on match day. 
It also allows coaches to design a training program 
for individual players as well as the whole team as 
player’s physical limits are known. Furthermore the 
exertion of players is transparent which allows 
coaching staff to know exactly what is happening 
with an individual player at a given time (2009, pers. 
comm. 25 August). 
 
It can be determined from the literature that the use 
of GPS for fitness and strength conditioning 
provides the potential for coaching staff to replicate 
game demands in a controlled environment and 
enables clubs to minimise the risk of injury to their 
players during training drills. This simulates players’ 
match experiences in training drills whilst 
minimising the chances of injury during peak 
playing performance. This is done by slowing the 
training session down or resting players when GPS 
software informs coaching staff they are exceeding 
specific benchmarks and thresholds. “That in turn 
means that in matches our players can run faster and 
for longer periods and are not as fatigued when they 
get the ball, which means they are more likely to 
execute skills properly” (Pavlich 2008, para.21).  
 
Monitoring player fatigue is a critical component of 
fitness and strength conditioning. Wilmore, Costill 
and Kenney (2008, p. 113) define fatigue as “the 
decrements in muscular performance with continued 
effort”. When applying this definition to elite 
Australian sport, fatigue is the decrease in muscular 
performance with continued effort over a period of 
time (Wilmore et al 2008) which can be caused by a 
number of factors including low blood glucose, 
depletion of muscle fuels, overheating and 
dehydration. Slobounov (2008, p. 77) adds that 
fatigue “can refer to both physical and mental 
exhaustion due to prolonged stimulation or 
exercise”. GPS data can aid in determining when a 
player is fatigued. Depending upon the 
predetermined benchmarks, the GPS software 
informs coaching staff when a player reaches their 
fatigue benchmarks allowing them to decide whether 
the player should be removed from the field. 
Although there is literature about the impact of 
fatigue on players and the increased risk of injury 
there is no mention on prevention or management 
either with the use of GPS devices. 
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Symptoms of fatigue include: performance 
decrements; decreased effort during exercise; 
decreased work rate and lactate threshold; sore or 
aching muscles; muscle weakness; slowed reflexes 
and responses; impaired decision making and 
judgement; impaired hand to eye coordination, poor 
concentration and a reduced ability to pay attention 
to the situation at hand (Garrett & Kirkendall 2000 ; 
Victorian Department of Human Services 2007). 
Therefore when a player shows evidence of these 
symptoms and continues their role on the field, it 
could have an adverse affect not only on the player, 
with the potential for injuries, but for the team and 
the result of the match. Collingwood Football Club 
fitness coach David Buttifant believes “the potential 
to monitor players' fatigue levels could mean shorter 
injury lists” (Quayle 2007, p. 5) whilst GPSports 
founder and managing director Adrian Faccioni 
supports this by arguing “the technology would help 
reduce injuries caused by fatigue” (Quayle 2007, p. 
5). Reducing the risk of an injury occurring can take 
place by Ways to reduce the risk of injury are to 
removing and/or rotating players on and off the field 
as coaching staff are alerted when players is 
fatigued. 
 
A study conducted on the affect of fatigue on the 
decision making of water polo players when 
shooting goals found “that incremental increases in 
fatigue differentially influenced decision-making, 
technical skill performance, and accuracy and power 
of a goal-shot” (Royal, Farrow et al. 2003, p. 83).  
Similarly in AFL football fatigue affects the 
accuracy and power of a goal shot although different 
parts of the body are used to score goals eg. the arm 
for water polo and leg for football. The effects of 
fatigue within both sports are still the same. When 
this concept is directly applied to AFL this means 
that each time a player’s level of fatigue increases 
their ability to make appropriate decisions, the way 
they perform skills and actions, their body motions 
and accuracy are all heavily affected and impaired. 
Therefore it is suggested that when players become 
fatigued, which is flagged by the use of GPS 
software, they are immediately removed from the 
field. If players remain on the field it can result in 
poor decision-making resulting in opposition goals, 
injuries and performance degradation. Which  has an 
impact on the overall team not just individual 
player(s) experiencing fatigue. 
 
Fatigue encompasses more than the decrease in 
physical performance. Marcora, Staiano and 
Manning (2009, p.857) define mental fatigue as “a 
psychobiological state caused by prolonged periods 

of demanding cognitive activity and characterized 
by subjective feelings of ‘tiredness’ and ‘lack of 
energy’”. Further, through higher perception of 
effort rather than cardio respiratory and muscular 
mechanisms, mental fatigue limits exercise tolerance 
in humans (Marcora et al. 2009). Hence, players 
who become mentally fatigued perceive they are still 
operating at optimum performance, but this is 
merely a perception of the effort they are putting in 
rather than the actions their bodies are making in 
order to achieve this performance. This reflects their 
perception of the effort they are exerting rather than 
their actual performance levels (Marcora et al. 
2009). AFL Chief Operations Manager Adrian 
Anderson has determined from GPS data "Team-
based success closely related to team work rate - 
harder-working teams finished higher on the 
premiership ladder” (Barratt 2009, para 3). This 
statement highlights how critical it is for the GPS 
data to be monitored during games ensuring that 
when a player’s work rate declines they are replaced 
by a player who can perform at a higher work rate. 
Hence, it is critical that players are removed from 
the field at the onset of fatigue when detected and 
replaced with a fit player who can perform at 
optimum pace. 
 
As it can be determined from the literature there is 
not presently a model or guide for the ‘best practice’ 
implementation of GPS for fitness and strength 
conditioning. More specifically one that 
encompasses all aspects of the area such as the 
ability to set benchmarks for players based on 
statistics or information received from previous 
training sessions, the ability to determine if a player 
is fatigued and the measurement of players 
performing specific tasks. 
 
Tactical and Strategic Analysis 
Tactical and strategic analysis using GPS data 
allows coaches to examine team structure and player 
movement (Catapult 2009) which may include 
clusters of players, known as the forward, midfield 
or backline. This type of analysis may be combined 
with synchronisation of video footage (Catapult 
2009). Further, it allows coaching staff to manage 
individual player interchanges for greater 
effectiveness.  
 
As AFL has become more physically demanding and 
faster (Le Grand 2008), the role of the interchange 
bench has also evolved. In the 2004 AFL season, for 
example, teams averaged 30 player rotations, while 
they are now (2008) averaging 80 rotations per 
game, which is an increase of over 250% on 
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previous years (Wellman 2008). Just in the past 
years alone (2008) player rotations have increased 
by more than 30% (Wellman 2008). The large 
increase since 2004 (Wisbey et al. 2008), is 
attributed to a combination of multiple factors which 
have been noted from GPS data, including 
monitoring of player heart rates; the decision to rest 
players when they reach specific benchmarks, the 
ability for coaches to set individual benchmarks and 
thresholds for players; player recovery time; player 
fatigue with respect to distance travelled; and the G-
force measured from tackles (Wisbey et al. 2008). 
Currently there is no literature in regards to 
individual or types of benchmarks set by AFL 
coaching staff for elite athletes, this is at the 
discretion of fitness staff based on their individual 
goals for players and the team. 
 
When using GPS data during training, the coaching 
team set benchmarks for individual players based on 
their fitness; aerobic strength; heart rate; previous or 
current injuries and the distance they can cover at 
certain speeds before experiencing fatigue 
(Edgecomb & Norton 2006). During the match, 
when a player exceeds their benchmark, the 
coaching team is informed, providing the 
opportunity to rest the player. There is some 
evidence suggesting the decision is automatic, for 
example Le Grand (2007, p.43) states, “whenever a 
player starts to ‘red-line’ on any given measure, he 
is brought to the bench and replaced by a team-mate 
with fresh legs, enabling the game to continue at 
maximum speed and intensity”. Fremantle Football 
Club’s strength and conditioning coach Ben Tarbox 
adds “from a physiological perspective, you can 
determine how hard they can run for a certain period 
of time and how long they need to recover” (Le 
Grand 2007, p.43). However, in practice, if a player 
is not making undue errors, or if other players are 
more fatigued, the player may remain on the field. 
Ultimately the decision remains with the coaching 
staff. However, GPS is likely to provide more 
accurate information, upon which they can make 
these decisions, 
 
Dawson et al. (2004, p. 292) states that “sports 
scientists and coaches spend a great deal of time 
planning training drills and programs that are 
designed to stimulate game demands by replicating 
the physiological skill and decision-making 
requirements of actual competition”. The ability to 
recreate game demands during training sessions 
provides the potential for coaches and their staff to 
gain competitive advantage from information 
received by GPS units and incorporating the 

information into training drills designed to simulate 
game demands and focus on core components of 
player’s fitness and skills.  
 
As it can be determined from the literature there is 
not presently a model or guide for the ‘best practice’ 
implementation of GPS for tactical and strategic 
analysis, more specifically a model that 
encompasses all aspects of the area such as the 
capture of team performance, monitoring of player 
structure and movement and a post-game GPS data 
review. 
 
3. METHODOLOGY 
A prototype survey comprised of sixty-eight 
qualitative and quantitative questions divided into 
six categories; Players and teams, data, GPS units, 
injuries, training and restrictions was given to a 
group of ten coaching staff who are currently or 
have previously coached clubs in the South Australia 
National Football League (SANFL), Junior South 
Australian State team coaches and coaches of Under 
18 teams. The group of ten participants completed 
the survey and made suggestions regarding the 
readability, structure and usability of the survey. 
This resulted in changes to the way seven questions 
had been worded to easier comprehension. 
 
Two data analysis techniques were used in this 
research 1) statistical analysis to analyse the 
quantitative answers and 2) the use of Leximancer 
software to analyse the qualitative answers. 
The survey was then posted to the senior coach of 
each of the 16 AFL clubs to complete. 
 
The use of statistical analysis allows the calculation 
of the percentage of ‘yes’ and ‘no’ answers received 
for each question and how the two percentages 
correlate. Leximancer assists and confirms concepts 
and relationships the researcher has already 
discovered and established. The software “takes a 
substantial body of text and rapidly consolidates it 
into meaningful ‘Themes', ‘Concepts' and their 
associated relationships” (Leximancer 2009, para. 
1).  
 
4. DISCUSSION 
Response Rates 
Twelve responses were received from AFL clubs out 
of a possible sixteen. Three of these are deemed 
unusable as two respondents selected both yes and 
no responses for some of the quantitative questions 
whilst the other returned a partly completed survey. 
This resulted in a valid response rate of 56% 
therefore statistical analysis cannot take place as 
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there is insufficient data to perform statistical 
analysis. 
 
Selected clubs chose to follow up and provide 
further detailed information for the survey questions 
via phone and email. This assisted in ensuring that 
survey answers were correctly interpreted validated 
and the results obtained by the research were correct. 
 
Fitness and Strength Conditioning 
The fitness and strength conditioning model was 
developed based on the knowledge that coaches are 
setting benchmarks based on information and 
training data from the pre-season, as well as past 
seasons for players who have been at the club longer 
than a year then using this information after a game 
to determine if a player is fatigued. If a player is 
experiencing fatigue then it is recommended their 
training program is redesigned until they have 
recovered. This will ensure their risk of receiving an 
injury is not heightened and the player won’t go into 
the next game without completely recovering. It 
demonstrates the processes of using GPS data from 
training sessions and previous seasons to measure 
fitness and performance before and after a game. It 
also shows a link between the application of GPS 
and managing player fatigue post game; this can be 
seen in Figure 1. 
 

 
Figure 1 - Fitness and Strength Conditioning Model 
 
The first component of the model involves coaching 
staff setting benchmarks in GPS software for players 
based on results from pre-season training and for 
players who have been at the club for more than one 
season, the previous years games and training 
sessions; for example; how far a player can run 
before experiencing fatigue, bands of running speed 
and efforts made during a contests and heart rate. 
Individual benchmarks are set for each player based 
on ability, age and their position/role on the field 

and within the team. Benchmarks alert coaching 
staff when upper or lower thresholds are not being 
met or are being exceeded, they also informs 
coaching staff when players are fatigued through a 
set of alarms and customisable rules within the 
software.  
 
This links to the second component of the model, 
which measures a player’s fitness/ability to perform 
a designated task while wearing the GPS device 
immediately before a game. This assists coaching 
staff in determining if a player is fatigued post game. 
Examples of tasks a player might be asked to 
perform include: a short distance sprint, a jog for a 
designated period of time and/or distance or agility 
tasks to measure heart rate. 
 
The third component of the model is conducted 
immediately following the game and involves the 
player performing the same tasks conducted during 
the second component. 
 
The fourth component involves coaching staff 
determining if the player(s) wearing GPS device(s) 
are fatigued, taking into account they have just 
played a game. Individual clubs have their own 
methods of calculating the results and taking the 
effect of the game into consideration. The results 
from the calculation determine if the player(s) who 
wore GPS unit during the game are fatigued. 
 
The next component depends on whether the player 
is determined as being fatigued or not fatigued. If 
the player is fatigued they will move to component 
five of the model which is involves fitness coaches 
redesigning or modifying the players training 
program and workload load for the following 
training sessions until it has been determined the 
player(s) are no longer suffering from fatigue. This 
ensures that the player will not heighten the risk of 
injuring themselves while suffering from fatigue 
experienced during the game. It will also ensure they 
are fit to play the following week and resume their 
normal training program. 
 
If it has been determined that the player(s) are not 
fatigued, then component six of the model is applied 
and they will continue with their normal training 
schedule to prepare for the following week's match.   
  
Tactical and Strategic Analysis 
The tactical and strategic analysis model was 
developed based on the knowledge that after the 
game is complete the GPS data is synchronised with 
the match video and an after match review is 
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performed. Players training programs may then be 
modified and tactical practices changed depending 
on the results of the match review. Also during the 
game coaching staff monitor a player’s time on the 
field, their structure and movement and make 
rotations when certain benchmarks are not met or 
have been exceeded or a player is experiencing 
fatigue.  This can be seen in Figure 2. 
 

 
Figure 2 - Tactical and Strategic Analysis Model 
 
The first component of the model involves capturing 
the team’s performance through GPS technology 
and video. Once this step is complete the model 
forks into two different paths one which takes place 
after match play has been completed (component 2) 
and real-time during the game (component 6) 
After match play has finished video that was 
captured from the game is synchronise with players 
GPS data making it easier for coaching staff to be 
able to see what led to specific data produced by the 
player in any situation. Overall it allows coaching 
staff to watch both the video and GPS data side by 
side or through an overlay view. This makes up 
component two of the model. 
 
The third component of the model involves 
performing an after match review which involves the 
coaching staff firstly reviewing the video and GPS 
data as discussed previously by themselves and then 
taking ‘snippets’ of the video to show individual or 
groups of players in firstly their own individual 
player reviews and then their playing group reviews 
ie. The ruckmen, forwards, backline or midfielders. 
 
Determining the results of the training program 
designed by coaching and fitness staff makes up the 
fourth component of the model. This examines how 
players performed during the game and if the current 
training plan is meeting the requirements the 
coaching staff have set for players and their 
performance.  
 
If tactical practices are required to change this takes 
place as part of component five in the model after 
the results of the training program as discussed in 

component four. Once this process is complete the 
model begins again from process one with the 
inclusion of the new tactics. 
 
The second fork in the model takes place real-time 
during the game (component six). Player’s time on 
the field, structure and movement is observed to 
check they haven’t been on the field too long 
ensuring they are constantly playing an effective role 
on the field and within the team. Structure is 
monitored to confirm that zones that are run or 
specific tactical procedures run/used by players are 
being executed with full precision and each player in 
the structure is at their required location for the 
execution of the play. Movement is also monitored 
to ensure when a play such as a zone is being run 
coaching staff can watch the exact execution of the 
play and the flow of movement between players and 
their team mate or how individual players are 
moving on the field. 
 
The seventh and final component of the model is the 
rotation of player(s) due to their inability to meet set 
benchmarks by the coaching staff or the onset of 
fatigue. If this occurs the player(s) is either rotated 
to another position on the field depending on their 
position/role within the team or will be sent to the 
bench and replaced by another play from their team. 
One this phase of the model is complete the process 
begins again at stage one. 
 
6. RESTRICTIONS 
The ability to implement both the fitness and 
strength conditioning and tactical and strategic 
analysis models would be a lot simpler for coaching 
staff if they were not confined to the ten unit 
restriction on game day. This restriction only allows 
ten units to be worn during a game by players on 
each team. If 22 units could be worn by players on 
game day, it would allow the models displayed in 
Figures 1 and 2 to be further developed, leading to 
more informed decision making on behalf of the 
coaching staff. 
 
This theory is supported by Gill (2009, para.9) 
stating that “with the [GPS] technology, in theory 
you can have 22 players with a GPS [device] on and 
you can actually see all of them on a computer 
screen”. This allows coaching staff to see the 
structure and movement of any one player at 
anytime (when the club is permitted to wear 22 
units). 
 
Current restrictions are hampering exactly how this 
information can be used and the quality and quantity 
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of information coaching staff receive with a limit of 
ten players on the field being able to wear the units 
in the AFL. 
 
7. CONCLUSIONS 
This research provides two models (fitness and 
strength conditioning model and tactical and 
strategic analysis model from a framework to 
practically apply GPS to both training and games for 
AFL clubs.  
 
Data gathered using GPS devices influences the 
fitness and strength of players through the ability for 
coaching staff to determine the maximum physical 
effort a player can output during a training session or 
game before coming fatigued. It also allows the 
opportunity for players to be rested when these 
benchmarks are met allowing coaching staff to 
constantly keep ‘fresh’ players on the field. The GPS 
results from the game allow coaching staff to modify 
training sessions for fatigued players, which 
provides extra recovery time and prevents over-
training for players who have had a heavy running 
game. 
 
Tactical and strategic analysis is significantly aided 
by the use of GPS. It gives coaching staff the ability 
to see exactly where any one player is at any one 
time live during the game, as well as being able to 
see the formation of tactical plays such as the rolling 
zone to determine how it is being executed and make 
any changes if needed.  
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Abstract

The wish of many sports scientists and trainers is accessing performance diagnoses data of athletes during
training or competition. This data concerns the external conditions (e.g. speed and distance) as well as
the internal (physical) strain of the players. For collecting this performance data, we have developed an
analysis system, consisting of a high resolution video-system together with a wireless sensor network.
In order to record the physiological data (heart rate) of the athlete, a custom-built sensor module has been
developed and integrated into a sports shirt. The integrated sensors collect the physiological data. Following
the data collection some signal processing is optionally performed and the data is transmitted via a wireless
communication technology to a central computer.
We use an adopted Suunto Oy Foot Pod to measure online the current speed of an athlete and compute its
overall distance through integration.
In physical and tactical analysis of indoor sport games path information of the players is of great importance.
In order to acquire players’ path information, a training session or game is captured by a video-system
consisting of two cameras which are mounted in the ceiling of a sports hall. The video data is post-processed
in order to identify positions of the players and to track all players on the field.
The recorded data of the mobile devices can be processed and visualised online. For example during the
sports event, the heart rate can be monitored and the trainer can decide on substituting a player based on his
heart rate profile. Another application of our system is the substantial evaluation of the covered distance of
basketball players per quarter. The results of this study will be presented in this paper.

Key words: Performance analysis, video tracking, wireless sensor network

1. INTRODUCTION

For individual sports, mainly endurance disci-
plines, products are already available for data
recording and analysis in various forms. However,
a gap exists in the area of performance diagnoses
in different types of sports, especially team sports,
in which complex movement patterns are common
and where contacts between sportsmen occur.
Video-based analysis is a common tool for
analysing sport games in technical and tactical as-
pects. In recent years, video analysis also became
an instrument for measuring performance parame-

ters such as the overall covered distance per ath-
lete. Individual performance analysis of players
and team strategy investigations require informa-
tion about the athletes’ positions during the games.
Hence, many European soccer clubs have equipped
their sport grounds with multi camera-systems for
player tracking. The advantage of video-based
tracking systems is that they are entirely passive;
the athlete does not have to wear any kind of sen-
sor or marker.
The most popular tracking system is Amisco Pro
distributed by MasterCoach Int. GmbH (AMISCO,
2010). The game is captured with up to eight cam-
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eras for a rough online and detailed offline analysis.
One or two days after a game, the coach receives
a complete analysis including performance data of
the players. The disadvantage of Amisco Pro is that
it is based on infrared cameras. Thus, the track-
ing results need to be visualised in a virtual envi-
ronment. Moreover, many cameras including their
synchronisation effort makes the system unafford-
able for clubs with less financial resources.
In this paper we describe the Sports Performance
Analyzer (SPA). SPA aims on providing a new plat-
form for analysing team sports. With only two
ceiling-mounted cameras it is ideally suited for in-
door sport activities such as handball, volleyball,
basketball, and (ice-) hockey which are the most
popular sports in Germany besides soccer (DOSB,
2009).
One part of SPA is a video tracking system that reli-
ably computes the positions of the players during a
game. Based on this data we can calculate external
information, e.g. overall covered distance, speed,
and acceleration of single players. This informa-
tion is used for further higher level analysis such as
team strategy as well as performance and fitness of
the players which can help the coaches to improve
their training methods.
In addition to the external information, SPA also
considers the internal (physical) strain of the play-
ers indicated for example by their heart rate (HR).
For monitoring the HR we cannot avoid equipping
the sportsmen with a sensor module. We have de-
veloped a custom-built sensor module which is in-
tegrated into a sports shirt in order to minimise the
impact on the player. Instead of transmitting the
processed features (e.g. HR) to a watch and store
the data on this device, we transmit the data wire-
lessly to a central computer. One additional at-
tribute of SPA is the online measurement of speed
and distance: We adopt the commercially available
Foot Pod sensors1 to measure the current speed of
an athlete which lets us compute his overall cov-
ered distance through integration. All recorded
data of the mobile devices is processed and visu-
alised online (in real time).
As shown in figure 1, the SPA system has three
main modules: data acquisition (video-system
(2.1.2) and wireless sensor network (2.1.1)), track-
ing (2.1.3) and analysis/visualisation. The acqui-

1Suunto or Garmin Foot Pod based on an acceleration sen-
sor of Dynastream Innovations.

sition module is responsible for recording video
streams from two cameras and the data of the wire-
less sensor nodes. The recording of video and wire-
less sensor data streams is synchronised to make
further analysis of the data easier. Because the
amount of wireless sensor data is small compared
to the video data, it can be processed and visualised
online. For example during a sports event, the heart
rate can be monitored and the coach can decide to
substitute a player based on his heart rate profile.

Figure 1: System structure of the Sports Performance Ana-
lyzer (SPA).

The video tracking module works offline to extract
position data of the players. It utilises the two video
streams to produce the positions of the players in
real world coordinates (meters) which can be post-
processed to gain further information. The anal-
ysis/visualisation module processes three inputs:
video, wireless sensor, and position data. It pro-
duces different visualisations such as graphs and
(interactive) videos with annotated information.
In section 2.2 we present a method for the iden-
tification of breaks during a basketball game: For
five given player trajectories, we introduce differ-
ent methods for velocity computation to define a
game’s state, consisting of position and velocity in-
formation for every time step. We use this data to
train a Gaussian mixture model that can be used
to classify the states of an unclassified basketball
game as either game or break.
One application of our system is the substantial
evaluation of the covered distance of basketball
players per quarter. We have recorded and anal-
ysed 14 German major league basketball games of
the team Paderborn Baskets with regard to the cov-
ered distance of every player of the team. Schmidt
(2003) presents in a previous study a value of
approximately 23km for the covered distance per
team and game. Because this analysis was done
manually, the statistical data base is only one game.
The results of our study will be presented in 3.3.
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2. METHODS

2.1. MONITORING AND ANALYSIS SYSTEM

A schematical representation of our system is
shown in figure 2. The system consists of two data
acquisition modules, namely the video-system and
the wireless sensor network. Both modules are in-
tegrated in one software solution (SPA) and they
can work independently or together.

Figure 2: System for capturing match action and recording
physiological data.

2.1.1. WIRELESS SENSOR NETWORK

One group in our sports department conducts re-
search on skin temperature and skin conductance
with the aim to better understand the interaction
between physical and mental stress (Baumeister,
2008). To fulfil their request to acquire more rel-
evant data of the athlete than the heart rate (still the
most important physiological parameter for sport
scientists), we have developed an advanced brest
belt module. Our solution is extremely mobile
(lighter than 50g) and can collect skin temperature
and conductance, heart rate, and additional infor-
mation from an onboard 3-axis acceleration sensor.
The module itself consists of a motherboard with

Figure 3: Breast belt module with integrated sensors, evalua-
tion and communication unit as well as power supply.

an additional radio transmission module (daughter-
board). For online processing we have equipped

the motherboard with a 16bit low-power RISC mi-
crocontroller, containing 12bit A/D converters and
three operational amplifiers. The microcontroller
is powerful enough for processing algorithms, e.g.
heart rate detection. Together with the communica-
tion stick (daughterboard), the battery lifetime for
the complete module is more than 24 hours in op-
eration (general cell coin - 220mAh).

Technical Data Radio Transmission Module:

• Topology: multipoint-to-point (star)
• Frequency band: 2.4GHz
• Range: 30m
• Max. number of sensor nodes: 30
• Less than 10% packet loss
• Power consumption:

– 35mW in operation (TX mode)
– 21µW in sleep (power down mode)
– 70.5µW average2

For rough online results of the covered distance
(±10%), we adopt the commercially available Foot
Pod products. For a detailed later (offline) analy-
sis, motion capturing (video tracking) methods are
used.

2.1.2. VIDEO-SYSTEM

The afore mentioned indoor team sports are played
on field sizes up to 40m × 20m. Assuming a mini-
mum hall height of 7m, a field of vision of more
than 150 degrees is required. No commercially
available lens is able to map this range of vision
without distortion. Even using one single fisheye
lens will lead to too much information loss close to
the back lines. To solve this problem, we have in-
stalled two video cameras. They are placed at the
hall ceiling, one over the middle of each half of the
field, recording the game from a bird’s eye view.
A fisheye lens is used in order to capture the re-
quired view. The selected megapixel cameras are
equipped with a Bayer CCD sensor and a Gigabit-
Ethernet interface. Each camera is capable of deliv-
ering up to 30 frames per second (fps) which causes
a data rate of more than 30MB/s. With an up-
to-date desktop processor a live preview can only
be done with a reduced resolution and/or reduced
frame rate. For a preview in high definition with
full frame rate a hardware support by graphic ac-
celerators or FPGAs is necessary.

2Provided that each packet requires 300µs to be transmitted
(32Bytes@1 Mbit/s) and the packet rate is 5Hz.
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Figure 4: Image pre-processing steps.

As input data for the image pre-processing serve
the full raw images of the camera. First, a re-
gion of interest (ROI) is selected and a colour re-
construction (DeMosaicing) is done for this part
of the image. Then geometrical transformations
are executed for producing undistorted images (De-
Fishing by Look-Up-Table, Warping by Matrix-
Multiplication). Finally, a white balancing is per-
formed, the two images are merged together for an
online preview, and the video can be saved in a file
(avi-container with MPEG4 codec). For later (of-
fline) tracking the raw data is saved with a lossless
compression algorithm (lagarith codec).

2.1.3. VIDEO TRACKING

The tracking algorithm used in our system is Tem-
plate Matching (Lewis, 1995). This method is used
to find the parts of an image which match with a
reference image (template). A template of the up-
per part of the body (head and shoulders) is used to
search for the player in the next frame. The player’s
shape changes slightly between two consecutive
frames so the template is adapted. The template
image is compared to all parts of the searched im-
age and a measure of similarity is computed in each
comparison step. The position with the highest
value of similarity is the possible position of the

template in the searched image.
A strategy based on partitioning of the search space
is used to handle the tracking of multiple players.
The tracking is done under human supervision to
correct the errors that cannot be handled automati-
cally. A detailed description of our tracking algo-
rithm can be found in Monier (2009). The tracking
itself is performed on the distorted raw images be-
cause no benefit can be achieved by pre-processing
the images. As mentioned above, the images are
recorded using a fisheye lens. For the purposes of
creating distortion-free images and converting the
tracked image-positions to real-world positions, a
number of transformations have to be applied. The
series of steps is presented in figure 5, steps 1-4:

The first step is the

Figure 5: Coordinate
Transformations.

undistortion of the points
in the fisheye image
(DeFishing). Because
of small variations in
the camera position and
viewing-angle, a software
calibration (Warping) has
to follow. The corrected
world coordinates are
mapped from the players
head to his foot posi-
tion. The final position
describes the foot position
of the player on the field.
All further steps of
transformation (5-8) are
needed during tracking
if a player changes be-
tween the two field sides,
because the tracking will
be continued with the
other camera. On the
opposite side of the field,
the transformations have
to be inverted to map the
real-world coordinates to
the distorted image. As
a final step, we smooth
the calculated foot co-
ordinates in the world
coordinate space using a
moderate zero-phase low
pass filter3.

3Digital FIR-filter, order = 16, ωn = 0.1.
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2.2. NET-TIME COMPUTATIONS

In this section we present a method to divide each
quarter of a basketball game into action and break
parts. These results can be used for post-game anal-
ysis, for example to calculate the distances covered
by the players or their average velocities. A similar
application can be found in (Perse, 2009).
Although the parameters in the presented method
are fine tuned for basketball games, this method
could be adapted to other team sport games.

2.2.1. DATA

We have tracking data from a number of basketball
games available. This data consists of the positions
of all active players over each quarter. It is used to
construct a state (position, velocity) of the game for
every timestep ti, i = 1, . . . ,N.
For the position information we use the five player
positions (xi,1, yi,1) . . . (xi,5, yi,5) of the five active
players in each timestep ti and calculate the aver-
age position of the players via(

xi

yi

)
=

1
5

5∑
p=1

(
xi,p

yi,p

)
. (1)

We propose a total of five different methods to com-
pute the velocity data. Two of these methods gener-
ate a scalar value whereas the other three methods
yield a two dimensional vector as a result. We will
compare these methods in section 3.2. For all meth-
ods we need a time interval of ts,i = ti− ti−1 to scale
velocities to m/s. In our case the length of all time
intervals is constant and equal to the frame rate of
about 1/30th of a second, thus ts,i = ts = const.

I. The first method is to calculate the vector from
one average trajectory point (as introduced in
(1)) to the next:

vi =
1

5 ts

5∑
p=1

((
xi,p

yi,p

)
−

(
xi−1,p
yi−1,p

))
.

II. For the second method, we simply compute the
norm of velocity I.

vi =
1

5 ts

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

5∑
p=1

((
xi,p

yi,p

)
−

(
xi−1,p
yi−1,p

))∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
2

,

thus reducing the dimension of the velocity in-
formation to one.

III. The third method is a variation of II.:

vi =
1

5 ts

5∑
p=1

∣∣∣∣∣∣
∣∣∣∣∣∣
(
xi,p

yi,p

)
−

(
xi−1,p
yi−1,p

)∣∣∣∣∣∣
∣∣∣∣∣∣
2
.

This value will always be greater or equal than
method II. It represents the varying velocities
of the players better, because the velocities of
two players moving in opposite directions do
not cancel each other out.

The last two methods represent the velocity infor-
mation in polar coordinates. Both utilise the angle
ϕ between the x-axis and the velocity vector (see
I.), which is defined4 as

ϕ = atan2

 5∑
p=1

(
xi,p − xi−1,p

)
,

5∑
p=1

(
yi,p − yi−1,p

) .
IV. The fourth method is a combination of the an-

gle ϕ and method II.:

(
vi,1
vi,2

)
=

 1
5 ts

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

5∑
p=1

((
xi,p

yi,p

)
−

(
xi−1,p
yi−1,p

))∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
2

, ϕ


T

.

V. Finally, the fifth version is a combination of ϕ
and method III.:(

vi,1
vi,2

)
=

 1
5 ts

5∑
p=1

∣∣∣∣∣∣
∣∣∣∣∣∣
(
xi,p

yi,p

)
−

(
xi−1,p
yi−1,p

)∣∣∣∣∣∣
∣∣∣∣∣∣
2
, ϕ


T

.

For each timestep we get a three or four component
vector Xi that characterises the current state of the
game:

Xi = (xi, yi, vi) ∈ R3 or Xi = (xi, yi, vi,1, vi,2) ∈ R4 .

Additionally to the data described above, we di-
vided 23 quarters manually into action and break
sections. This knowledge can be used to train an
appropriate model for the labelling of new quarters.

2.2.2. GAUSSIAN MIXTURE MODEL

We use two Gaussian mixture models (see (Ras-
mussen, 2006)), one to characterise the action
states and one for the break states. These models
are trained using the data from section 2.2.1 and

4atan2 is a variation of the inverse tangent function and
places angles correctly in all four quadrants.
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used for the classification of unclassified data. In
a Gaussian mixture model a sum over k Gaussian
distributions is used to approximate the state of a
system

P(Xi|ml) =

k∑
j=1

α jP(Xi|µ j,Σ j) ,

and
k∑

j=1

α j = 1 ,

with ml ∈ {action, break}. We separate our data
into two sets: those states when the game’s time
was running, and those states when the clock was
stopped. With these sets, two Gaussian mixture
models are trained using the EM-Algorithm (see
section 3.2 for details). The training returns two
sets of parameters, (α(a)

j , µ
(a)
j ,Σ

(a)
j ), j = 1, . . . , k,

for the points belonging to the action set and
(α(b)

j , µ
(b)
j ,Σ

(b)
j ), j = 1, . . . , k, for the points belong-

ing to the break set.
Our goal is to divide a new quarter into two sets
action and break. This can now be done by classi-
fying each state using the models explained above.
We use Bayes’s rule to compute the probability of a
given state Xi of the game to belong to either action
or break:

P(ml|Xi) =
P(Xi|ml)P(ml)

P(Xi)
. (2)

Because the length of one quarter is fixed to
10 minutes, P(action) equals 600s divided by
the total length of the quarter in seconds, and
P(break) = 1 − P(action). We say, a state belongs
to the action phase, if P(action|Xi) ≥ P(break|Xi)
and it belongs to the break phase, if P(action|Xi) <
P(break|Xi). Thus it is not neccessary to know
P(Xi) in equation (2) to classify a state.
Results of this method will be presented in 3.2.

3. RESULTS

In this section we are going to present evaluation
results of the different modules of our SPA system.
Our developed heart rate sensor node is capable of
transmitting every single heart beat so that a beat-
to-beat analysis becomes possible. Moreover, all
wireless sensor data can be visualised online in
our SPA software. Unfortunately, the use of these
breast belt modules is not allowed in official bas-
ketball games, so that we do not have any physio-
logical data to augment our tracking data.

3.1. VIDEO TRACKING RESULTS

Regarding the video-system, the processing rate
without correction ( fauto) for tracking five players
(NoP) is 10fps. The average number of corrections
(cR) is 0.004 corrections per frame and player.
The average correction time (cT ) for one error is
3.3 seconds. Finally, the frame rate for tracking
including correction ( fcorr) is 6fps (Monier, 2009).

fcorr =
1

1/ fauto + cT · cR · NoP

Compared to the source frame rate of the video
(30fps), the processing time is five times longer
than the gross playing time. Considering the ac-
curacy of the tracking system, we ran several test
cycles which resulted in an accuracy of above 94%
(Paier, 2009).
One main application of our system is the evalu-
ation of the covered distance to generate an indi-
vidual profile for each player in basketball games.
The primary output of the video tracking is the fil-
tered position data which is used to calculate the
covered distance of the players in the game. For
the gross covered distance, we consider all players
of the host team for the complete game including
breaks5. To extract the net covered distance from
the position data, we have tested automated meth-
ods. Before we present our results in section 3.3
we are going to validate the methods introduced in
section 2.2.

3.2. NET-TIME COMPUTATION RESULTS

The numerical computations are carried out us-
ing Matlab and its Statistics Toolbox. The
gmdistribution.fit function, which is part of
this toolbox, estimates the parameters for the two
Gaussian mixture models using the expectation
maximization (EM) algorithm.
To judge the effectiveness of our algorithms, we
compare the automatic labelling using the Gaussian
mixture model with the manual labelling. We com-
pute the number of correctly classified trajectory
points (those points, where automatic and manual
labelling yield the same result) and divide it by the
total number of points. This correctly classified ra-
tio measures the performance of our algorithm.

5Except for official team timeouts.
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velocity computation method
k I II III IV V

3 0.7888 0.7724 0.8279 0.7725 0.8409
4 0.8076 0.8088 0.8587 0.8092 0.8603

Table 1: Ratio of correctly classified points using the five dif-
ferent velocity computation methods for k = 3 and k = 4.

Several parameters have to be adjusted in order to
maximise the performance of the classification al-
gorithm. The first parameter is the number of Gaus-
sian distributions for the mixture model. We tested
k = 3, 4, 5 distributions, whereas for k = 5 the EM-
Algorithm did not converge. The second parameter
is the velocity computation method. We carried out
all computations using the five proposed methods.
The results for k = 3, 4 and for the five velocity
computation methods are shown in table 1.
Since the best results could be achieved for k = 4
and velocity computation method 5, we use these
values throughout the rest of the computations.
As a result of the process described in section 2.2.2

we receive a classification of a quarter into action
and break parts, that still contains unrealistically
many switches between the two. To overcome this
problem, we perform a two step post-processing.
First, we filter the resulting data using a zero phase
digital lowpass filter. Secondly, we remove break
sequences, that are less than 5s long. Our analy-
sis of the manually labeled quarters shows us, that
only 3 of 407 or 0.74% of all breaks are less than
5 seconds long. Hense, to cut off below 5s seems
reasonable.
Using the above described post-processing steps,
the correctly classified value improves to an aver-
age of 90.42% correctly classified points.
In table 2 our final testing results are shown. We
computed the sum of the net distances the five play-
ers cover in each quarter using the manual and the
automatically computed action and break division.
On average the automatically computed value dif-
fers from the manually extracted values by 7.75%.

Game Qtr dman [km] dauto [km] Dev. [%]

1 1 5.702 5.664 0.67
2 6.112 5.471 11.73
3 5.513 5.308 3.86
4 5.388 5.406 0.33

2 1 5.693 5.428 4.87
2 6.205 5.675 9.34
3 5.361 5.098 5.16
4 5.659 5.327 6.24
5 2.992 2.600 15.09

3 1 6.063 5.416 11.93
2 5.900 5.455 8.15
3 5.751 5.496 4.64
4 6.095 6.609 7.78

4 1 6.219 5.533 12.40

5 1 5.556 5.182 7.22
2 5.238 4.991 4.95
3 5.522 4.986 10.76
4 5.291 4.988 6.09

6 1 6.367 5.425 17.36

7 1 5.910 5.435 8.73
2 5.400 5.299 1.90
3 5.995 5.344 12.18
4 6.290 5.889 6.80

avg. 5.662 5.306 7.75

Table 2: Comparison of the covered net distances of the bas-
ketball players. We have manually divided a total of 23 quar-
ters of 7 games into action and break parts. We used this data
to calculate the cumulative net distances dman covered by the
five players in each quarter (see column three). In column four
we present the net distances dauto, that were calculated using
the algorithms presented in section 2.2. In column five the de-
viation of dauto from dman is shown. The last row shows the
average of all distances and deviations.

3.3. COVERED DISTANCES

We have analysed a total of 56 quarters from 14
randomly chosen games over two and a half years.
Table 3 and figure 6 present the results in textual
and graphical form respectively.

Q1 Q2 Q3 Q4 SUM

GROSS 6996.3 7386.6 7243.0 7901.0 29524.0
NET 5867.0 5545.0 5648.6 5580.6 22641.2

Table 3: Mean gross and net covered distance of a basketball
team per quarter.

We can confirm the results of Schmidt (2003), who
calculated 23185.6m in average for one team per
game.
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Figure 6: Mean gross and net covered distance of a basketball
team per quarter and the standard deviation.

4. DISCUSSION

An application of the tracking system is the sub-
stantial evaluation of the covered distance of bas-
ketball players per quarter. Additional information,
e.g. the covered distance of the players classified
by their positions and into different speed ranges
can be computed with little effort. Moreover, con-
sidering the players’ positions, a position specific
performance profile can be generated.
As an enhancement of the sensor network we ap-
ply receiver diversity technology for better energy-
efficiency and communication reliability, respec-
tively. Our system also provides large flexibility for
further design improvements, e.g. the implementa-
tion of the 3-axis acceleration sensor presented in
Christ (2010).
A small drift of the template out of the tracked part
presents a problem in the video tracking system. To
overcome this problem and to reduce the number
of corrections we are going to enhance the track-
ing algorithm by making use of colour information
in future versions. As an alternative to the existing
tracking method, we actually test different tracking
algorithms (e.g. Particle Filter tracking).
The net-time computation algorithm presented in
2.2 already works quite reliable, but its accuracy
could be further improved by training the model
with more data. Instead of using manually gener-
ated data, we are going to use statistical play-by-
play data, provided by the Beko BBL.

5. CONCLUSIONS

In this paper we have presented our Sports Per-
formace Analyzer (SPA) system. SPA consists of

a video tracking system for indoor sport activities
and a sensor network that measures physiological
parameters of the players. It makes it possible to
visualise the actual performance of the players dur-
ing training or competition. This knowledge can be
used by sport experts to optimise training patterns
and game strategies.
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Abstract

Analysing a football match is without doubt an important task for coaches, clubs and players; and with
current technologies more and more match data is collected. For instance, many companies offer the ability
to track the position of each player and the ball with high accuracy and high resolution. Analysing this
position data can be very useful. Nowadays, some companies offer products that include simple analyses,
such as statistics and basic queries. It is, however, a non-trivial task to perform a more advanced analysis.
In our research, we assume that we are given only the position data of all players and the ball with high
accuracy and high resolution. In this paper we present two tools.

Our first tool automatically extract (from the position data) a list of certain events that happened during the
football match. These events include kick-offs, corner kicks, passes etc. In experiments we could observe
that our method is very fast and reaches a high level of correctness. We also learned that errors in the event
detection are hard to avoid completely, when looking at only the position data.

Our second tool aims at analysing a single player’s trajectory (the sequence of all positions during a game).
More precisely, we look for movements of a player that are repeated often (so called subtrajectory clusters).
For example a left wing attacker runs from the centre-line along the left side of the field towards the op-
ponent’s goal. And this attacker might repeat this type of movement very often during a game (or perhaps
multiple games). Our goal is to detect this kind of frequent movements automatically. Experiments showed
that this method is computationally expensive. Nevertheless, it reliably identifies subtrajectory clusters,
which then could be used for further analysis.

Key words: team sport, position data, trajectory analysis, event detection, clustering

1. INTRODUCTION

Recent years have witnessed massive improve-
ments in tracking technologies that allow for
recording the positions of moving entities with high
spatial and temporal resolution and also with high
accuracy. As a consequence such systems are used
more and more often in many domains, including
sports, urban planning and development, defence,
location based services and animal research. In the
world of football (also known as soccer), there are
already many companies that provide the capabil-
ities to track the movement of all football players
during a match, and they also provide tools to anal-
yse this data to a certain degree.

In our project we focus on applications in team
sports and in particular on football. We look at
these applications mainly from a computer science
point of view. Assuming we are given the tra-
jectories, i.e. the data describing the movement,
of all players and the ball, we aim at a more so-
phisticated analysis that takes the interaction and
relationships of different trajectories into account,
recognises formations and perhaps even more gen-
eral patterns and trends. Over the past few years
we have developed several algorithms and tools for
analysing trajectories. Two of them are presented
in this paper.

Our first tool, introduced in Section 3, is algorith-
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mically rather simple. Nonetheless, we consider it
as an important tool that is necessary for a more
advanced automated analysis. From the trajecto-
ries of all players and the ball, it automatically ex-
tract a list of basic events that happened during the
football match; detected events include kick-offs,
corner kicks, passes etc. Experimental results show
that our method is very fast and reaches a high level
of correctness for many types of events. However,
some types of events seem to be hard to detect au-
tomatically when looking only at the position data.

Our second tool, presented in Section 4, aims at
analysing a single player’s trajectory. However, it
can be easily extended to take multiple trajectories
as input. In the input trajectory we look for subtra-
jectory clusters, which are movements of a player
that are repeated often. This topic is motivated
by questions such as “How is the ball transported
from the defense region to the attack region?” We
present a prototype where a user can specify cer-
tain parameters of the cluster, and then the proto-
type will reliably detect the clusters according to
the chosen parameters. The current version of the
prototype might not be suited as an interactive tool,
because the time to answer a query can be rather
long.

We believe our algorithms and implementations be-
long to the still immature research area that aims at
automated football analysis. Despite the young age
of this area, it becomes more and more popular and
important as can be seen by the increasing amount
of related work. For example, Kang, Hwang and
Li (2006) propose a method to quantitatively eval-
uate the performance of football players. Their ap-
proach is based on four different measures that in-
clude different regions for each player and the kicks
the players perform. Another approach that is also
based on regions is presented by Fujimura and Sug-
ihara (2005). Their regions are based on the gen-
eralised Voronoi diagrams. Grunz, Memmert and
Perl (2009) address the analysis of actions in a foot-
ball match. Their actions are coarser than our basic
events, and the used techniques for the detection
are very different.

2. PRELIMINARIES

The position of a moving object can be described
by the spatial coordinates x, y and possibly also z
at a certain time t. Together, these values form the

sample (t, x, y, z). A sequence of such samples, or-
dered with respect to time, is called a trajectory. A
trajectory describes the movement of an object.

The data that we used in our experiments is data
from a real football match. It was anonymised and
kindly provided to us by ProZone. It includes the
trajectories of all the players. These trajectories
have a spatial resolution of a decimeter and a tem-
poral resolution of at least ten samples per second.
However, we do not know the accuracy of the data.
For the analysis we aim to do we also need the tra-
jectory of the ball. Unfortunately, it is not included.
It does, however, include a list of annotations of
the match, which is a list of events such as “touch”
and “pass” – very similar to the events we want
to detect. These annotations were created manu-
ally by people watching the match (and/or a video
thereof). From these annotations, we re-construct
the ball’s trajectory by using the time and spatial
coordinates of each event to create samples of the
ball’s trajectory. The resolution of the annotations
are only one meter and one second, so the obtained
ball trajectory is only a rough estimate of the ball’s
movement. We believe that the results in Section 3
can be improved considerably if the ball trajectory
would be given with higher accuracy.

Both our algorithms and prototypes have been im-
plemented in Java. Our experiments were per-
formed on an off-the-shelf PC with an Intel dual
core processor running at 2.33 GHz and 2GB of
main memory.

3. BASIC EVENT DETECTION

3.1. METHODS

For computing basic events of a football match, we
need both the ball’s and the players’ trajectories.
Here, we briefly describe how our algorithm for de-
tecting events works.

Our event detection works on different levels of
events. The bottom level is the physical event level.
These are events that can be detected without any
knowledge of the football rules (we do, however,
require knowledge of the dimensions and lines on
the football pitch). Bottom level events are for
instance “ball-out”, “ball-in” and “touch” events.
The first two occur when the ball moves out of (or:
back into) the pitch. “Ball-in” events can be refined
into “throw-in”, “corner kick” etc., depending on
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Figure 1: Screenshot of the programme to animate a match.
The detected events are displayed in the area below the pitch.

where the “ball-in” event takes place. A “touch”
event is detected when the ball changes its speed
and/or direction. For these events we only need the
ball’s trajectory.

Now, if we also take the player’s trajectories into
account, we can refine the events. For instance,
the player that is closest to the ball when a “touch”
event happens is assumed to have touched the ball
(although there are exceptions). Or the player that
is closest to the ball, when a “throw-in” happens
is assumed to have performed the throw-in. As a
result we obtained a list of more advanced events.

These more advanced events can be refined in
a second round. For instance, two consecutive
“touch” events that were performed by different
players from the same team, constitute a “pass”
event. In a similar way we can detect “possession”,
“pass interception”, “shot on goal”, etc.

In yet another refinement round, we arrive at the
highest event level, which includes events such as
“free-kick”, “substitution”, “offside”, “foul”, “red-
card”, etc.

3.2. EXPERIMENTAL RESULTS

Figure 1 shows the main screen of the event-
detecting prototype. It includes a football pitch,
where the match can be viewed as an animation.
The area below this pitch is the area where the
events are displayed synchronously linked to the
animation. An example snippet of the list of events
is shown in Figure 2.

34:51 |Intercept |( 37.6, -23.9, 0.0)| Player04 | Player08

34:51 |Touch |( 38.9, -24.6, 0.0)| Player08

34:53 |Ball Out |( 59.0, -26.0, 0.0)|

35:13 |Corner Cross |( 57.2, -29.1, 0.0)| Player23

35:13 |Touch |( 57.2, -29.1, 0.0)| Player23

35:13 |Shot |( 57.2, -29.1, 0.0)| Player23

35:15 |Touch |( 54.3, -5.3, 0.0)| Player09

35:15 |Goalkeeper Catch |( 54.3, -5.3, 0.0)| Player09

35:15 |Pass |( 54.3, -5.3, 0.0)| Player09 | 14.1 m/s

35:16 |Receive |( 36.3, -2.0, 0.0)| Player17

Figure 2: An extract of the list of detected events, showing for
each event: time, type, coordinates and involved players etc.

Event type falsePositive falseNegative F1-score
touch 7 3 0.979
pass 2 2 0.955
intercept 1 1 0.960
ball-out 1 4 0.935
throw in 0 2 0.963
corner kick 0 1 0.968
goal kick 1 2 0.909
kick off 0 1 0.960
shot 1 3 0.875
goalkeeper catch 0 2 0.941
goal 0 1 0.960
foul 3 6 0.823
offside 5 3 0.556
free kick 0 3 0.953

Table 1: Summary of some statistical results for some of the
detected events. The higher the F1-score the better.

Computing all the events for an entire match takes
only a couple of seconds. Hence the running time
does not seem to be an obstacle in practice, and
therefore we focus more on the study of the cor-
rectness of the detected events.

As mentioned above, together with the data that
we used for our experiments, we were given a list
of annotations. To estimate the correctness of our
event detection, we compare our list of events to
these annotations, where we consider the annota-
tions as 100% correct (even though they might not
be).

The measure that we use to report the level of cor-
rectness is the F1-score, given as:

2 · truePositive
2 · truePositive + falseNegative + falsePositive

The values of truePositive, falseNegative and
falsePositive were simply counted when comparing
the list of detected events with the annotations.

Table 1 shows the values of falsePositive,
falseNegative and the resulting F1-score for some
of the detected events. Note that some events are
omitted from this table as they did not occur in the
match, such as “penalty kick” or “red card”. Also,
some events are not considered because they are
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not possible to detect without additional informa-
tion, for example “yellow card” events.

From the numbers in Table 1, we can conclude that
automated basic event detection is possible. Some
events, especially the bottom level events can be
detected with very high accuracy. Higher level
events such as “foul” and “offside” are not reliably
detected.

There are several factors that impact the correctness
of our results. We could observe that the annota-
tions themselves contain errors, which is also true
for some trajectories. But more importantly, the
ball’s trajectory had to be re-constructed from the
annotations. This might have huge positive and/or
negative effects on the detection of certain events.
All in all, with the current data it is very hard, per-
haps even impossible, to estimate the accuracy of
our event detection methods. As a consequence, we
did not put more efforts into fine tuning our meth-
ods, as this would possibly increase the accuracy,
but only for the given data with the lack of a real
ball’s trajectory.

4. SUBTRAJECTORY CLUSTERING

4.1. METHODS

The techniques proposed by Buchin, Buchin, Gud-
mundsson, Löffler and Luo (2008) are the basis of
our tools. In the following, we briefly review those
techniques and then, in Section 4.2, we will con-
sider the experimental results.

The similarity between two trajectories can be de-
fined in different ways, for example using the
Longest Common Subsequence model (Vlachos,
Gunopulos and Kollios, 2002), a combination of
parallel distance, perpendicular distance and an-
gle distance (Lee, Han and Whang, 2007) and the
average Euclidean distances between paths (Nanni
and Pedreschi, 2006). We will use the Fréchet dis-
tance, which is a distance measure for continuous
shapes such as curves and surfaces, and is defined
using reparameterisations of the shapes. Because
it takes the continuity of the shapes into account it
is generally regarded as being a more appropriate
distance measure than the Hausdorff distance for
curves (Alt, Knauer and Wenk, 2004).

The Fréchet distance can be intuitively explained
in the following way: Imagine a person walks their

Figure 3: Illustrating the leash length between a person and
their dog walking along their trajectories.

Figure 4: A subtrajectory cluster (indicated fat) of a trajectory.

dog on a leash (see Figure 3). The person will fol-
low a certain trajectory or path Tp, while the dog
follows a different path Td. The Fréchet distance
between Tp and Td is the smallest length of a leash
that allows the person and the dog to walk on their
paths, where the person and the dog can change
their speed or even pause, but they are not allowed
to backtrack.

The Fréchet distance comes in two flavours: con-
tinuous and discrete. Intuitively, in the continu-
ous version, the person and their dog walk on their
paths in a continuous movement, while in the dis-
crete version, they “jump” from one vertex to the
next vertex of the path. Note that the continuous
version can be approximated by the discrete ver-
sion when using paths with many vertices, i.e. hav-
ing data with high resolution. We chose the discrete
Fréchet distance, because the corresponding algo-
rithms are easier to implement (Buchin, Buchin,
Gudmundsson, Löffler and Luo, 2008).

During a match, a player might move along certain
paths multiple times. Hence, when given the tra-
jectory T of that player, certain subtrajectories of T
might form a subtrajectory cluster (see Figure 4).
We follow Buchin, Buchin, Gudmundsson, Löffler
and Luo (2008) who define a subtrajectory cluster
depending on three parameters: m, ` and d. We
say that a subtrajectory cluster consists of m non-
overlapping subtrajectories T1, ...,Tm of T . At least
one subtrajectory has length `, and the distance be-
tween the subtrajectories is at most d.

Computing subtrajectory clusters exactly turns out
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to be a hard problem (Buchin, Buchin, Gudmunds-
son, Löffler and Luo, 2008). Deciding whether a
trajectory T contains a subtrajectory cluster with
specified parameters m, ` and d is NP-hard. The
problem to maximise the number of subtrajecto-
ries or to maximise the length of the subtrajecto-
ries (while the other parameters are fixed), is also
NP-hard, even when computing an approximation
where m or ` are approximated within certain fac-
tors and d is approximated within < 2. (Intuitively,
for an NP-hard problem, there is no known effi-
cient algorithm to solve it.) That is why we look at
approximation algorithms where d is approximated
within a factor of ≥ 2.

The main result by Buchin, Buchin, Gudmundsson,
Löffler and Luo (2008) that we will be using is the
following: Given a trajectory T , there is an algo-
rithm to compute, under the discrete Fréchet dis-
tance, a subtrajectory cluster of maximum length,
where the distance d is approximated by a factor of
2 (i.e. we allow the subtrajectories to have a dis-
tance twice as large as specified by the parameter
d). This algorithm runs in O(n2 + nm`) time and
uses O(n`) space, where n denotes the number of
vertices of T , ` denotes the maximum number of
vertices of a subtrajectory in the subtrajectory clus-
ter, and m denotes the number of subtrajectories in
this cluster.

The implemented prototype can be configured to
only report subtrajectory clusters according to the
following parameters: distance (this is the maxi-
mum allowed Fréchet distance between subtrajec-
tories), minimum cluster size, duration and length
(these are thresholds to avoid reporting very small
and meaningless clusters).

4.2. EXPERIMENTAL RESULTS

By running experiments on the subtrajectory clus-
tering, we would like to find out how well the clus-
tering works, i.e. how much useful information is
found and also how fast the clustering works, i.e. do
the run times allow for an interactive tool, where an
analyst specifies the parameters of a cluster and the
tool will “quickly” find the corresponding clusters.

4.2.1. Usefulness

One way to evaluate the usefulness of the clustering
is by examining the results visually, i.e. drawing the
clusters together with the trajectory into an image

Figure 5: Screenshots showing the trajectory and a subtrajec-
tory cluster of a left-wing player moving forward.

Figure 6: Screenshots showing the trajectory and a subtrajec-
tory cluster of a right-wing player moving backward.

of a football pitch. In Figures 5-8, we provide ex-
ample screenshots for the ball’s trajectory and the
trajectory of two players. Each screenshot shows
the entire trajectory of one half of the match. Also,
in each screenshot, one cluster is highlighted in red
and yellow. (The yellow subtrajectory is the rep-
resentative subtrajectory for this cluster (Buchin,
Buchin, Gudmundsson, Löffler and Luo, 2008).)
For instance, in Figure 5, the trajectory of a left
wing player (Player1) and the cluster indicates that
several (at least six) of his attacking runs in the first
half of the game started near the middle of the left
half of the centre line, describing a long arc going
forward and further to the left of the field and then
making a sharp turn back towards the middle of the
field.

From the screenshots we can conclude that the sub-
trajectory clustering reliably finds the clusters ac-
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Figure 7: Screenshots showing the ball’s trajectory and a sub-
trajectory cluster of goal kicks.

cording to the set parameters. Therefore, from a
computer scientist’s point of view, this confirms
that the subtrajectory clustering algorithms work
well. However, longer and bigger (in terms of the
number of subtrajectories) clusters would probably
be of more interest to domain experts.

One way to give clusters more meaning is to con-
sider the trajectories of multiple matches, and then
to look for clusters taking all these trajectories into
account. In doing so, we are likely to find longer
and larger clusters which can be used to iden-
tify interesting emerging patterns. However, we
are also likely to face much longer running times
(see Section 4.2.2). Another way to increase the
meaning of the clustering is to not only look at
purely geometry-based clustering, as is done in this
study. Instead, one could consider a combination of
geometry-based clustering and event-based cluster-
ing.

4.2.2. Running times

From the way the algorithm works and from the
way it has been implemented we would expect
certain parameters to have no, or only marginal,
impact on the running time. These parameters
are the minimum cluster size, duration and length,
which could be confirmed in preliminary experi-
ments. That is why we only report on the running
time behaviour depending on the distance d and the
number n of vertices in the trajectory, see Figure 9
and 10.

Interestingly, the chosen Fréchet distance d has an
impact on the running time (see Figure 9), even

Figure 8: Screenshots showing the ball’s trajectory and a sub-
trajectory cluster of ball movements from top to bottom.

Figure 9: Chart of the running time and the number of clusters
depending on the chosen Fréchet distance.

though this is not reflected by the results from the
theoretical worst-case analysis (see Section 4.1).
This dependency can be explained by the way the
algorithm works. It iterates over the vertices of the
trajectory and in each iteration it keeps track of all
other vertices that have a distance of at most d. For
larger values of d, this strategy inevitably results
in larger running times, as more and more vertices
need to be considered. A bigger impact on the run-
ning time is caused by the size of the trajectory (see
Figure 10). To achieve different sizes, we simpli-
fied the trajectory to various degrees, by removing
vertices that are less crucial for the overall shape
of the trajectory. The theoretical analysis gives us
a quadratic dependency, which we could also ob-
serve in our experiments.
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Figure 10: Chart of the running time and the number of clus-
ters depending on the size of the trajectory.

We also see a perhaps suprising dependency of the
number of clusters that are found. Clearly, a small
Fréchet distance makes it harder for clusters to ex-
ist. A large Fréchet distance, on the other hand, can
give rise to long clusters. As clusters may not over-
lap, such long clusters might hence prevent subse-
quent clusters to exist. Furthermore, the fact that,
for small trajectory sizes, many clusters will not be
found, is caused by our choice to use the discrete
Fréchet distance. In our version, all subtrajectories
of a cluster must start and end with vertices that are
close to each other. Because of the simplification,
we cut out vertices making it less likely to identify
clusters for small size of the trajectory.

From the graphs in Figure 9 and 10, we can con-
clude that finding clusters could potentially be done
in an interactive tool for certain parameters and
small input sizes. However, the current implemen-
tation does not seem to be suitable for interactive
use for more interesting settings, e.g. where we
have large input or where we allow a large Fréchet
distance.

One should note, however, that the current imple-
mentation was not optimised for speed. It should
be mainly seen as a prototype for a feasibility study
that reflects at least certain asymptotic running time
behaviour. Also, choosing different or more so-
phisticated algorithms might result in very different
running times, and has the potential to offer drastic
speedups.

5. CONCLUSIONS

Our presented algorithms and prototypes are first
steps towards completely automated football anal-
ysis. Of course, it is not clear that a completely
automated analysis will ever be reached, but the
more tools we can provide to coaches, the better
their team might perform.

We have seen that basic event detection works well
and efficiently, and that the clustering also works
well, but can be expensive and might have only
limited use for coaches. We will continue to work
on similar problems and to make our current tools
more accurate. Also increasing the speed of the
clustering algorithm is a topic for further study.

The area of football analysis is a mix of many dif-
ferent domains. If we want to fully benefit from this
mix and contribute to this area, we need a stronger
and more effective dialog between experts in the
different domains.
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Abstract 
 
Managers continually seek improved methods to measure the performance of their organizations because they 
are committed to improve efficiency and effectiveness in their operating units. Data Envelopment Analysis 
(DEA) has proven itself to be both theoretically sound framework for performance measurement and an 
acceptable method by those being measured. Since football is without doubt one of the most important kinds 
of sports in the world, therefore by taking data for the season 1999/2000 from Haas et al. (2004) we study the 
efficiency of football teams in the German Bundesliga by DEA. In this paper, we applied a practical common 
weight compromise solution methodology for measuring efficiency of football teams and then selecting the 
best one. We find that discriminating power of this method is more than conventional DEA and efficiency 
score of teams are more reliable. The non-parametric Spearman test of relationship (rs) and the Kendall’s Tau 
test (τ ) of correlation verify the results of DEA and compromise solution.  
 
Keywords: Common weights, DEA, Ranking, Football team 
 

 
1. INTRODUCTION 
 
Football has become the largest leisure activity and 
has great social and economic importance. The 
growth of these leisure sectors in the 90s has been 
directly linked to the process of media liberalization 
and, more specifically, the growth of pay-per-view 
television. There is also consensus that these rates of 
growth cannot continue indefinitely, and that the 
market growth has currently stalled (Bosca et al., 
2009) 
During the last quarter of the 20th century, football 
became a more favorable sport then many other 
branches (such as volleyball, handball, basketball, 
athletics and boxing) and local games (baseball, 
golf, cricket, rugby), all over the world from Europe 
to South America and from Africa to Asia. In the 
struggle of many branches of sports, the advantages 
of football are its easiness, low cost, and no need for 
expensive tools. Football, the unique branch of sport 
in the countries is becoming an important element of 
the culture and community. The referee’s decision, 
technical director, team’s tactics, and player’s faults 
are the causes of argument. Gossip spreads 

everywhere, such as to TV, newspapers, on to 
streets, to business, schools and homes. So after the 
success of national teams, great celebrations are 
arranged on the city streets. The traffic stops and the 
streets become full of flags, peoples and cars. The 
amount of joy is as great as the victory. In this view, 
football has an important role of including the 
people in the national idea. Thus, by the association 
of people, football binds many people to build a 
community. As a raising trend, football has become 
a commercial source. With the supporters of teams, 
sponsor income and publication, the truth income 
comes to a budget of hundreds of millions of dollars. 
For example, the income of Manchester United was 
200 million euro from the English Premiere League 
in 2000, from German Bundesliga Bayern 
München’s income was 150 million euro. 
Performance evaluation in football might be arisen 
in a few critics: 
i) The efficiency of the manager and technical 
director (coach): This kind of evaluation takes into 
consideration the input and output that depends on 
the experience of managers and directors. 
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ii) The efficiency of the team in a match: This 
evaluation deal with inputs and outputs, inputs may 
be the players ownership of the ball, corner kicks, 
kicks, penalty kicks, and outputs may be the number 
of goals and the result of the match. 
iii-) The efficiency of the team or teams in the 
season: In this point of view the season is 
appreciated as a process and cumulative efficiency is 
calculated with the data at the end of each week. 
Alternative approaches might be considered 
depending on the aim (ALP, 2006) 
Haas et al. (2004) propose that many people all 
around the world and especially in Europe and South 
America consider (European) football not only as a 
game, but nearly as a kind of religion. Hence, 
football is without doubt one of the most important 
kinds of sports in the world. Besides passion, fanatic 
support and joy, when the supported team wins, or 
pain, when it loses, football in Europe is a major 
industry and significant business. 
Many teams have been listed on stock markets in the 
course of the nineties to finance investments, 
merchandising has more and more become a major 
source of revenues for the teams and the value of 
broadcasting rights has increased dramatically. 
Single teams exhibit considerable revenue figures. 
Football is also the source of endless discussions on 
strategies, referee decisions and performance among 
experts, hence, among every single fan. The dispute 
of millions of would-be team managers or trainers 
not only runs along the simple line on who will win 
the championship, but also on relative performance: 
Do teams with seemingly inferior initial positions, 
with smaller budgets and less talented players ‘play 
over their heads’? How should a team, of which 
most experts expected to win the championship, be 
judged, when it ends up as second or third after the 
last round? These questions are without doubt of 
economic origin, because they dwell upon one of the 
central economic concepts, namely efficiency. 
Thanasis (2009) suggests that the analysis of the 
football clubs’ operating efficiency measurement is 
static and includes both the estimation of teams’ 
(TE) technical efficiency level as well as the 
identification of its sources. The analysis is 
characterized as static due to the fact that it refers to 
a specific period of time. The technical efficiency 
term is connected directly to the use of inputs by a 
Decision Making Unit (DMU) during a period of 
production and estimates any possible waste of 
resources for a given technology. 
The extravagance of resources (especially of money) 
is particularly evident in the football clubs’ case, 
where the cost minimization choice is not always the 
first priority of a team’s director. Accordingly, the 
efficiency notion is usually discussed by the football 
fans, especially when they are convinced that their 

team should have performed better (accumulate 
more points) according to the budget spent. 
Considering that the economic targets achievement 
is not always the first priority of a Football Club’s 
manager, the technical efficiency estimation can be 
deservedly characterized as adequate only via the 
analysis of the technological relations that describe a 
team’s operation. Additionally, the fact that there are 
no market prices for a team’s products, which are 
goals scored and the inverse of goals conceded, 
enhances the choice of the analysis’ specific form. 
This paper is devoted to analyze efficiency-related 
questions on the team level for the ‘Deutsche 
Bundesliga’ (German Federal Football League), 
which is one of the most important professional 
football leagues in the world. We are interested in 
the season overall efficiency of teams, since it seems 
to be most important from an economic point of 
view and least investigated. 
 
2. MEASURING THE TECHNICAL 
EFFICIENCY OF FOOTBALL TEAMS: 
 
2.1 EFFICIENCY: MEANING AND MEASUREMENT 
Economically, efficiency refers to the relationship 
between scarce factor inputs and outputs of goods 
and services. This relationship can be seen and 
evaluated in term of either physical output or cost. If 
we plan to identify and determine the best possible 
(optimal) combination of inputs to produce a given 
level of output in physical term, then we are talking 
about technological or technical efficiency. With 
regard to technical inefficiency, it is caused by the 
failure to achieve the best possible output levels and 
/ or usage of an excessive amount of inputs. 
On the other hand, if we want to determine the 
optimal combination of inputs that will minimize the 
cost of producing a given level of output, then we 
are talking about economic efficiency or cost 
efficiency. This kind of efficiency requires the 
availability of input prices like the price of labor and 
capital. According to Drake and Hall (2003), in the 
absence of accurate data on input prices, 
performance analysis should be focused on technical 
efficiency (Ismail, 2004). 
All that the DEA efficiency measure tells us is 
whether or not a DMU can improve its performance 
relative to the set of DMUs to which it is being 
compared. To this end, DEA computes a scalar 
measure of efficiency and determines efficient levels 
of inputs and outputs for the organization under 
evaluation. To begin, it is very essential to 
understand the concept of efficiency. 
 
2.2 DATA ENVELOPMENT ANALYSIS 
Football is a competitive sport with two teams of 11 
players. The winning team must score more goals 
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than the other team during the game. While there are 
various styles of competition, the national leagues 
involve each of the teams playing each other during 
the season. Each team plays every other team twice; 
once in its own ‘home’ ground, and once ‘away’ in 
the opponent’s ground.   Victories are rewarded with 
three points, draws receive one point, and defeats do 
not receive any points—therefore it is a non-zero 
sum game. The team with the most points wins the 
league and any ties at the end of the season are 
broken in various ways in each league. 
There are incentives for occupying the highest 
possible position in the league at the end of the 
season. Of course, if being first were the only 
criteria then teams would lose their incentive to win 
when they realize that first place had become 
unachievable. Therefore, the best-positioned teams 
are rewarded with the opportunity to play in 
European competitions in the following season, and 
the lowest teams are relegated to the league below 
(Bosca et al., 2009). 
There are two main approaches to measure 
efficiency: the econometric or parametric approach 
and the nonparametric or DEA - Data Envelopment 
analysis approach. The former is mainly based on 
econometric techniques and measures the difference 
between the benchmark and the inefficient entities 
by the residuals, while the latter is based on linear 
programming techniques. Some of the advantages of 
SFA over DEA are: firstly, the fact that it accounts 
for noise and secondly, the fact that it can be used in 
order conventional tests of hypotheses to be 
conducted (Thanasis, 2009).  
Barros and Barrio (2008) state that unlike the 
econometric stochastic frontier approach, DEA 
allows the use of multiple inputs and outputs, but 
does not impose any functional form on the data; nor 
does it make distributional assumptions for the error 
term. Both methods assume that the production 
function of the fully efficient decision unit is known. 
In reality this is not the case and the efficient iso-
quant has to be estimated from the sample. Under 
these conditions, the frontier is relative to the sample 
considered. 
DEA is a new methodology that calculates the 
performance scores of various decision making units 
with the operation research technique. Performance 
evaluation has a multi-variable and complex 
structure. DEA is a technique that is an entirely 
objective way of performance evaluation (ALP, 
2006). 
Barros and Barrio (2008) measured the Efficiency of 
the English football Premier League with a random 
frontier model. Hoefler and Payne (2006) applied 
stochastic production frontier model for analyzing 

NBA association clubs. Barros and Leach (2007) 
used technical efficiency effects model in soccer 
clubs in the English Premier League. Barros and 
Leach (2006a) used DEA-CCR and BCC model in 
soccer clubs in the English Premier League and 
stochastic frontier model in soccer clubs in the 
English Premier League (Barros and Leach (2006b). 
Haas (2003a) applied DEA-CCR and DEA-BCC 
model for 12 US soccer clubs and Haas (2003b) 
used DEA-CCR and DEA-BCC model for 20 
Premier League clubs. Barros and Santos (2003) 
applied DEA-Malmquist index on 18 training 
activities of sports federations. 
In this paper, we will assume that clubs have access 
to the same level of technology, but differ in their 
levels of efficiency, and that this may explain 
differences in productivity. It seems reasonable to 
assume that the technology used in football (tactics, 
plans, physical training, etc.) is homogeneous and 
basically well-known among industry professionals. 
For this reason, non-parametric optimization 
techniques, specifically DEA models, are used. 
 
2.2.1 Production possibility set 
The relative comparison in DEA is examined within 
a production possibility set (PPS).  The production 
possibility set (PPS) is defined as the set of all inputs 
and outputs of a system in which inputs can produce 
outputs, as: 
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In fact, based on information about the existing data 
on the performance of the units and some 
preliminary assumptions, a PPS is built and DEA 
forms an empirical efficient surface (frontier). If a 
DMU lies on the surface, it is efficient; otherwise it 
is inefficient. DEA also provides efficiency scores 
and reference units for inefficient DMUs. Reference 
units are units on the efficient surface which can be 
regarded as target units for inefficient units. They 
are obtained by projecting an inefficient DMU 
radially or nonradially to the efficient surface 
(Jahanshahloo et al., 2009). 
 
2.2.2 CCR Model 
The production possibility set of CCR model which 
is built on the assumption of Constant returns to 
scale (CRS) can be constructed from the observed 
DMUs as semi–positive vectors ) 0,0 (  )y  x,( ≠  as 

follows. 
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The CCR model, as introduced by Charnes et al. 
(1978), measures efficiency relative to the canonical 
convex monotone hull of the observations. This 
efficiency estimate can be computed using 
straightforward linear programming. 
The input oriented CCR model estimates maximum 
radial input contraction of the evaluated DMU such 
that the projection of it is within the PPS. The 
corresponding linear programming problem, called 
envelopment model for efficiency estimation of 
DMUp (Input oriented Envelopment model or IE 
model) is as follows: 
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The dual problem, called multiplier model (Input 
oriented Multiplier model or IM model), will also be 
used afterwards: 
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Where the variables ur and vi are dual variables, in 
linear programming terms, to the constraints relating 
to the rth output and ith input in model CCRIE, 
respectively. 

The optimal value *
ru  of ur can be seen as the 

imputed value per unit of output r. Similarly, the 

optimal value *
iv  of vi can be seen as the imputed 

value per unit of input i. Likewise, the output 
oriented CCR model estimates maximum radial 
output expansion of the evaluated DMU such that 
the projection of it is within the PPS 
(Zohrehbandian, 2005). 
 
Definition 1 (Efficiency): 
DMUp ; },...,2,1{ np ∈ is CCR efficient, if and 

only if 1* =θ  in (2.2) and the sum of slack variables  

( ∑∑
=

+

=

− +
s

r
r

m

i
i ss

11

) is equal to zero. 

 
Definition 2 (Pareto efficiency): 
DMUp ; },...,2,1{ np ∈ is Pareto Efficient if and 

only if 1* =θ  in (2.2) and all constraints (except the 

nonnegative constraints) are binding at all optimal 
solutions (Jahanshahloo et al., 2009). 
 
2.3 MULTI-CRITERIA DECISION-MAKING (MCDM) 
PROBLEM 
The MCDM problem may be represented as: 
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where x is an n-dimensional vector of decision 
variables, f1, f2, . . ., fk are k distinct criteria 
functions of decision vector x,  and g1, g2, . . ., gc are 
inequality constraints, and X is the feasible set of 
constrained decisions. (Malczewski and Jackson, 
2000). 
 
2.3.1 Compromise Solution Approach 
Compromise solution approach is an example of 
methods which do not need any inter objective or 
other subjective preference information. In order to 
solve the problem (2.4) (identifying the efficient 

solutions), suppose  k, , ... 1, j ,* =jf  are the 

optimum value of the following models: 
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Then an efficient solution is defined as the one 
which minimizes the deviations from these optimum 
values (ideal solution) as follows: 
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where the value of p is based upon the utility 
function of the DM. in the above Model, for the 
smallest value of P=1, every deviation is being 
weighted equally. As p increases, more weights are 
given to the larger deviations. Ultimately, the largest 
deviation completely dominates when P=∞. There 
are three values of p, p=1, 2, and ∞, which have 
special mathematical properties and are worthy of 
consideration (Hwang and Masud, 1979). 
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2.4. COMMON WEIGHTS ANALYSIS (CWA)  
Liu and Peng (2008) state that conventional data 
envelopment analysis (DEA) assists decision makers 
in distinguishing between efficient and inefficient 
decision making units (DMUs) in a homogeneous 
group. Its characteristic is to focus on each 
individual DMU to select the weights attached to the 
inputs and outputs, and to locate the envelopment 
surface. A set of weights for the inputs and outputs 
is determined by the DEA program to show each 
DMU in its most favourable light as long as the 
efficiency scores of all DMUs calculated from the 
same set of weights do not exceed 1. 
As a considerable number of DMUs are usually 
categorized as efficient, a procedure for ranking the 
efficient units is sometimes necessary. This is 
especially important when each DMU represents one 
alternative for consideration. Even for inefficient 
units, there are cases in which they need to be 
ranked. For example, in allocating government 
subsidies, the ranking of the units is often required. 
However, an inefficient unit with a smaller 
efficiency score does not necessarily mean poorer 
performance than one with a larger efficiency score 
because only the units under the same frontier facet 
are comparable. 
Using different sets of weights to classify the DMUs 
as efficient or inefficient is acceptable to the 
practitioners. However, if different sets of weights 
are used for ranking, most practitioners may not 
agree because every DMU believes that other DMUs 
will take this advantage to defeat it. Therefore, the 
major purpose for generating common weights in 
DEA is to provide a common base for ranking the 
DMUs, both the efficient and inefficient ones. Note 
that a common set of weights means one frontier 
hyperplane. All DMUs lie beneath that hyperplane. 
The idea of common weights in DEA was first 
introduced by Roll et al. (1991). There are many 
ways to generate common weights. The efficiency 
score calculated from the standard DEA model is the 
target for each DMU to achieve. The DMUs select a 
common set of weights which yields the shortest 
distance between the vector of efficiency scores 
calculated from this set of weights and the target. 
Based on the common set of weights, all DMUs are 
compared on one scale (Kao and Hung, 2005). Kiani 
Mavi et al. (2010) proposed a CSW compromise 
solution approach for technology selection. 
 
3 PRACTICAL COMMON WEIGHT 
COMPROMISE SOLUTION APPROACH FOR 
TECHNOLOGY SELECTION 

Jahanshahloo et al. (2005) presented the following 
multiple objective fractional programming problem 
for finding CSW. 
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Haas et al. (2004) propose that coaches– in 
particular their tactical as well as motivational 
skills– are very often considered to be of utmost 
importance for a team’s performance. Evidences 
indicate that coaches make significant contributions 
to a team’s success in the field. 
The proposed model in Jahanshahloo et al. (2005) is 
nonlinear. But we used one input in the example so 
that the model is converted into linear one.   
For convenience and simplicity, one input is 
considered in efficiency measurement. For this 
reason we took coaches’ wages as the single input of 
the model. Consider the following MOLP problem 
with respect to multiple outputs and a single exact 
input for efficiency measurement. 
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Now, consider the following model (3.3). *jθ  is the 

optimum performance of unit j. 
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We can solve the MCDM formulation (3.2) by using 
compromise solution approach as follow:   
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then there is no need to normalization. Let us 
consider two cases in which ∞== pp ,1 . 

If 1=p  then we have: 
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By solving model (3.5), ur

*  r =1,…,s, are calculated 

which are common weights thus we can calculate 
efficiency of all units by using these weights.  
If ∞=p  then we have: 
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Model (3.6) is a special linear problem but by 
defining a variable Z, simply, converted to a linear 
problem as follows: 
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Furthermore, for complete ranking of DMUs in 
models (3.6),(3.7), we can define set A as follow: 

{ })7.3(),6.3(byefficientisjA DMU j=  

And then, model (3.7) is converted as follows: 
(Jahanshahloo et al., 2005) 
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The proposed MCDM approach has two advantages 
in comparison with DEA-based approaches 
proposed in the literature for the similar problem. 
First, the proposed approach evaluates all 
alternatives by common weights, therefore 
overcomes the unrealistic weighting scheme 
problem that is common to DEA, because DEA 
assumes that each DMU selects the best factor 
weights. Second, it identifies the best team with less 
computation compared with DEA-based approaches. 
 
Result: By the optimal solution of (3.7), at least one 

njj ,...,2,1; =θ  equals to 1.  

Proof: Suppose that ),( ** vu  is the optimal solution of 

(3.7) and is CSW. There is one kjj ,...,2,1; =  for 

which the second inequality in (3.7) is binding. 
Because, if it is not the case, there is a sufficiently 
small value 0>δ  where  
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satisfy the set of restrictions in (3.7). Because 
),( ** vu  is the optimal solution, then, this is a 

contradiction. Therefore, there is one 
kjj ,...,2,1; =  for which we have:  

01 =−∑ = xyu j
s
r rjr  

This means that relative efficiency of at least one 
DMU equals to 1 and CP can lead to finding relative 
efficiencies by CSW. 
 
4. NUMERICAL EXAMPLE 
Data of this paper are based on Haas et al. (2004). 
We have four outputs and one input. In this paper, 
we assumed that coaches' wage is the most 
important input factor for team's success then we 
considered it as the input. Table 1 shows data. 
 
For analyzing the efficiency of teams compromise 
solution approach with P=1 and P=∞ is applied. 
CCR efficiency score of teams are presented in 
column 2 of table 2. Columns 3,4 show the 
efficiency score of them by CSW. Applying 
proposed method on the data results in the following 
CSW. 
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Table 1: Raw data for the season 1999/2000 

Team 
Coach’s monthly 
wage in 1000 DM 

(O)points 
Spectators 
in 1000s 

Stadium 
utilization in % 

Total revenues 
in Mio. DM 

Bayern München 300 73 894 83.5 220 

Bayer Leverkusen 180 73 382 89.7 85 

Hamburger SV 125 59 703 76.6 61 

1860 München 160 53 555 51.8 42 

1. FC Kaiserslautern 200 50 684 96.9 75 

Hertha BSC 100 50 809 62.8 42 

Vfl Wolfsburg 80 49 292 83.5 40 

Vfb Stuttgart 100 48 500 65.3 52 

Werder Bremen 30 47 507 84.5 63 

SpVgg Unterhaching 30 44 163 76.6 14 

Borussia Dortmund 100 40 1099 93.7 150 

SC Freiburg 50 40 420 98.8 31 

FC Schalke 70 39 689 65.4 64 

Eintracht Frankfurt 80 39 605 58.3 40 

Hansa Rostock 35 38 275 66 32 

SSV Ulm 22 35 371 97 26 

Arminia Bielefeld 50 30 335 74.4 32 

MSV Duisburg 42 22 257 50.1 28 

Source: Kicker Sportmagazin, Olympia Verlag 
 

Table 2: Efficiency score of teams. 
Team CCR-Efficiency Efficiency with P=1 Efficiency with P=∞ 

Bayern München 0.3492 0.1760 0.1762 

Bayer Leverkusen 0.2577 0.1258 0.1256 

Hamburger SV 0.3328 0.3322 0.3325 

1860 München 0.2085 0.2048 0.2051 

1. FC Kaiserslautern 0.2024 0.2022 0.2022 

Hertha BSC 0.4787 0.4775 0.4783 

Vfl Wolfsburg 0.3857 0.2166 0.2159 

Vfb Stuttgart 0.3044 0.2955 0.2957 

Werder Bremen 1.0000 1.0000 1.0000 

SpVgg Unterhaching 0.9219 0.3238 0.3216 

Borussia Dortmund 0.7143 0.6488 0.6498 

SC Freiburg 0.5033 0.4977 0.4968 

FC Schalke 0.5824 0.5812 0.5820 

Eintracht Frankfurt 0.4475 0.4466 0.4471 

Hansa Rostock 0.6842 0.4656 0.4647 

SSV Ulm 1.0000 0.9997 0.9974 

Arminia Bielefeld 0.4022 0.3968 0.3962 

MSV Duisburg 0.3637 0.3622 0.3619 

Average 0.5077 0.4307 0.4305 
 

Table 3: Nonparametric Correlation test between CCR ranking and CP ranking (N=18) 
Test CP with P=1 CP with P=∞ 

Kendall's tau_b .721**  .721**  

Spearman's rho .840**  .840**  
**  Correlation is significant at the 0.01 level (2-tailed). 
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In Column 2 of table 2, CCR efficiency scores are 
shown. Columns 3,4 show the compromise 
programming scores that have been obtained by 
CSW. Because we applied two norms 1 and infinity 
then CSW and resulting scores are different from 
each other that is obvious in columns 3,4. Same 
ranking order of teams in compromise programming 
with norms 1 and infinity is resulted from their little 
difference. If the differences were significant, then 
different rankings were expected. 
 
4.1 VALIDATION OF RESULTS AND DISCUSSION 
To verify the results of DEA and compromise 
solution, the non-parametric Spearman test of 
relationship(rs) and the Kendall’s Tau test (τ ) of 
correlation is employed (Azadeh et al., 2009). 
Because we want to test correlation between ranks 
obtained from two different methods then rank 
correlation coefficient is calculated. If data are not 
normally distributed or have ordered categories, 
choose Kendall's tau-b or Spearman, which measure 
the association between rank orders. 
Table 3 reports the non-parametric Spearman test of 
relationship (rs) between CCR rankings and CP 
rankings with P=1 and P=∞ which result in the 
rejection of H0 at 0.01 levels. 
 
Also, the Kendall’s Tau test (τ ) of correlation 
verifies this finding at the same level of significance. 
There is a direct relationship between CCR and CP 
results. The Spearman test statistics is 0.840 for P=1 
and 0.840 for P=∞ because ranking of two 
approaches are same. This result shows a strong 
direct relationship between CCR and CP ranks. 
Because the number of efficient DMUs on a 
common weight basis is reduced, discriminating 
power of our approach is higher than CCR. 
 
5. CONCLUSION 
This paper developed new methodology based on 
MCDM and DEA for generating Common set of 
weights (CSW) to assess all the DMUs on the same 
scale. Because average of ranks in the proposed 
methods is less than conventional CCR model, we 
can say that the discriminating power of proposed 
methods is more than that of CCR model. Also, this 
finding is proved by nonparametric correlation tests. 
In general, the rankings of these methods indicate 
that the results are reasonable. In addition to this, 
they are more informative. They not only 
differentiate the efficient units, but also detect some 

abnormal efficiency scores calculated from the CCR 
model. 
Some teams have acquired higher efficiency scores 
with CCR model but when all of teams are 
considered based on common weights, then, their 
efficiency score has decreased. For example, SpVgg 
Unterhaching obtained efficiency score of 0.9219 by 
CCR model but its efficiency is 0.3238 and 0.3216 
by common weights. This implies that, some of 
efficiencies obtained by conventional DEA model 
are abnormal. This case is true for some other teams 
as Bayern München, Bayer Leverkusen, Vfl 
Wolfsburg, Borussia Dortmund and Hansa Rostock. 
In all cases the amount of decrease is not important 
that can be attributed to the CSW but in other ones 
like SpVgg Unterhaching, this decrease is 
considerable that shows abnormal scores obtained 
by CCR model. 
To verify the results of DEA and proposed methods, 
the non-parametric Spearman test of relationship (rs) 
and the Kendall’s Tau test (τ ) of correlation is 
employed.  
Some recommendations for doing future studies are 
provided. 

• Useful extensions of the proposed 
methodologies can be developed, which enable 
the decision-maker to consider imprecise output 
data denoted by fuzzy numbers, interval data, 
ordinal preference information & their mixture. 

• Researchers can extend the proposed methods to 
other models in DEA such as BCC-CCR, CCR-
BCC, Additive model and etc.   
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Abstract 
 
An alternative design for World Cups is presented, applicable to many sports. The proposed structure performs 
better than the incumbent design under several important metrics, including likelihood of the best team 
winning, number of matches between teams of similar ability (“competitive balance”), number of matches 
between high-quality teams, and potential value of television broadcast rights. The design is evaluated against 
other metrics, including those proposed by Scarf, Yusof & Bilbao (2009), and assessed for its practicality in 
the existing tournament timeframes. Ultimately, the duration of the tournament is the most important 
constraint. 
 
The incumbent format of round-robin groups followed by a “knockout” is reversed. Instead I propose a 
preliminary classification phase, elite round-robin and repechage, followed by regular semi-finals and final. 
The 2010 FIFA World Cup took 16 days – half its length and 75% of its matches – to reduce the initial field of 
32 teams to 16, but only four days for each subsequent halving. It is reconstructed as an exemplar. 
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ABSTRACT 
 
Football is arguably the most popular sport worldwide, yet its history been marred by incidents of 
match fixing at both international and club level. In this paper, we review the potential for match 
fixing during the group stage of the FIFA World Cup. Specifically, the potential for match fixing 
was assessed among those teams who had qualified for the Round of 16 after only two group stage 
matches, and therefore had little incentive to win their final group stage match. The 1998, 2002, and 
2006 World Cups are reviewed in detail, in order to identify the different scenarios where there was 
the potential for match fixing to occur. Both FIFA rankings and Elo ratings were used to determine 
each team’s relative ranking prior and during the group phase. Given the presence of four teams in 
each group, simulations were carried out for six potential schedules of games, with the aim of 
identifying the optimal draw in regards to minimising the potential for match fixing situations. 
Results indicated that the potential for match fixing is dependent on the schedule as well as the 
standard deviation of team rankings within each group. Specifically, groups that have a high 
standard deviation in Elo ratings are more likely to be susceptible to match fixing situations in the 
final match of the group stage. This is particularly the case if the top two ranked teams play each 
other in the first group stage match. The potential for match fixing can be minimised when the top 
two ranked teams play each other in the final group stage match. 

 
Keywords: Match fixing, FIFA, Football, World cup, Elo ratings 
 

1.  INTRODUCTION 

Football (referred to as soccer in Australia and the 
United States) is arguably the most popular world 
sport, with professional competitions established 
in a wealth of countries worldwide. The pinnacle 
of the football calendar is undoubtedly the FIFA 
World Cup, a tournament that is held once every 
four years. All registered football nations are 
eligible to compete for a place in the tournament, 
with 204 nations competing for a place in the next 
instalment of the FIFA World Cup, which will be 
held in South Africa in June/July, 2010 (FIFA, 
2010a; Torgler, 2006). The World Cup is 

challenged only by the Olympics in terms of 
global attention, financial investment, and 
worldwide viewing as a sporting tournament, with 
more than 700 million viewers tuning in to the last 
World Cup held in Germany in 2006 (FIFA, 
2010b). 
Despite the popularity and financial prosperity of 
the sport, football has been marred by several 
controversies both on and off the field throughout 
its history (Caruso, 2009). Perhaps the most 
controversial is the tendency for the sport to be 
embroiled in match fixing scandals, with both club 
and international football retaining a long history 
of match fixing incidents (Caruso, 2009; Preston 
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& Szymanski, 2003). By definition, match fixing 
occurs when a game is played in the context of a 
partially or completely pre-determined result. One 
of the most well known match fixing incidents in 
football occurred at club level, in the Italian Serie 
A, where world powerhouses Juventus, AC Milan, 
Fiorentina, and Lazio were implicated in a match 
fixing scandal that involved selection of 
favourable referees. Juventus were ultimately 
stripped of their 2004-2005 and 2005-2006 Serie 
A titles, were relegated to Serie B, and were 
banned from participating in European club 
competitions in 2006-2007. Penalties were also 
handed down to AC Milan, Fiorentina, and Lazio, 
although these were not of the severity allocated to 
Juventus (British Broadcasting Corporation, 
2006a, 2006b). The World Cup has not been 
exempt from match fixing accusations, with a 
book published by Declan Hill alleging that during 
the 2006 World Cup, one group match (Ghana vs. 
Italy), a round of 16 match (Ghana vs. Brazil), and 
a quarter final (Italy vs. Ukraine) were fixed by 
Asian betting syndicates, with final scores being 
known prior to the matches being played (The 
Age, 2008). 
In one of the most infamous match fixing scandals 
in World Cup history, West Germany played 
Austria in the final group stage match of the 1982 
World Cup (Caruso, 2009). In this match, a 1 or 2 
goal win to West Germany would have enabled 
both West Germany and Austria to qualify, 
however a win to West Germany by 3 or more 
goals would have eliminated Austria and enabled 
Algeria to qualify. In addition, a draw or a win to 
Austria would have eliminated West Germany, 
with Algeria again qualifying as a result. In the 
end, West Germany scored once in the 10th 
minute, with neither team scoring for the 
remainder of the match. The lack of attacking 
movements from either team after West Germany 
scored raised significant questions about whether 
the match was fixed to ensure that both West 
Germany and Austria progressed beyond the group 
stage, simultaneously eliminating Algeria (Caruso, 
2009). Although most match fixing scandals have 
been associated with financial incentives, this 
example demonstrates that other incentives are 
often present to intentionally draw or lose a match. 
This is particularly salient in tournament situations 
where a team has already qualified for the next 
round and therefore has little incentive to win its 
remaining pool matches (other than the 
psychological advantages associated with 
maintaining momentum and a winning culture). 

The structure of the World Cup tournament is 
particularly vulnerable to this type of match fixing. 
In the World Cup, the 32 qualifying teams are split 
into eight groups of four (Groups A to H). Teams 
are allocated to groups by first clustering all 32 
countries into four pots. For the allocation of 
teams for the upcoming 2010 World Cup, the first 
pot consisted of the eight seeded teams (that is, the 
host nation and seven teams who FIFA deemed to 
have the highest ranking), the second pot consisted 
of teams from the European continental zone, the 
third pot consisted of teams from South America 
and Africa, and the fourth pot consisted of teams 
from Asia, Oceania, North and Central America, 
and the Caribbean.  One team from each pot was 
allocated to each group, resulting in a mixture of 
teams from different confederations and variations 
of highly ranked and lower ranked nations within 
each group. During the group stage, each team 
plays each other team within their group once, 
resulting in each team playing in three group stage 
matches, with six matches being played across the 
entire group. The teams who finish first and 
second in the group qualify for the Round of 16, 
whilst the teams who finish third and fourth are 
eliminated. 
The schedule of the group stage in the World Cup 
is critical in terms of the potential for match 
fixing. Depending on the fixture, teams often 
qualify for the Round of 16 if they win their first 
two matches, which results in a dead rubber (that 
is, a match where the outcome does not impact on 
the team’s standing in the tournament) in the final 
group stage match for at least one team. In this 
scenario, a team may be presented with one of 
several incentives to draw or lose a match. For 
example, if a team has already qualified for the 
Round of 16, they may intentionally draw or even 
lose their third match to ensure that they finish 
second in the group rather than first, or to ensure 
that the team they are playing in the final match 
qualifies for the Round of 16. A common question 
that arises is why a team would rather finish 
second in their group or why they would bother 
assisting another team with qualification for the 
Round of 16. Simply put, in the Round of 16, the 
first place team in a group plays the second placed 
team in another group. As such, if a team 
recognises that the team who finished second is 
more dangerous to play in the Round of 16, they 
may prefer to finish second in order to play the 
team who finished first in that group. 
To illustrate, consider the state of Group B prior to 
the final group match in the 2002 World Cup. 
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Table 1. Group B at the 2002 World Cup prior to 

the final round of group stage matches. 

Team W D L GF GA P 
Spain 2 0 0 6 2 6 
South Africa 1 1 0 3 2 4 
Paraguay 0 1 1 3 5 1 
Slovenia 0 0 2 1 4 0 
 
For this group, Spain were on top and had already 
qualified for the Round of 16, and played second 
placed South Africa in their final group match. 
Meanwhile, Paraguay (third) played bottom placed 
Slovenia, who were already out of contention for 
the Round of 16. Based on their relative rankings 
and form going into the match, Paraguay were 
highly fancied to beat Slovenia, whilst it was 
thought that Spain would beat South Africa. 
Although South Africa were highly fancied to be 
defeated by Spain, a draw would have prevented 
Paraguay from qualifying for the Group of 16 
(FIFA, 2010c). Thus, Spain had an incentive to at 
least draw with South Africa, given that it would 
eliminate the higher ranked team from the 
tournament without impacting on Spain’s position 
in the group. Instances such as this are not 
uncommon, with scenarios that had similar 
ramifications occurring in four groups at the 2006 
World Cup, and three and four groups for the 2002 
and 1998 World Cups respectively. 
In this paper, we examine the potential for match 
fixing during the group stage of the FIFA World 
Cup. FIFA rankings and Elo ratings are used to 
determine each team’s relative ranking prior to and 
during the group stage of the 1998, 2002, and 2006 
World Cups, with these rating models used to 
determine the likelihood of match fixing 
depending on variations in the fixture. The 
potential for match fixing was evaluated across the 
six possible schedules of matches, with the 
probability of teams playing in a dead rubber 
being determined. 
 
2. METHODS 

The schedules of group stage matches for the last 
three World Cups (1998, 2002, and 2006) were 
downloaded from the Official FIFA website 
(2010a). Each team’s Elo rating (calculated 
following their final friendly before each World 
Cup) was considered as the rating for their first 
group stage match. Given that Elo ratings are 

updated after each match, the following formula 
was applied to all teams in order to calculate their 
Elo ratings prior to the second and third round of 
group stage matches: 
 
Rn = Ro + K (W – We)        (1) 

In the above formula, Rn is the new rating, Ro is 
the pre-match rating, K is equal to 60 for World 
Cup finals (see www.eloratings.com for details), 
W is dependent on match result (i.e. 1 for a win, 
0.5 for a draw, and 0 for a loss), and We refers to 
the expected result: 
 
We = 1 / (10(-dr/400) + 1)         (2) 

dr = difference between the two teams’ Elo 
ratings. 

In order to provide a more reflective measure of 
team strength, 100 points is typically added to the 
Elo rating of the home team. Therefore, for each 
World Cup, the Elo rating of the host(s) was equal 
to their actual rating plus 100. Moreover, as part of 
the analyses, it was essential to identify the best 
two teams in each group. Given that teams, on 
occasion, had equal Elo ratings before the start of 
the World Cup (e.g. Iran and Mexico prior to the 
2006 World Cup), FIFA rankings (which are 
published several weeks before the start of the 
World Cup, and are not updated during the 
competition) were also recorded as an alternative 
measure of team strength. 
Based on each group containing four teams, six 
potential schedules were created for the group 
stage matches, refer to Table 2. 
In schedules 1 and 3, the best two teams, in terms 
of Elo ratings, play each other in their last match. 
In schedules 2 and 5, the best team plays against 
the second and third teams in the first two 
matches. Finally, in schedules 4 and 6, the match 
between the first and third teams is played in the 
third and final group game. 
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Table 2. The six possible schedules during the 
group phase of the FIFA World Cup. 

 Group Ranking 
Schedule 1a 2 3 4 

1 3b, 4, 2 4, 3, 1 1, 2, 4 2, 1, 3 
2 3, 2, 4 4, 1, 3 1, 4, 2 2, 3, 1 
3 4, 3, 2 3, 4, 1 2, 1, 4 1, 2, 3 
4 4, 2, 3 3, 1, 4 2, 4, 1 1, 3, 2 
5 2, 3, 4 1, 4, 3 4, 1, 2 3, 1, 2 
6 2, 4, 3 1, 3, 4 4, 1, 2 3, 1, 2 

a Indicates the ranking of the team within the 
group 
 
b Indicates that the highest ranked team played the 
third ranked team in their first match 
 
In order to investigate the likelihood of match 
fixing, Elo ratings were used to simulate the first 
two rounds of group matches for each World Cup. 
@RISK software was used to simulate group 
matches for 10000 iterations, with points tables 
being computed following each iteration. 
 
3. RESULTS 

A preliminary simulation of group matches, using 
randomly generated Elo ratings for the four teams 
in a group, resulted in 13 possible patterns of 
points at the end of the second group stage match: 
 
(a) 6-6-0-0; (b) 6-4-1-0; (c) 6-2-1-1; (d) 6-3-1-1; 
(e) 6-3-3-0; (f) 4-3-2-1; (g) 4-3-3-1; (h) 4-2-2-1; 
(i) 4-4-1-1; (j) 4-4-2-0; (k) 4-4-3-0; (l) 3-3-3-3; 
(m) 2-2-2-2. 

Out of the above possibilities, conditions (a), (b), 
and (c) were considered potential situations for 
match fixing: 
 
(a) The first two teams play each other in their last 
match, and either team can lose in order to finish 
second in the group rather than first (refer to Table 
3 for an example). 
 
 
 
 
 
 
 

Table 3. Group H of the 1998 World Cup prior to 
the final round of group stage matches 

Team W D L GF G
A 

P 

Argentina 2 0 0 6 0 6 
Croatia 2 0 0 4 1 6 
Japan 0 0 2 0 2 0 
Jamaica 0 0 2 1 8 0 
 
(b) The highest ranked team, which plays against 
the third ranked team in their last match, can 
reduce the chances of the second ranked team 
qualifying by losing against the third ranked team 
(refer to Table 4 for an example). 

 

Table 4. Group C of the 2002 World Cup prior to 
the final round of group stage matches 

Team W D L GF G
A 

P 

Brazil 2 0 0 6 1 6 
Costa Rica 1 1 0 3 1 4 
Turkey 0 1 1 2 3 1 
China PR 0 0 2 0 6 0 
 
(c) The team on six points has already qualified as 
the top team in the group. As such, a loss against 
the team in second position can ensure that teams 
in either third or fourth position are unable to 
qualify (refer to Table 5 for an example). 

 

Table 5. Group A of the 1998 World Cup prior to 
the final round of group stage matches 

Team W D L GF G
A 

P 

Brazil 2 0 0 5 1 6 
Norway 0 2 0 3 3 2 
Scotland 0 1 1 2 3 1 
Morocco 0 1 1 2 5 1 
 
As a preliminary analysis, the prevalence of each 
points pattern over the course of the 1998, 2002, 
and 2006 World Cups was examined, refer to 
Figure 1. 
As shown, the most frequently occurring points 
pattern was the 6-4-1-0 pattern, which occurred on 
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over 20% of occasions. Of note, this is a points 
pattern that has a potential for match fixing. The 6-
6-0-0 points system was equal second in terms of 
most frequent points pattern, whilst the 6-2-1-1 
system was equal fifth, occurring on less than 10% 
of occasions. Cumulatively, the potential for 
match  
 

 

 

 

 

 

 

 

Figure 1. Proportion of occurrence of all possible 
points patterns over the 1998, 2002, and 2006 

World Cups. 

fixing was evident in 42% of all groups over the 
past three World Cups. 
In order to investigate the probability of conditions 
(a), (b), and (c) occurring at the end of the second 
round of group stage matches, 10000 simulations 
using actual Elo ratings at the time of a particular 
World Cup were carried out for each of the six 
potential schedules in a group. For the purpose of 
these simulations, each team’s Elo rating in their 
first match was considered as the average of the 
normal distribution of that team’s ratings. 
Moreover, for each World Cup, the standard 
deviation of all 32 teams’ Elo ratings was applied 
to the distribution of each team’s Elo ratings. The 
outcome measure, which was the probability for a 
potential match fixing condition to occur in each 
specific schedule, was computed by adding the 
probabilities of point patterns (a), (b), and (c) in 
the simulation outputs. 
Before reporting the simulation results, it should 
be noted that in the preliminary simulation that 
used random Elo ratings for group teams, the 
cumulative percentage of match fixing conditions 
ranged from 25.2 to 26.7% across all schedules. 
However, in almost all simulations using the six 
different schedules, using teams’ real Elo ratings, 

the cumulative percentage for match fixing 
conditions was greater than 27% across all 
different patterns of points. 
Figure 2 displays the mean probability of the 
potential for match fixing across the six possible 
schedules of the group stage of the 1998, 2002, 
and 2006 World Cups. 
A general pattern was found in all three World 
Cups. Schedules 1 and 3 always resulted in the 
highest probability of match fixing, ranging from 
55 to 88% in the eight groups of the 1998 World 
Cup, 53 to 72% in 2002, and 50 to 72% in 2006. In 
contrast, schedules 2 and 5 led to the lowest 
likelihood of potential match fixing, ranging from 
12 to 38% across all groups in the 1998 World 
Cup, 
 

                 1998 World Cup 

 

                 2002 World Cup 
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               2006 World Cup 

 

Figure 2. Mean probability of the potential for 
match fixing across the six possible group 

schedules for the 1998, 2002, and 2006 FIFA 
World Cups. 

 
22 to 44% in 2002, and 12 to 41% in 2006. The 
outcome measure corresponding to schedules 4 
and 6 were moderate in relation to the likelihood 
of potential match fixing situations. Across the 
eight groups of the 1998 World Cup, between 19% 
and 45% had the potential for match fixing, in 
2002 these probabilities were between 39% and 
57%, and between 33 and 51% in 2006. With 
respect to all groups within the three World Cups, 
the potential for match fixing was highest during 
1998, followed by the 2006 and 2002 World Cups 
respectively. 
Although particular schedules consistently resulted 
in the highest (e.g., schedules 1 and 3) and lowest 
(e.g., schedules 2 and 5) potential for match fixing, 
notable variations were evident in regards to the 
likelihood of possible match fixing situations 
arising across different groups. While the 
difference between the highest and the lowest 
probability of potential match fixing in simulation 
outputs (a, b, and c) was less than 9% for some 
groups, it exceeded 60% in other groups. 
Correlational analysis revealed that there is a 
strong relationship (r = .89) between the standard 
deviation of teams’ Elo ratings in a particular 
group and the difference between the highest and 
the lowest likelihood of match fixing for that 
group. 

Based on this finding, the potential for match 
fixing situations was re-analysed by clustering the 
eight groups in each World Cup into high and low 
standard deviation subsets. To be categorised into 
the low standard deviation group, a standard 
deviation of less than 115 Elo rating points was 
required. By contrast, a standard deviation of 
greater than 140 Elo rating points was required to 
be categorised in the high standard deviation 
group. 
As shown in Figure 3, when teams within a group 
were relatively even (that is, their Elo ratings 
maintained a low standard deviation), the 
likelihood of match fixing was relatively low, 
irrespective of the schedule for the group. By 
contrast, when the Elo rankings of teams were 
uneven (and thus the standard deviation within the 
group was high), the likelihood of match fixing 
was higher. This was particularly the case for 
schedules 1 and 3, whereby the top two ranked 
teams played each other first. Schedules 2 and 5 
yielded the lowest potential for match fixing, and 
this corresponded to the two highest rank teams 
playing each in the final group game. 
 
4. DISCUSSION 

Results of this paper have revealed that potential 
match fixing situations were evident in three of the 
13 possible group standings following each team 
playing two matches in the group stage of the 
FIFA World Cup. Whilst it may be argued that 
match fixing can occur irrespective of the state of 
the group, in the four circumstances highlighted in 
this  
 

             Low Standard Deviation in Elo Ratings 
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             High Standard Deviation in Elo Ratings 

 

Figure 3. Mean probability of the potential for 
match fixing across the six possible group 

schedules for groups with a low and high standard 
deviation in Elo ratings. 

 
paper, engaging in match fixing would be of no 
negative consequence to the losing team since 
qualification for the Round of 16 has already been 
achieved. In effect, the team’s standing within the 
tournament would not be detrimentally impacted 
by drawing or losing their third group-stage match. 
Simulation results have indicated that the schedule 
of matches has the potential to moderate the 
likelihood of match fixing opportunities in the 
World Cup. Specifically, whether the top ranked 
team played the second ranked team in the 
opening match, or the second or third group-stage 
match considerably impacted on the potential for 
match fixing. It is evident that the greatest risk of 
potential match fixing occurs when the top two 
ranked teams play each other in their first group 
stage match. In this scenario, if rank 1 defeats rank 
2 in the opening match, and rank 1 then goes on to 
win their second match, rank 1 has the opportunity 
to influence whether rank 2 qualifies for the 
Round of 16 in their third group stage match. This 
is because rank 1 has already qualified for the 
Round of 16 prior to the match, and therefore can 
lose to rank 3 or rank 4 in order to prevent rank 2 
qualifying. 
The lowest risk of potential match fixing was 
evident when the two highest ranked teams played 
each other last. This is because the two highest 
ranked teams are most likely to win (or at least 
draw) their first two matches against weaker 

opposition, and then play against each other to 
decide who finishes on top of the group. Thus, 
playing each other last prevents either team from 
fixing a match against weaker opposition in order 
to prevent a higher ranked team from qualifying 
for the Round of 16. 
A limitation of the two highest rank teams playing 
each other in the final group stage game should be 
noted. If the two highest ranked teams win their 
first two matches (which is probable given that the 
matches are against the third and fourth ranked 
teams in the group), then the two teams that will 
qualify for the Round of 16 will be known prior to 
any of the third and final group stage matches 
being played. In effect, these matches will only be 
played to determine who will finish first in the 
group, with the match between third and fourth 
being a dead-rubber. Whilst designing the 
schedule in a way that reduces the potential for 
match fixing has its incentives, the spectacle of the 
tournament may be diminished somewhat if a 
substantial number of teams are eliminated from 
the tournament prior to the third round of group 
stage matches. Whilst this occurs in a small 
number of groups in the competitions current 
format, engaging in dead rubbers in a large 
number of groups would not be beneficial for the 
tournament. 
Based on this conundrum, the question that arises 
is when should a schedule be designed on the basis 
of match fixing potential? The answer may lie in 
the level of volatility within the group, and the 
difference in quality among the four teams. In 
effect, teams who have greater disparity in Elo 
rankings also had the greatest potential for match 
fixing. However, groups that contained teams who 
were relatively even (often referred to as groups of 
death) were less likely to have potential match 
fixing situations arise. This is typically because 
points awarded for wins and draws are likely to be 
more evenly distributed among the four teams in 
the group, with fewer teams qualifying for the 
Round of 16 prior to the final group stage match. 
As such, it appears most salient to adjust the 
schedule for groups that have high disparity in 
rankings across the four teams as opposed to 
adjusting the schedule for groups that are more 
evenly balanced. 
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5. CONCLUSION 

In summary, this paper has presented on the 
potential for match fixing to occur during the 
group stage of the FIFA World Cup. Results have 
indicated that the likelihood of potential match 
fixing situations is dependent on the schedule and 
on the differential quality of teams within the 
group. Specifically, groups that have a high 
standard deviation in rankings are more likely to 
be susceptible to match fixing situations in the 
final match of the group stage, particularly if the 
top two ranked teams play each other in the first 
round of group stage matches. 
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Abstract 
 
Using all regular tournament rounds of golf played on both the American and European golf tours between 
2000 and 2009, 860 golfers were identified as having played on both tours. By assigning the continent in 
which each player played the most rounds as being the ‘home’ continent, a mixed linear model was used to 
determine the effects of a ‘home tour’ advantage. Over 255,000 rounds of golf were examined. Overall scoring 
on the US tour was marginally lower than in Europe (71.58 vs 71.74 p=0.001). There was a significant 
difference between rounds (p<0.0001), with third round scores lowest (71.43) followed by second (71.63), first 
(71.78) and then final round (71.79). Golfers that played more often on the US tour were consistently over half 
a stroke better than golfers that played more regularly on the European tour (71.39 vs 71.93 p<0.0001). There 
was a significant interaction between continent and home tour (p<0.0001) with US tour golfers averaging 
71.21 on the US tour and 71.58 on the European tour, while European tour golfers averaged 71.91 on the 
European tour and 71.95 on the US tour. Average scores appeared to have increased by about a stroke over the 
past 10 years, while experience and familiarity are worth about half a stroke per thousand rounds for 
experience and about half a stroke per sixty rounds that is played at each specific tournament. Significant 
differences exist between both the European and US golf tours and the players that play on these tours. There 
is also statistical evidence to support the theory that experience and familiarity are predictive of golf score. 
 
 
Keywords: Sports, Golf, Home Advantage 
 
 
 
1. INTRODUCTION 
 
The role of home ground advantage (HA) has been 
shown to play an integral role in any analysis of 
sporting events. Whilst many different approaches 
have been used to quantify HA, the underlying 
reason why HA exists has been reduced to three 
basic principles; travel, familiarization and crowd 
support. When considering the sport of golf, 
professional golfers travel long distances between 
tournaments, have greater familiarity with courses 
that they play on more regularly and the unique 
proximity of the crowd and players that occurs in 
golf would suggest that home crowd should be a 
contributing factor.  
 

This manuscript will seek to investigate the effects 
of a ‘home tour’ advantage that may exist in 
professional golf. By comparing scoring for players 
that have played on both the US and European golf 
tours and assigning the ‘home tour’ as being the 
continent played on the most, it is possible to 
quantify a ‘home tour’ effect and determine if it is 
consistent across both continents. Whilst data are not 
available to tease out the travel and crowd 
components of HA, by considering player 
performance relative to the number of times a player 
has played in each tournament it is also possible to 
derive a surrogate marker for familiarity component 
of HA. 
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2. BACKGROUND 
 
Professional golf tournaments played on both the US 
and European tours are traditionally 72 hole events, 
played over 4 days, commencing on the Thursday of 
each week and finishing on the Sunday. Unless 
inclement weather conditions intervene, each daily 
round will consist of 18 holes of golf. Whilst 
tournament numbers vary, there are usually about 
150 players that commence each tournament with 
numbers ‘cut’ after the first 2 rounds. Whilst 
‘making the cut’ criteria may differ from tournament 
to tournament, generally speaking, only the leading 
half of players will go on to play the final 2 rounds. 
The concept of HA has long been recognised as a 
phenomenon in sport and has been subject of much 
research. Schwartz and Barsky (1977) provided one 
of the first detailed studies examining HA in 
baseball, gridiron, ice hockey and college basketball. 
Subsequent studies have shown HA to exist to some 
degree in many other professional sports. Pollard 
(1986), Barnett & Hilditch (1993) and Clarke & 
Norman (1995) confirmed the existence of HA in 
professional soccer. Courneya & Carron (1992) 
provide a helpful taxonomy, listing a range of 
studies covering soccer, hockey, baseball, basketball 
and gridiron. HA is not limited to sporting events in 
the northern hemisphere. Lee (1999) has confirmed 
HA in Australian Rugby League, whilst Stefani & 
Clarke (1992) explored HA in Australian Rules 
football. This result was further confirmed by Bailey 
& Clarke (2004) and Clarke (2005). Neave and 
Wolfson, (2003) further identified a significant 
difference in salivary testosterone levels with soccer 
players playing at home having higher levels than 
those playing away. 
All of the above studies relate to team sports, and 
little work has been done in investigating the extent 
to which home advantage is present in individual 
sports. In an overview of research on home 
advantage, Nevill & Holder (1999) list 50 
references, of which only two (their own work on 
tennis and golf) were concerned with individuals 
rather than teams. Using regression methods Holder 
& Nevill (1997) found little evidence of home 
advantage in either the major tennis or golf 
tournaments held in 1993. Using log-log regression 
on the same data, Neville, Holder et al (1997) came 
to the same conclusions. However both these studies 
had very limited data, comprising only four golf 
tournaments in a single year. In the only other study 
to explore HA in golf, Wright, Christie et al. (1991) 

compared the performances of British (home) and 
foreign (away) representatives in the British Open 
Golf Championships from 1946 to 1980. In contrast 
to the majority of studies into HA, they found there 
was a home country disadvantage for British golfers 
that they attributed to pressure from home crowds. 
However this result must be treated with some 
scepticism, as they did not account for the different 
abilities of British and overseas players. 
 
3. METHODS 
 
A database was compiled of all 18 hole rounds of 
professional golf played in the past 10 years (2000-
2009) on both the US (177,790 rounds) and 
European (170,912 rounds) golfing tours. This 
database was then reduced to a list of 860 golfers 
that had officially played golf on both tours, leaving 
a database of 255,453 rounds of golf. Information 
was collected on date, tournament, player, round and 
score. By sorting the data in chronological order, the 
number of rounds played by each player was 
generated to provide a marker of player experience. 
Similarly, the number of rounds played by each 
player at each tournament was also generated to 
provide a surrogate marker for the familiarity 
component of HA. Players were assigned the 
continent in which they had played the most rounds 
as being the ‘Home Tour’. To further explore the 
effects upon the more experienced golfers, a subset 
analysis was performed on the 128 players that had 
played a minimum of 50 rounds of golf on both 
tours. 
 
Statistical Analysis 
Statistical analysis was performed using SAS 
Version 9.1 (SAS Institute Inc., Cary, NC, USA). 
Round scores were found to be well approximated 
by a normal distribution, which facilitated the use of 
mixed linear modelling using the PROC MIXED 
procedure in SAS. The MIXED procedure uses a 
restricted maximum likelihood algorithm that 
enables specific modelling of the within-player 
covariance structure and further enables effects to be 
treated as FIXED or RANDOM. A multivariate 
model was fitted including fixed effects for year, 
round, tour, home tour, tour*home tour, experience 
and tournament experience (familiarity) with 
individual players and tournaments treated as 
random effects.. Results have been reported as 
means ± standard errors with error bars on graphs 
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representing standard errors. A two sided p-value of 
0.05 was considered to be statistically significant. 
 
 
4. RESULTS 
 
The database comprised a total of 255,453 rounds 
played by 860 golfers. On the US tour, there were 
141,868 rounds played by 452 golfers, whilst on the 
European tour there were 113,680 rounds played by 
408 golfers. Whilst the number of golfers playing 
per year remained consistently around 400 on both 
tours, the number of rounds played per year showed 
a slight increase. (US 2001: 12,677, US 2009: 
14,284. Euro 2001: 10,939, Euro 2009: 12,682). US 
golfers played a median of 564 rounds of golf in the 
US and a median of 16 rounds of golf in Europe, 
while European golfer played a median of 482 
rounds in Europe and a median of 32 rounds in the 
US. As each tournament is held annually, the 
maximum number of rounds played per tournament 
was 40 and the median number of rounds played per 
tournament was 5 on both tours. 
 
Overall golf scores were normally distributed with a 
mean of 71.4 and a standard deviation of 3.3. 
(median & mode = 71). (Figure 1) 

 
Figure 1: Histogram of golf scores on US & European 
tours 2000-2009 (n=255453) 
 
Scoring on US vs European Tours 
When considering all 860 players that had played on 
both tours, overall scoring on the US tour was 
marginally lower than scores in Europe (71.58±0.07 
vs 71.74±0.07 p=0.001). When looking specifically 
at the 128 players that had played a minimum of 50 
rounds on both tours, the overall scoring was lower 
although the difference between tours was roughly 

the same with scores on the US tour 0.18 strokes 
lower than scores in Europe. (70.93±0.09 vs 
71.11±0.09 p=0.005). (Figure 2) As prize money on 
the European tour is lower, it is realistic to expect 
that the US tour would attract the better players 
which would explain the slightly lower scoring on 
the US tour.  
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Figure 2: Scores per round in Europe and the US for all 
860 golfers that played on both tours (n=255,453 rounds) 
and for the 128 golfers that played a minimum of 50 
rounds on both tours (n=81,403 rounds).  
 
Scoring per Round 
There was a significant difference between rounds 
(p<0.0001), with third round scores lowest 
(71.43±0.07) followed by second (71.63±0.06), first 
(71.78±0.06) and then final round (71.79±0.07). 
When considering the more experienced players that 
had played a minimum of 50 rounds on both tours, 
the scoring pattern remained the same with the 
lowest scores also occurring in Round 3. (Figure 3) 
This scoring pattern across rounds reflects a 
combination of two factors. As only the better 
golfers for each tournament go on to play the final 
two rounds, it is realistic to expect higher scores in 
the first two rounds. Secondly, the location of the 
hole on the green has a big impact on scoring. Lower 
scores in the third round probably reflect easier pin 
placement whilst higher scoring in the final round 
would reflect a policy to make the holes harder in 
the ultimate round. 
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Figure 3: Scores per round for all 860 golfers that played 
on both tours (n=255,453 rounds) and for the 128 golfers 
that played a minimum of 50 rounds on both tours 
(n=81,403 rounds). 
 
Scoring per year 
There was a fairly consistent increase in scoring 
over the 10 year period of data collection across both 
continents, with scores peaking in 2008 before a 
slight fall in 2009. (Figure 4) Whilst the true reason 
for this pattern remains unknown, it could reflect 
either a drop in the standard of golfers on tour, or an 
increase in the difficulty of golf courses. 
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Figure 4: Average scores per year for both European and 
US tours 
 
US versus European golfers 
Golfers that played more often on the US tour were 
over half a stroke consistently better than golfers 
that played more regularly on the European tour 
(71.39±0.07 vs 71.93±0.08 p<0.0001). This 

difference was less pronounced for the more 
experienced golfers with US golfers about a quarter 
of a stroke better off. (70.89±0.09 vs 71.15±0.11 
p=0.04). When considering all rounds, there was a 
significant interaction between continent and home 
tour (p<0.0001). US golfers averaged 71.21±0.08 on 
the US tour and 71.58±0.08 on the European tour, 
while European golfers averaged 71.91±0.08 on the 
European tour and 71.95±0.08 on the US tour. When 
considering those that had played a minimum of 50 
rounds on both tours the message was the same with 
experienced US golfers scoring about 0.4 strokes 
lower in the US than in Europe, while European 
golfers were only 0.05 strokes worse off when 
playing in the US. 
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Figure 5: Overall scoring for all 860 golfers that played on 
both tours (n=255,453 rounds) and for the 128 golfers that 
played a minimum of 50 rounds on both tours (n=81,403 
rounds).  
 
Experience  
When considering all players, experience is a highly 
significant predictor of scoring (p<0.0001) with 
scores improving at a rate of about 3/4 of a stroke 
per 1000 rounds (0.00074±0.0001 p<0.0001) This 
improvement remains similar for those who have 
played a minimum of 50 rounds on each tour 
(0.00075±0.0001 p<0.0001). As the data set includes 
a high percentage of players that commenced their 
career prior to the year 2000, this is unlikely to be an 
accurate reflection of the true effect of experience. 
To derive a less biased estimate, all players that 
commenced their career prior to 2001 were removed 
from analysis leaving a database of 62,722 players. 
When considering this subset of players, the effect 
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of experience was closer to a half a stroke for every 
1000 rounds. (0.00048±0.0002 p<0.0001).  
 
Familiarity 
When considering all players, there was evidence to 
show that improvement occurs with each round 
played at a tournament by a rate of 0.012±0.0015 
strokes per round (p<0.0001). This rate is slightly 
less for those who have played a minimum of 50 
rounds on each tour (0.0079±0.002 p=0.0004), and 
slightly more when considering a subset of players 
who commenced after the year 2000 (0.016±0.004 
p=0.0001). 
 
Individual golfers 
Tiger Woods dominance of world golf can clearly be 
seen by individual player averages over the past 10 
years. (Table 1) Woods averages 68.0±0.15 strokes 
per round overall, 68.0±0.16 in US and 68.1±0.27 in 
Europe. The difference in scoring average from 
Woods to the next golfer is 1.4 strokes; amazingly, 
only 0.8 of a stroke then separates the remaining 19 
players that rank in the top 20.  
 
5. DISCUSSION 
 
There is statistical evidence to support HA in 
professional golf. Whilst US golfers perform better 
in both the US and Europe, they also have the 
greatest discrepancies between performances at 
home versus performances away. Whilst the US tour 
has more prize money and lower scoring suggesting 
a higher standard in the US, the reason why the 
magnitude of HA differs between US and European 
golfers is open to speculation.  
This retrospective analysis of home continent 
advantage has both strengths and weaknesses. With 
over a quarter of a million rounds of golf, it 
represents one of the most comprehensive reports on 
professional golf in publication. Unfortunately 
however there was a host of relevant information 
that could readily affect results that were not 
collected. Course name, par score, golfer age, golfer 
nationality, weather conditions, pin placement and 
travel schedules are just some of the many 
parameters that could affect scoring. Given that 
familiarly is an established component of HA, it was 
also necessary to assign the home continent to the 
tour in which the most rounds were played. This 
occasionally resulted in golfers that were born and 
raised in Europe paradoxically being assigned a 
home continent of the USA as they had played more 

professional golf in the US than in Europe (and vice 
versa). This essentially meant that continent 
familiarity has been used as a surrogate marker for 
HA.  
As some tournaments such as the US and British 
Open are regularly played on different courses, our 
current marker of the familiarity, namely rounds 
played per tournament can only be considered as a 
surrogate marker for true familiarity. A further 
pitfall of measuring player and tournament 
experience from a 10 year snapshot of data arises 
because the true level of experience for players 
commencing prior to 2000 will not be known. To 
accommodate for this we have considered a subset 
of players for whom complete career information 
was known. 
There is further evidence to suggest that it may not 
be appropriate to treat both experience and 
familiarity as having linear relationships with 
scoring as both may tend to have an exponential 
relationship with a reduction in scoring reducing 
over time. Because of the previously mentioned 
pitfalls, it was considered beyond the scope of this 
manuscript to explore familiarity and experience in 
depth. 
It is interesting to note that player scoring has 
increased by over a stroke per round over the last 10 
years. This may be attributed to the fact that more 
tournaments are played now than ten years ago, but, 
given the continued improvements in golfing 
technology, it would be realistic to expect that 
scoring would go down over time rather than up. 
Perhaps we can conclude that tournament organisers 
and course managers are finding ways to modify 
courses and place pins so that increased length and 
accuracy do not equate to reduced scoring. 
One potential reason for this increase in scoring may 
in part be due to the Tiger Woods’ effect. Tiger is 
clearly head and shoulders above the rest of the 
golfing fraternity. The difference in averages (1.4 
strokes fewer per round) from Tiger to the second 
ranked player (Phil Mickelson) is the same 
magnitude as the difference from Phil Mickelson to 
the 68th ranked golfer! With Tiger continually 
shooting low scores, measures may have been made 
to make courses and scoring harder which has 
resulted in increased scoring for most others. 
Finally, whilst this manuscript has been able to show 
highly statistically significant effects (p<0.0001), the 
magnitude of this database results in an imbalance 
between statistical and practical significance. As any 
aspiring golfer will tell you, the difference between a 
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good and bad round can come down to a matter of 
millimetres, in which case home continent advantage 
may count for very little! 
 
6. CONCLUSIONS 
 
Scores shot on the US tour are significantly lower 
than scores shot in Europe. Whilst there is a home 
continent advantage of approximately 0.4 strokes per  
 
 

round for golfers playing primarily on the US tour, 
the advantage is not present for golfers that play 
primarily on the European Tour. There is statistical 
evidence to show that differences exist between 
rounds, years and across continents and that 
familiarity and experience are both significant 
predictors of scoring. Furthermore, there is clear 
statistical evidence to support the argument that 
Tiger Woods is a class above all other golfers. 
  

Overall 
Rank Golfer All 

All 
SE Euro 

Euro 
SE 

Euro 
Rank US 

US 
SE 

US 
Rank 

Diff 
Euro-US 

1 Tiger Woods (US) 68.0 0.15 68.1 0.27 1 68.0 0.16 1 0.1 
2 Phil Mickelson (US) 69.4 0.15 69.8 0.30 7 69.3 0.16 2 0.5 
3 Vijay Singh (US) 69.4 0.14 69.6 0.28 3 69.3 0.15 3 0.3 
4 Ernie Els (US) 69.4 0.14 69.3 0.19 2 69.5 0.17 5 -0.2 
5 Jim Furyk (US) 69.5 0.14 69.9 0.33 11 69.4 0.15 4 0.4 
6 Sergio Garcia (US) 69.7 0.14 69.6 0.20 4 69.7 0.17 8 0.0 
7 Anthony Kim (US) 69.7 0.24 69.7 0.54 6 69.6 0.26 6 0.2 
8 Retief Goosen (US) 69.7 0.14 69.8 0.17 10 69.7 0.18 7 0.2 
9 Padraig Harrington (US) 69.8 0.14 69.8 0.17 8 69.8 0.19 10 0.0 

10 Luke Donald (US) 69.8 0.16 69.7 0.24 5 69.8 0.18 9 -0.2 
11 Davis Love III (US) 69.9 0.15 70.0 0.38 12 69.9 0.15 13 0.0 
12 Adam Scott (US) 70.0 0.15 70.2 0.19 17 69.9 0.19 11 0.3 
13 David Toms (US) 70.0 0.14 70.9 0.39 59 69.9 0.15 12 1.0 
14 Camilo Villegas (US) 70.0 0.20 69.8 0.44 9 69.9 0.21 14 -0.1 
15 Zach Johnson (US) 70.0 0.17 70.1 0.43 15 69.9 0.17 15 0.2 
16 Kenny Perry (US) 70.0 0.14 70.2 0.43 16 70.0 0.15 18 0.2 
17 Stewart Cink (US) 70.1 0.14 70.7 0.34 39 70.0 0.15 19 0.7 
18 Scott Verplank (US) 70.1 0.14 71.4 0.36 93 70.0 0.15 17 1.4 
19 Mike Weir (US) 70.1 0.14 70.6 0.35 34 70.1 0.15 20 0.6 
20 Robert Allenby (US) 70.2 0.14 70.3 0.28 24 70.2 0.15 24 0.2 

*SE=standard error 
Table 1: Top 20 golfers with lowest overall scoring average (>50 rounds both tours) 
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Abstract 

Data logging devices are used increasingly during competition and training in elite sport. Stroker is a small 
program used to present data collected using the MinimaxX and Weba devices in Australian elite rowing 
competition and training (Draper C, 2010).  

Rowing and the data collection processes used have some specific features that affect the design of the 
program and the data presentation. A 2000m race takes over 220 strokes.  

Elite rowers in Australia routinely attach a MinimaxX device to their boat. The device is set in rowing mode. 
The MinimaxX device collects tri-axial accelerometer, gyro- and magnetometer data at 100Hz as well as GPS 
information at 5Hz. After the race or training session the device is taken from the boat and put in the 
MinimaxX cradle. The Logan software downloads the data stored on the device and performs basic transforms 
to create the data file.  

The Stroker software was created as a prototype (or proof of concept) to explore ways to display data from the 
AIS’s Logan software program. It aims to display the available data so analysts can investigate the nature of 
rowing performance. Stroker might be described as a simple data visualisation tool. 

Stroker was quickly adopted to provide reporting to coaches at the elite level. It is a work in progress. It shows 
that some simple approaches still need to be explored in the context of sport science. 

Colour-coded multi-dimensional graphical displays were found to be a powerful analysis and visualisation tool 
to profile comprehensive stroke by stroke (sbs) changes of characteristic boat-related curve patterns in relation 
to the sbs average boat velocity and stroke rate throughout a rowing race (Draper C, 2009). Data from 114 
races of 43 Australian boats in 18 classes were analysed, the sbs data detected, statistical tests and graphical 
sbs colour-coded technique & performance-related time scatter plots were used to profile boat performance 
and assess stroke consistency patterns in relation to boat velocity (Draper C, 2008).  
 
 

Keywords: elite rowing, data visualisation, instrumentation, GPS, accelerometer 
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Abstract 
 
Currently, there are a number of training programs that attempt to improve decision making and awareness in 
badminton. However, these programs are extremely limited, and do not provide athletes with the necessary 
improvements needed to optimise their in-game performance. In developing and improving decision making, 
the ideal strategy would be to expose the athlete to all possible situations and scenarios that they may face. 
This allows them to retain certain responses in their subconsciousness; leading their bodies to instantaneously 
select the appropriate action to take in similar situations. This paper provides an overview of the electronic 
training program currently being developed to improve reaction time and awareness in badminton players. 
Particular emphasis is placed on a player’s ability to estimate and predict shuttle location. Using this program, 
we will be able to identify the player’s awareness and attempt to improve their in-game performance and 
decision making. These findings will not be limited to badminton, and applicability to other sports will be 
discussed.  
 
 

Keywords: Skills acquisition, badminton, visual training, decision making 
 
 

 
1.  INTRODUCTION 
 
In any fast paced sport or activity, the outcome of a 
match may be defined by the ability to make 
decisions quickly and accurately (Blomqvist, 
Luhtanen and Laakso, 2000). Considering the 
importance of swift decision making, it has become 
imperative that athletes train and improve their 
ability to instantaneously determine the best course 
of action. However, improving an individual’s 
capacity for decision making is more complex and 
detailed (Macquet and Fleurance, 2007) than 
improving physical abilities such as strength or 
agility. Currently, coaches and trainers attempt to 
maximise athletes’ physical skills and competencies 
(Chin, Wong, So, Siu, Steininger and Lo, 1995; 
Fahlstrom, Lorentzon and Alfredson, 2002), rather 
than their decision making awareness. In attempting 
to optimise an athlete’s competency, the 
development of a training program that incorporates 
the improvement of reaction time and awareness in 
juxtaposition with physical performance would be 
ideal.  

The traditional approach to training badminton 
players follows a three step sequential training 
process: perception, decision-making and movement 
execution (Abernethy, 1996; Blomqvist, Luhtanen 
and Laakso, 2001) training. Typically, coaches and 
trainers place heavy emphasis on the movement 
execution component of the traditional training 
method (Blomqvist, Luhtanen and Laakso, 2001) 
and tend to overlook the significance of the 
cognitive processes of perception and decision-
making. This is unfortunate however, considering 
the quality of decision-making in a game situation is 
often as important as the execution of the motor 
skills (Blomqvist, Luhtanen and Laakso, 2001; 
Thomas, 1994).  
 
Currently, the majority of training methods focus on 
improving a badminton player’s physical 
capabilities. Minimal research has been carried out 
to examine the use of other training methods 
(Blomqvist, Luhtanen and Laakso, 2001) such as 
creative problem solving and video-based methods 
in badminton, despite numerous studies suggesting 
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that video-based training methods can improve 
perceptual skills (decision accuracy and decision-
making speed) in athletes (e.g., Abernethy, Woods 
and Parks, 1999; Christina, Barresi and Shaffner, 
1990; Farrow, Chivers, Hardingham and Sachse, 
1998; Starkes and Lindley, 1994). The small amount 
of training programs that do attempt to improve 
decision making and awareness in badminton 
players are however extremely limited (Macquet and 
Fleurance, 2007), and do not provide athletes with 
the necessary improvements needed to optimise their 
in-game performance. 
 
While it is essential that athletes continuously train 
and improve their physical capabilities (Chin, Wong, 
So, Siu, Steininger and Lo, 1995; Fahlstrom, 
Lorentzon and Alfredson, 2002), it seems evident 
that cognitive components of badminton must not be 
underemphasised when training athletes (Blomqvist, 
Luhtanen and Laakso, 2001). In developing and 
improving decision making, the ideal strategy would 
be to expose the athlete to all possible situations and 
scenarios that they may face. This allows them to 
retain certain responses in their subconsciousness; 
leading their bodies to instantaneously select the 
appropriate action to take when similar situations 
arise (Hall, Schmidt, Durand and Buckolz, 1994). 
With the traditional training method, it is extremely 
difficult to expose athletes to all possible situations 
and scenarios they may face as they acquire a 
regular standard of play from training with the same 
athletes and coaches. As such, video based training 
methods expose players to an abundance of different 
scenarios and situations, preparing them for in-game 
utilisation (Blomqvist, Luhtanen and Laakso, 2001).  
 
The purpose of this study was to develop a visual 
based training program that aims to improve reaction 
time and awareness in badminton players. Particular 
emphasis is placed on a player’s ability to estimate 
and predict shuttle location. Using this program, we 
will be able to identify the player’s awareness and 
attempt to improve their in-game performance and 
decision making.  
 
2.  METHODS 
 
Participants 
The participants for this study were collected from 
two separate groups: (i) athletes from the Australian 
Badminton Olympic (junior division) team (n = 3) 
and (ii) college students (n = 13) from RMIT 
University. All college participants had prior 
experience in playing badminton, with most 

participants having played in high school round 
robins. Athletes from the Australian Olympic team 
in conjunction with some members from RMIT 
served as the experimental group (n = 8) and were 
assigned to the treatment group (age mean = 23, SD 
= 13.46). College students were randomly assigned 
to either the treatment group (with the Olympic 
team) or the Control group (n = 8, age mean = 18.63, 
SD = 3.78).  
 
Measures 
To effectively improve and evaluate decision-
making and reaction time in badminton players, we 
developed a visual based training (VBT) program 
using Microsoft’s Visual Basic for Applications 
(VBA) software. Since particular emphasis was 
placed on improving player’s ability to estimate and 
predict shuttle location using skills acquisition, the 
program was named Skills Acquisition Trainer for 
Badminton (SATB).  
 
Knowledge Measures Test 
Prior to administering the treatment program 
(SATB) participants were given a Knowledge 
Measures Test (KMT) to evaluate their 
comprehension and awareness of badminton rules, 
strategies and techniques. The KMT was a 
simplified version of McGee and Farrow’s (1987) 
book “Test questions for physical education 
activities,” and was designed to test participant’s 
knowledge of different shot types used in 
badminton. Participants were timed on how quickly 
they could match up a shot type with a description of 
a shot from eight choices. Figure 1 gives an example 
of the questions in the KMT. 
 

 
Figure 1: An example of the Knowledge Measures Test 

 
Following the KMT, the researcher would 
administer the SATB. The SATB is a VBT program 
that consists of ten visual questions. Participants 
would watch different clips of badminton rallies 
being played, with sequences running for 2 – 30 
seconds and was followed by a still frame for 1 
second with which participants would be asked to 
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answer (on screen) what type of shot was about to 
take place (e.g. drop shot) as well as the location that 
shot will be played (e.g. middle right). An example 

of this is shown in Figure 2 with the corresponding 
answer options. 
 

 
 

 
Figure 2: An example of the SATB answer selection screen 

 
Testing Procedure 
Participants were tested before and after the 
treatment period for shot type knowledge and speed 
using the KMT. Participants in the treatment group 
were also administered the SATB once a week for 
four weeks to examine their awareness, decision 
making, and response time. Participants in the 
Control group were only given the KMT to complete 
(in week one and week four). Participants’ 
performance in-game was also recorded on a weekly 
basis to examine if they could apply the skills 
acquired from the SATB in a live match. These 
video recordings were filmed at the Melbourne 
Sports and Aquatic Center (MSAC) for the Olympic 
team and the Aqualink Leisure Centre for the 
college students.  
 
The SATB was based on a weighted system, with 
the assistance of experts’ judgement and opinion 
(coaches and trainers who have played and taught 
for many years). Two points were awarded for the 
correct shot type response, one point for other 
possible shot types in that situation, and no points 
for any other shot types. Similarly, two points were 

given if participants chose the correct location the 
shuttle will land, one point if it is adjacent to the 
shuttle location, and no points for any other location 
selection. Participants are also timed from the point 
the rally sequence finishes to the point they had 
inputted their response to shot type and location to 
examine response time. With ten questions per 
session, the maximum score a participant could 
acquire was 40, with an optimal time of 11.9 
seconds. Hence, the equation for the SATB score is 
given by: 
 

  (1) 
 
From equation 1, TIME is the combined time it took 
participants to answer all ten questions regarding 
shot type and shuttle location. The value of 11.9 was 
based on Jorgensen, Garde, Laursens and Jensen 
(2002) study “Using mouse and keyboard under time 
pressure: preferences, strategies and learning”  (a 
click response time = 1.1±0.08 s), in conjunction 
with experts opinion that it would take two seconds 
to select both location and shot type.    SCORE is the 
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combined score of each correct response from the 
ten questions. Therefore the maximum score an 
individual can acquire on the SATB is 40. Upon 
completion of the final SATB session (week eight) 
participants are given the KMT once again to 
examine the change in badminton knowledge and 
awareness that the SATB has on participants. 
 
3.  RESULTS 
 
A repeated measures ANOVA for the SATB was 
carried out to examine the change in scores over the 
six weeks of experimentation. Assumptions of 
normality, homogeneity of variance and sphericity 
(χ2(5) = 9.294, p = 0.102) were met. Results showed 
that differences between conditions were unlikely to 
have arisen by sampling error (F(3,21) = 17.23, p < 
.001); an overall effect size of 0.77 (partial η2) 
showed that 77% of the variation in score can be 
accounted for by improvement over time.  
 
Similarly, a repeated measures ANOVA was carried 
out to examine the change in scores on the KMT 
across the experimental and control groups. Results 
revealed a significant interaction, F(1,7) = 143.36, p 
< .001 between the two groups. Figure 3 shows that 
the experimental group was able to improve their 
badminton knowledge significantly (p < .001) 
compared to the control group. 
 

 
Figure 3: Pre and post test scores on the KMT for the 
experimental and control groups 
 
Also, one way repeated measures ANOVAs were 
carried out to examine significance between time 
and score for both the KMT (refer to table 1) and 
SATB (refer to table 2). Results revealed a 
significant improvement in time on the KMT (F(1,7) 
= 9.42, p = 0.02) as well as the SATB (F(3,21) = 
15.12, p < .001). 
 
 
 

 Pre   Post 
 M SD  M SD 
Experimental 276.12 94.64  192.21 31.35 
Control 284.47 65.49  279.55 71.12 
Table 1: Times on the KMT (in seconds) for both groups  
 
 
 Pre   Post 
 M SD  M SD 
SATB 91.44 37.04  32.77 7.96 
Table 2: Times on the SATB (in seconds) for both groups 
 
 
4. DISCUSSION 
 
The results from this study showed that VBT 
methods helped to improve participants’ reaction 
time and awareness in badminton. The significant 
interaction on the KMT was caused by an increase in 
the scores of the experimental group on the post-test, 
while the scores of the control group either remained 
the same, or decreased. Furthermore, participants’ 
response time on the SATB improved significantly 
over the eight week period which was further 
supported by their improved response time on the 
KMT and in-game matches. The overall results from 
this study revealed that participants were able to 
improve their badminton knowledge (awareness and 
decision making) in conjunction with their reaction 
time, utilising the SATB.  
 
These results are consistent with other studies that 
have utilised similar methods in attempting to 
improve athletes’ skill and performance (Blomqvist, 
Luhtanen and Laakso, 2001; Christina, Barresi and 
Shaffner, 1990) via a VBT method. Blomqvist and 
colleagues (2001) argue that although general tactics 
will develop in athletes automatically from just 
playing the game, good decision making skills will 
only develop if taught extensively. The authors 
suggest that visual-based learning tasks encourage 
participants to develop their tactical awareness, 
bringing cognitive aspects of their game to a 
conscious level. Similarly, the present study found 
that participants who used the SATB showed a 
consistent improvement in their ability to predict and 
react to the visual-based sequences over the eight 
week period.  
 
Interestingly, in sessions with sequences involving 
athletes they have already seen play, their score on 
the SATB was higher than it was if they were seeing 
those athletes play for the first time. Tong and Hong 
(2000) suggest that there are many different playing 
styles in badminton, varying from strength types to 
speed types. The authors suggest that knowing your 
opponents play style can help you predict what type 
of shot they will play and where they will hit the 
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shuttle. The SATB supported this notion, with 
participants scoring significantly higher in sessions 
where they have acquired an athlete’s playing style 
from viewing them play in previous sessions.  
 
Further points of interest regarding style of play was 
noted by the researchers after viewing the video 
recordings of both the treatment and control groups’ 
in-game matches and training. Firstly, participants in 
the treatment group were able to improve their 
overall badminton skills as well as respond more 
efficiently (with greater speed and reaction time) to 
their opponents’ actions. Secondly, participants in 
the control group were able to improve their overall 
badminton skills and showed slight improvement in 
their ability to predict their opponents’ next action. 
Both groups played/trained in badminton on a 
weekly basis so it was expected that both groups 
would improve their in-game skills but it was 
surprising to find that the Control group had also 
improved in predicting their opponents’ actions. A 
possible explanation for this might be that the 
Control group only consisted of eight participants 
and after eight weeks of playing/training together, 
they had already played with each member in that 
group numerous times. This essentially leads the 
players to become used to each others’ playing 
styles, hence the increase in predicting their 
opponents’ actions.    
 
A number of points about the methodology should 
be noted. Blomqvist et al. (2001) suggest that age 
and experience affects the outcomes of the 
experiment. The present study supports this 
argument with the results being skewed by 
participants of a higher skill level. Future studies 
should use larger sample sizes with non-random 
groups (perhaps a beginner, intermediate, advanced 
system) to avoid distorted outcomes.  Secondly, 
although this study can be extended to other sports, 
it is not applicable to invasion games (e.g. soccer, 
hockey) due to differences in the number of players 
and the tactical aspects of evasion games (Blomqvist 
et al., 2001). The sports that would be applicable to 
this type of study would ideally be racket sports such 
as tennis and squash. The present study would need 
to be recoded (SATB and KMT) for application to 
invasion games. 
 
 
 
 
 
 
 

5. CONCLUSIONS 
 
With the majority of coaches and trainers placing 
little emphasis on the cognitive aspects of training, 
these findings will introduce a new form of 
preparation that is both effective and successful in 
developing the optimal athlete. The researchers 
found that VBT methods were effective in 
improving reaction time, awareness and decision 
making in badminton players. As such, it can be an 
issue for future studies to apply VBT to other sports 
for coaches and trainers to develop the ideal training 
method.   
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Abstract 
 

Talent identification is now common practice in Australian sport to identify future Olympians and 
Paralympians. Mathematical models and multivariate statistical approaches to predicting performance in sport 
are frequently recommended, however rarely implemented, to identify those factor that are associated with 
high performance athletes. Australia had difficulty finding talent to complete in the 100m at the recent 2008 
Beijing Olympics and at the 2009 World Athletics Championships in Berlin. This research is focussed on how 
the best 100m sprinters, both male and female, actually run the race and to derive models for high performance 
sprinting. The research analysed data (IAAF, 2009) from the recent 2009 World Athletics Championships in 
Berlin. The data set consisted of 23 male performances from the 100m final and semi-finals and 36 female 
performances from the 100m final and the fastest athletes in the 100m sprint rounds. The data analysed 
consisted of reaction time to the gun, race segment time for 20m, 40m, 60m, 80m and 100m and conversion of 
race segments times to average velocity per 20m. Comparisons were conducted for male and female sprinters 
in terms of multivariate factor analysis of times per segment to assess if the race segments represented distinct 
race constructs or were representing the underlying factor of sprint ability, nonlinear regression (curve 
estimation) of average velocity with distance, and linear regression analysis in terms of predicting 100m time 
from race segments times. Individual (male=.844-.994, 88.9% common variance; female=.906-.993, 92.1% 
common variance) and pooled (0.985-0.999, 98.7% common variance) factor loadings indicated that sprinting 
ability is common construct across all race segments. The best fit nonlinear regression mathematical functions 
for the relationship of average velocity per distance segment were cubic functions for both males (R=.987, 
R2=.975) and females (R=.989, R2=.977), where the transition from positive to negative acceleration occurring 
at 58-59m for both genders. The regression analysis using pooled data indicated that 60m time was an 
excellent predictor of 100m time (R=0.994, R2=0.982, p<0.001) indicating both males and females solve the 
problem of sprinting the 100m in almost an identical manner in terms of mathematical and statistical models.   

Keywords: Curve estimation, nonlinear regression, factor analysis, mathematical modelling  
 
 

 
1. INTRODUCTION 
 
Talent identification is now common practice in 
Australian sport to identify future Olympians and 
Paralympians. Mathematical models and 
multivariate statistical approaches to predicting 

performance in sport are frequently recommended, 
however rarely implemented, to identify those factor 
that are associated with high performance athletes. 
Australia had difficulty finding talent, both males 
and female to complete in the 100m and 200m at the  
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recent 2008 Beijing Olympics and at the 2009 World 
Athletics Championships in Berlin as the one female 
athlete who made the 100m is primarily a 100m 
hurdler,  and no other athletes had sufficiently good 
qualifying times to be considered for selection.   
The Australian National Talent ID program 
(National Talent ID & Development, 2009) for the 
athletic sprint events, the 100m and 200m, is based 
on a simple sports specific motor fitness test. This is 
the time for the 60m sprint from a standing start and 
the vertical jump height, a measure of the standing 
anaerobic power of the legs. Explosive power in the 
legs is thought to be related to performance in sprint 
events, such as the 100m and 200m sprints. 
Kinanthropometric data such as standing height and 
body mass are also recorded to assess if the potential 
athlete is within the usual ranges of heights and mass 
for sprinters. Anthropometric and sports specific 
motor fitness are related to both age and gender 
constructs.     
Other research (Heazlewood, 1998) has indicated 
approximately 56% of 100m and 400m sprint 
performance can be predicted by power/weight ratio 
using isokinetic leg extension at 3000s-1 using 
CYBEX 340 technology. However, such 
information does not indicate how the athletes 
actually sprint the entire race in terms of race 
distance, velocity segments, velocity curve 
characteristics or the factor structure of the race 
segments. Coaching and biomechanical 
recommendations indicate the 100m sprint can be 
divided into acceleration (0m - 50m), maximum 
running speed (50m - 80m) and speed endurance or 
negative acceleration (80m - 100m) stages based on 
examining the curves of individual athletes such as 
Usain Bolt (IAAF, 2009). However, the data is 
descriptive in nature and does not indicate which 
race segment is the best predictor of total race 
performance (100m time), which type of 
mathematical curve best fits the data or indicates the 
factor structure, if any, that exists between the 
acceleration, maximum running speed and speed 
endurance stages. Siegel (2009) has used past trends, 
world records, over time to predict future times.     
This predominant research focus was on how the 
best 100m sprinters, both male and female, actually 
run the race and to derive models for high 
performance sprinting.  
Models that will:  
1. Predict the total race time based on the race 
segment that is the most predictive of total race time. 
In this context to test the model developed by the 
Australian National Talent ID program for Athletics 
to select 100m sprinters based on a 60m time trial.  

2. Discover the mathematical curve and function that 
best fits the data and to use this function as a sprint 
model in talent identification as well as to evaluate 
changes in athlete performance based on training 
programs to fit the high performance sprint model. 
3. Evaluate the factor structure that exists between 
the acceleration, maximum running speed and speed 
endurance stages based on evaluating the factor 
structure of sprint segments in the 100m.      
 
2. METHODS 
 
The research analysed data provided by the 
International Associations of Athletics Federations 
(IAAF, 2009) from the recent 2009 World Athletics 
Championships in Berlin. The data set consisted of 
59 athletes where 23 male performances from the 
100m final and semi-finals and 36 female 
performances from the 100m final and the fastest 
athletes in the 100m sprint rounds. The data 
analysed consisted of reaction time to the gun, race 
segment times for 0-20m, 20-40m, 40-60m, 60-80m 
and 80-100m, as well as the conversion of race 
segments times to average velocity per 20m 
segment. Descriptive statistics were derived to 
provide an overall understanding of the data set. 
Tests to assess normal distribution characteristics 
were also conducted to evaluate compliance with 
statistical assumptions using the following statistical 
methods. The race segment data was then applied to 
linear regression analysis to derive a regression 
equation based on which 20m race segment was the 
most accurate predictor of total race time. The 
intention of linear regression analysis is to; develop 
an equation that summarizes the relationship 
between a dependent variable and a set of 
independent variables or variable; identify the subset 
of independent variables or variable that are most 
useful for predicting the dependent variable; and 
finally to predict values for a dependent variable 
from the values of the independent variable(s) (Hair 
et al., 2006). Gender specific models were derived as 
well as models based on the pooled data. 
The times were then converted average velocities for 
the 20m segments, which enabled the derivation of a 
velocity (y-axis) and distance (x-axis) curve. As the 
derived curves were definitely nonlinear in shape the 
statistical method of curve estimation regression was 
applied. The curve estimation procedure produces 
curve estimation regression statistics and related 
plots for 11 different curve estimation regression 
possibilities. These regression models are based on 
linear, logarithmic, inverse, quadratic, cubic, power, 
compound, S-curve, logistic, growth and exponential 
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fits. In terms of evaluating model fit the following 
statistics are generated, these are, regression 
coefficients, multiple R, R2, adjusted R2, standard 
error of the estimate, analysis-of-variance table with 
appropriate levels of significance, predicted values, 
residuals and prediction intervals. Gender specific 
models were derived as well as models based on the 
pooled data. 
Factor analysis was applied to assess if the 100m 
sprint is represented by unique factors or reflects 
underlying human motor fitness ability, such as 
sprint ability expressed across all race segments. A 
number of comparisons were conducted for male 
and female sprinters in terms of multivariate factor 
analysis to assess if the male and female sprinters 
displayed any gender specific models. A number of 
factor solutions were applied, such as principle 
component analysis, maximum likelihood and 
principal axis factoring to develop the most 
interpretable and pragmatic factor solution.  
The goals of factor analysis (Norusis, 1985; Hair el 
at., 2006) are: 
1. To identify underlying constructs or factors that 
explain the correlation's among a set of variables. 
2. To test hypotheses about the structure of the 
variables. 
3. To summarize a large number of variables with a 
smaller number of derived variables. 
4. To determine the number of dimensions required 
to represent a set of variables. 
   All calculations were conducted with SPSS 
Software Version 17.0 (SPSS - Version 17.0, 2009). 
 
3. RESULTS 
 
The tests on normally distributed data (normal Q-Q 
plot, detrended normal Q-Q, normally distributed 
histograms, stem and leaf plots, Kolmogorov 
Smirnov test and Shapiro Wilk test) indicated in the 
majority of cases the variables satisfied normal 
distribution assumptions. The descriptive statics for 
each race segment are displayed in table 1.  
The minimum values in the range for the race 
segments are for Usain Bolt and 9.58 seconds 
represents the current World Record for the men’s 
100m. The regression analysis using pooled data 
indicated that 60m time was an excellent predictor 
of 100m time (R=0.994, R2=0.982, p,0.001; standard 
error predicted value, mean=.014s, SD=.002s) and 
illustrated in figure 1. 
 
Variable           Mean      SD Min. Max. Range  
______________________________________________________________________ 

Reaction time (s)       .15      .02  .12 .21 .09 
 
Time 0 - 20m (s)      3.10              .13 2.89 3.32 .43 
 
Time 20 - 40m (s)    5.05              .25 4.46 5.39 .93 
 
Time 40 - 60m (s)    6.96              .37 6.31 7.42 1.11 
 
Time 60 - 80m (s)    8.84              .51 7.92 9.45 1.53 
 
Total time100m (s) 10.80             .67 9.58 11.57 1.99 
______________________________________________________________________ 

Table 1: Descriptive statistics for pooled data for reaction  
              time and each race segment time in seconds. 

This indicates both males and females solve the 
problem of sprinting the 100m in almost an identical 
manner in terms of mathematical and statistical 
models. The predictive regression equation using 
unstandardised beta coefficients is: 

100m Time(s) = 1.791(60m Time(s)) – 1.66s        (1) 
 

Figure 1. Line of best fit for 60m time predicting  
               100m time. 
 
The best fit nonlinear regression mathematical 
functions for the relationship of average velocity per 
distance segment were cubic functions for both men 
(R=.987, R2=.975) and women (R=.989, R2=.977), 
where the transition from positive to negative 
acceleration occurring at 58-59m for both genders. 
The graphs for the individual velocity-distance 
curves for both men and women 100m are displayed 
in figure 2.  
It is interesting to note that the two curves are almost 
identical, the main construct is the men sprinters run 
faster than the women sprinters, however the shape 
of the curves reflect underpinning capacities 
required for 100m sprinting at the highest level for 
men and women. Pooled data is represented by 
figure 3.  
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Figure 2. Graph of men’s and women’s velocity-distance  
              graph (top line men’s data).  
 
The pooled data equation 2 for the cubic function is: 
 
v = 4.139 + .144d  - .001d2 + .0000055d3                (2) 
 

Where v = velocity and d = distance segment (cubic 
function R2 = .99; p=.029). 
 

 
Figure 3. The cubic data curve fit with observed  
               data points based on pooled data. 
 
Individual cubic equations are provided for both 
men and women based on the velocity-distance 
100m data and illustrated in equation 3 and equation 
4.     
 
 
Men     
v = 4.208 + .159d  - .002d2 + .000006d3                (3) 
 
The almost perfect nonlinear curve fits for both men 
and women are illustrated in figure 4 and figure 5. 

 
Figure 4. The cubic data curve fit with observed  
               data points for men 100m. 
 
Women 
v = 4.007 + .141d  - .001d2 + .0000056d3               (4) 
 

 
Figure 5. The cubic data curve fit with observed  
                data points for women 100m. 
 
Both curve fits are almost an identical match in 
terms of best nonlinear solution (cubic function), 
extremely high R2 (> .975), coefficients for the two 
cubic equations (equations 3 and 4) and the curve 
fitting the data, which is observed cases plotted 
against line of best fit. The data indicate that the 
world’s best men and women 100m sprinters solve 
the problem in an essentially identical manner.  
Comparisons were conducted for male and female 
sprinters in terms of multivariate factor analysis of 
times per segment to assess if the race segments 
represented distinct race constructs or were 
representing the underlying factor of sprint ability as 
compared to individual race segments, such as 
reaction time, acceleration phase, maximum sprint 
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running phase and speed endurance. The individual 
race segment model would suggest different factors.   
 

Component 1 
Segments 

Factor Loading 

t20m .985 

t40m .995 

t60m .999 

t80m .997 

t100m .993 
Table 2. Pooled Data Component Matrix with Factor 
Loadings for Race Segments for One Significant Factor. 
 

Component 1 
Segments 

Factor Loading 

t20m .844 

t40m .959 

t60m .994 

t80m .978 

t100m .926 
Table 3. Men’s Data Component Matrix with Factor 
Loadings for Race Segments for One Significant Factor. 
 

Component 1 
Segments 

Factor Loading  

t20m .906 

t40m .975 

t60m .993 

t80m .979 

t100m .943 
Table 4. Women’s Data Component Matrix with Factor 
Loadings for Race Segments for One Significant Factor. 
 
Factor solutions using principal component analysis 
produced the most interpretable and parsimonious 
solution based on men’s data (loadings = .844-.994, 
88.9% common variance); women’s data (loadings = 
.906-.994, 92.1% common variance) and pooled data 
(loadings = 0.985-0.999, 98.7% common variance) 
and factor loadings indicated that sprinting ability is 
a common construct across all race segments.  
Tables 2, 3 and 4 indicate the factor loadings for the 

men’s, women’s and pooled data based on the 
derivation of a single significant factor explaining 
the relationships in the correlation matrices.  
A final factor analysis was conducted with reaction 
time included with 20m race segments to assess if 
reaction time is a unique constructs and different 
from actual sprint running. Pooled data were used to 
increase sample size and generalisability of the 
factor solution.  
 

Component 
Variables 

1 Loading 2 Loading 

t20m .933 .322 

t40m .964 .248 

t60m .969 .244 

t80m .970 .233 

t100m .966 .231 

reaction (s) .252 .968 
Table 5. Pooled Data Component Matrix with a Two 
Factor Solution, Loadings for Race Segments on Factor 1 
and Reaction Time Loaded Uniquely on Factor 2.  
 
A two factor solution was achieved by principal 
component analysis with varimax rotation and 
Kaiser normalisation. This solution indicated that 
reaction time and the ability to sprint 20m race 
segments were very different constructs, as the 
factor loading for reaction time was very low on 
factor 1 (.252) and very high on factor 2 (.968). The 
reverse situation applied for the sprint segments, 
which are indicated clearly with the factor loadings 
in table 5 and highlighting the simple factor 
structure of these constructs.   
 
4. DISCUSSION 
 
The data indicate clearly that both men and women 
world’s best sprinters solve the problem of running 
the 100m in essentially an identical manner. The 
linear regression solution in predicting final 100m 
time from race segment time indicated the 60m time 
could predict accurately final 100m time. It is 
interesting to note the Australian talent identification 
Athletics program (National Talent ID and 
Development, 2010) for sprinting uses the 60m time 
trial as a selection criterion combined with vertical 
jump, standing height and body mass (weight). 
Based on these data alone it would appear that the 
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60m time explains most of the performance variance 
(98.2%) in the 100m sprint for both men and women 
and figure 1 indicates that both men and women 
sprinters fit the linear regression line almost 
perfectly when using 60m time to predict 100m 
time.  The Australian talent ID process for the 
selection of sprinters based on 60m time has some 
support based on these findings. However, the 
factors of vertical jump, standing height and body 
mass may contribute minimally to the predictive 
model as most of the performance variance has been 
explained by just using race segments.    
The nonlinear regression indicated clearly the cubic 
function to describe the velocity distance graph, as 
the data and the model were an almost perfect fit for 
both men and women sprinters. The underlying 
reason may reflect that both men and women use the 
same energy systems to solve the problem when 
competing at maximal effort. It definitely indicates 
that the velocity-distance curves are relatively fixed 
in shape and which describes the positive 
acceleration phase, the maximum sprinting speed 
phase (approximately to 58-59m), and the significant 
negative acceleration phase from 80m to 100m. 
These data indicate how athletes distribute speed 
across the entire race and indicate that all sprinters 
solve the problem in the same manner, which hints 
of finite, but like capacities, when men and women 
use maximal sprinting in competition.  The major 
issue is, the male sprinters just sprint faster at any 
stage in the race, even though the velocity-distance 
distributions are the same for men and women.  
The findings probably indicate that both men and 
women should train using very similar training 
methods to develop the underpinning energy 
systems and biomechanics (force, power, work and 
speed) although force, torque, power, power/weight 
ratios are different and favour male sprinters 
(Heazlewood, 1998: Richmond, 2009). However, 
Richmond’s research was based on one athlete when 
describing forces involved in sprinting as compared 
with the best 59 men and women sprinters in 2009. 
The model also indicates that individual sprinters 
can be modelled against the World’s best sprinters to 
see how other sprinters of sub high performance 
ability (next level below World Championship 
representatives) fit the curve. This level of sprinter 
would want to fit the curve as closely as possible 
and training should be directed towards getting the 
velocity-distance characteristics to match the high 
performance curves, especially the positive 
acceleration, maximum sprinting speed and negative 
acceleration components. This is the approach 
Valerie Borzov’s coach applied back in the late 

1960’s and early 1970’s (Borzov, 2009), when he 
discovered Borzov’s acceleration and maximum 
sprinting speed lagged behind the best male sprinters 
in the world at that time. Borzov went on the win the 
100m and 200m in athletics at the 1972 Munich 
Olympic Games based on this training principle. 
The factor analysis provided further confirmation 
the top men and women 100m sprinters solve the 
problem of sprinting the 100m using almost identical 
methods and identified a common underpinning 
factor that explained the majority of common 
variance (98% plus) for pooled data among the 20m 
race segments. Using the data for men, women and 
pooled data in separate factor analyses all derived a 
single factor solution, where each race segment 
loaded significantly on this one factor. This suggests 
that underpinning sprint ability is expressed across 
all race segments for this level of World 
Championship sprint athlete, irrespective of gender 
and does not indicate independence of constructs 
such as positive acceleration, maximum sprinting 
speed or negative acceleration (speed endurance).   
The inclusion of reaction time with sprint segment 
times indicated that the reaction time construct is 
unique to sprinting and resulted in a two factor 
solution, one factor for 20m sprint segments and one 
factor for reaction time from the starting gun. The 
two factor solution was an orthogonal solution 
indicating no correlation between the reaction time 
to gun factor and the 20m sprint segment factor. 
This implies the reaction ability construct appears to 
be based on another perceptual motor ability, which 
is independent of actual sprint running ability and 
must be trained independently from actual sprint 
running.     
It would be of heuristic value to evaluate other 
ability sprinters, such as sub high performance men 
and women and sports where sprinting up to 100m is 
important to corroborate or refute the general 
mathematical models and factors structures that 
describe high performance sprinters. Most codes of 
football actually play on fields that are 100m from 
goal line to goal line.  
 
5. CONCLUSIONS 
 
Sprinting running ability at the highest level is an 
almost identical construct for both men and women 
sprinters as they solve the problem of sprinting the 
100m in competition in an almost identical manner. 
Predictive equations based on linear and non linear 
regression methods and factor analytic models using 
exploratory and confirmatory factor analysis indicate 
identical problem solving approaches using velocity-
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distance graphs and times of 20m race segments. In 
terms of training both genders should train 
essentially using the identical training methods. The 
only real difference being women sprinters do not 
sprint quite as fast as men. As well, the information 
can be applied in other sports where the dimensions 
of playing fields in terms of length are 100m or 
approximate 100m, such as Rugby League, Rugby 
Union, AFL, Touch (70m) and Football.  
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Abstract 
 
Neural networks can be applied to many predictive data mining applications due to their power, flexibility and 
relatively easy operations. Predictive neural networks are very useful for applications where the underlying 
process is complex, such as in classification using a mix of nominal and ratio level variables and for predictive 
validity based on classification modelling. A neural network can approximate a wide range of statistical 
models without requiring the researcher to hypothesize in advance certain relationships between the dependent 
and independent variables. Neural networks and discriminant function analysis (a more traditional statistical 
approach), based on physiological and biomechanical measures of karate ability and collected within the ACU 
exercise physiology laboratory, were compared for there classification accuracy. Twenty four karate athletes 
were assessed, 12 were classified as high performance athletes with black belt or higher and 12 were classified 
as non-high performance athletes, green belt and lower. Ability level served as the classification variable. The 
dependent variables were height, weight, age; motor fitness variables were Margaria power test, standing long 
jump, isometric grip strength, sit-reach flexibility, arm crank, peak aerobic power, anaerobic Wingate power 
test for peak power, time to peak power, mean power and power/weight; and Karate specific motor fitness 
tests were karate agility, power punch, speed punch, reaction time, balance and lower limb bilateral flexibility. 
ANOVA indicated the general motor fitness constructs of Margaria power test, sit-reach flexibility, arm crank 
and Wingate power test for peak power; and karate specific motor fitness tests for karate agility test, power 
punch, speed punch, balance and lower limb bilateral flexibility or lateral split were significantly different 
(p<0.05 to 0.001). These two data sets were used in the multilayer perceptron (MLP) neural networks and 
method enter discriminant function analysis. The neural network solution based on the training data set and 
testing (holdout) data set classified at 100% accuracy karate ability (high and non-high) for the karate specific 
tests, as well as general motor fitness tests. Discriminant analysis was marginally less effective in classifying 
ability level. The karate specific tests produced a 95.8% and general motor fitness tests 91.3% correct 
classifications, respectively. Neural networks, specifically the multilayer perceptron (MLP) networks, were 
more effective in predicting group membership and displayed higher predictive validity when compared to 
discriminant analysis. 
 
Keywords: Neural networks, multilayer perceptron, multivariate classification, talent identification, 
classification accuracy  
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1. INTRODUCTION 
 
Neural networks can be applied to many predictive 
data mining applications due to their power, 
flexibility and relatively easy operations. Predictive 
neural networks (Fausett, 1994; SPSS Inc., 2007a) 
are very useful for applications where the underlying 
process is complex, such as in classification using a 
mix of nominal and ratio level variables and for 
predictive validity based on classification modelling. 
A neural network can approximate a wide range of 
statistical models without requiring the researcher to 
hypothesize in advance certain relationships between 
the dependent and independent variables.  
Neural networks are the preferred tool for many 
predictive data mining applications because of their 
power, flexibility, relevance and ease of use. 
Predictive neural networks are particularly useful in 
applications where the underlying process is 
complex, especially pattern recognition and 
classification problems that are based on predictive 
and concurrent validity.  
Neural networks used in predictive applications, 
such as the multilayer perceptron (MLP) and radial 
basis function (RBF) networks, are supervised in the 
sense that the model-predicted results can be 
compared against known values of the target 
variables. These target variables are identified on a 
priori  criteria by the researcher.  
The term neural network applies to a loosely related 
family of models, characterized by a large parameter 
space and flexible structure, descending from studies 
of brain functioning. As the family grew, most of the 
new models were designed for non biological 
applications, though much of the associated 
terminology reflects its origin in biology.  
A neural network is a massively parallel distributed 
processor that has a natural propensity for storing 
experiential knowledge and making it available for 
use and is analogous to human brain function. 
Specifically, it resembles the brain in two respects: 

• Knowledge is acquired by the network 
through a learning process. 

• ‘Interneuron connection’ strengths known 
as synaptic weights, analogous to human 
synapses, are used to store the knowledge. 

A neural network can approximate a wide range of 
statistical models without requiring that you 
hypothesize in advance certain relationships between 
the dependent and independent variables, a non a 
priori model. Instead the form of the relationships is 

determined during the learning process. A type of 
neural processing phenomenology in this context.  
The trade-off for this flexibility is that the synaptic 
weights of a neural network are not easily 
interpretable. Thus, if you are trying to explain an 
underlying process that produces the relationships 
between the dependent and independent variables, it 
would be better to use a more traditional statistical 
model, such as discriminant analysis or logistic 
regression. However, if model interpretability is not 
important, you can often obtain good model results 
more quickly using a neural network. 
Although neural networks impose minimal demands 
on model structure and assumptions, unlike 
inferential statistics, it is useful to understand the 
general neural architecture or neural network 
structure. The multilayer perceptron (MLP) and 
radial basis function (RBF) networks are functions 
of predictors (also called inputs or independent 
variables) that minimize the prediction error of 
target variables (also called outputs). 
Discriminant analysis (or discriminant function 
analysis) based on classification modelling is 
applied to classify cases into the values of a 
categorical dependent variable, usually a dichotomy 
(SPSS Inc., 2007b). In sport this could be males 
compared to females on different motor fitness tests 
or different player grades using the same principles.  
If discriminant function analysis is effective for a set 
of data, the classification table of correct and 
incorrect estimates will yield a high percentage 
correctly classified cases and maybe useful in such 
processes as sport talent identification, such as in the 
Olympic sport of karate.  
The major foci of discriminant analysis (Hair et al., 
2006: Norusis, 1985: StatSoft Inc., 2010) are to: 

• Classify cases into groups using a 
discriminant prediction equation.  

• Test theory by observing whether cases are 
classified correctly as predicted.  

• Investigate differences between or among 
groups.  

• Determine the most parsimonious way to 
distinguish among groups.  

• Determine the percent of variance in the 
dependent variable explained by the 
independents.  

• Determine the percent of variance in the 
dependent variable explained by the 
independents over and above the variance 
accounted for by control variables, using 
sequential discriminant analysis.  
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• Assess the relative importance of the 
independent variables in classifying the 
dependent variable.  

• Discard variables which are little related to 
group distinctions.  

The aim of this research was to apply both neural 
networks and discriminant function analysis (a more 
traditional statistical approach under the general 
linear model) and compare their ability as statistical 
techniques to classify different ability karate groups 
(high versus non high performance) correctly, based 
on karate specific  and general motor fitness test 
using physiological and biomechanical measures.  
 
2. METHODS 
 
Twenty four karate athletes, 12 classified as high 
performance athletes with black belt or higher and 
12 classified as non-high performance athletes, 
below green belt, participated in the ethics approved 
study. The data were collected in an environmentally 
controlled exercise physiology laboratory at ACU.  
Ability level served as the dichotomous 
classification variable. The dependent variables in 
both the neural network and discriminant analyses 
represented anthropometric factors, which were 
height (cm), weight (kg), age (years); motor fitness 
variables of Margaria power test (W), standing long 
jump (cm), isometric grip strength (kg.wt), sit-reach 
flexibility (cm), arm crank (W), peak aerobic power 
(W), anaerobic Wingate power test for peak power 
(W), time to peak power (s), mean power (W) and 
power/weight (W/kg). As well, karate specific motor 
fitness tests, as selected by a panel of experts with 
backgrounds in karate and motor fitness assessment, 
were included as dependent variables in the analysis. 
These were karate agility (s), ‘power punch’ (kg.wt 
and actually measure of force), speed punch (s), 
reaction time (s), balance (s) and lower limb bilateral 
flexibility or lateral split (cm in seated lateral split). 
The ‘power punch’ was actually measured in kg.wt 
force, but was defined as a power punch by the 6th 
dan black belt karate expert.  
 
Statistical Analysis  
 
An initial two group ANOVA was applied to assess 
which general motor fitness and karate specific 
variables were most discriminatory at the univariate 
level. Subsets of these significant variables were 
then included in the discriminant analyses using 
general motor fitness and karate specific variables 

separately and finally merging the two dependent 
variable sets, in an attempt to achieve improved 
classification accuracy.   
Means and standard deviations of the significantly 
different general motor fitness and karate specific 
motor fitness tests were derived based on the 
ANOVA findings.  
Neural network analysis applied the multilayer 
perceptron (MLP) procedure, which produces a 
predictive model for one or more dependent (target) 
variables based on the values of the predictor 
variables. The nominal or classification variable in 
the analysis was once again karate ability level and 
in neural network jargon these are defined as the 
dependent or target variables. The covariates or 
predictor variables (neural network jargon) were the 
significantly different general motor fitness and 
karate specific tests as identified by ANOVA 
analysis. It must be emphasised that the comparison 
of discriminant analysis with neural network 
analysis were based on the identical subsets of data 
in both analyses.   
In the analysis rescaling is applied where scale-
dependent variables and covariates are rescaled by 
default to improve network training. All rescaling is 
performed based on the training data, even if a 
testing or holdout sample is defined (SPSS Inc., 
2007a). The mean, standard deviation, minimum 
value, or maximum value of a covariate or 
dependent variable is computed using only the 
training data. The neural network multilayer 
perceptron architecture was based on: 

• Selecting one hidden layer where the 
hidden layer contains unobservable 
network nodes (units). Each hidden unit is a 
function of the weighted sum of the inputs. 
The function is the activation function, and 
the values of the weights are determined by 
the estimation algorithm. 

• The selected activation function was the 
hyperbolic tangent, where the activation 
function links the weighted sums of units in 
a layer to the values of units in the 
succeeding layer.  

• Hyperbolic tangent function has the form  
γ(c) = tanh(c) = (ec−e−c) / (ec+e−c).       (1) 

• It takes real-valued arguments and 
transforms them to the range (–1, 1). When 
automatic architecture selection is used in 
SPSS, this is the activation function for all 
units in the hidden layers. 
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The identity function was selected and this function 
has the form: γ(c) = c. It takes real-valued arguments 
and returns them unchanged. When automatic 
architecture selection is used, this is the selected 
activation function for units in the output layer if 
there are any scale-dependent variables. Training the 
network was based on the batch method. This 
method updates the synaptic weights only after 
passing all training data records, which means batch 
training uses information from all records in the 
training dataset. Batch training is often preferred 
because it directly minimizes the total error and is 
most useful for smaller datasets, such as the one 
used in this research. 
Discriminant analysis was based on using the 
significantly different general motor fitness and the 
karate specific motor fitness tests separately in the 
analyses by applying the method enter (all variables 
included in the discriminant model and determined 
by the researcher) as compared to stepwise method, 
which is based on statistical criteria to enter the 
model at each calculation step. Ability level was 
used as the independent dichotomous variable in the 
analysis. The data from both general motor fitness 
and karate specific tests that were significant at the 
ANOVA level of analysis were pooled and then 
subjected to discriminant analysis. Relevant fit 
statistics, canonical discriminant functions, 
hierarchy of importance in terms of variables and 
classification tables were generated.  
 
3. RESULTS 
 
ANOVA indicated the general motor fitness 
constructs of Margaria power test, sit-reach 
flexibility, arm crank and Wingate power test for 
peak power were significantly different between the 
high and non high ability groups(p<0.05 to 0.001).  
Karate specific motor fitness tests that discriminated 
at the univariate level were karate agility test, power 
punch, speed punch, balance and lower limb 
bilateral flexibility and were significantly different 
(p<0.05 to 0.001). These two data sets were used in 
the multilayer perceptron (MLP) neural networks 
and method enter discriminant function analysis.  
The neural network solution based on the training 
data set and testing (holdout) data set classified at 
100% accuracy karate ability (high and non-high) 
for the karate specific tests for the training and 
testing samples (refer to table 1). 

Classification 

Sample Observed Predicted 

 High Non High Percent Correct 

Training High 10 0 100.0% 

Non High 0 8 100.0% 

Overall Percent 55.6% 44.4% 100.0% 

Testing High 2 0 100.0% 

Non High 0 4 100.0% 

Overall Percent 33.3% 66.7% 100.0% 

Dependent Variable: Participants ability level. 
 

Table 1: The Neural Network Solution Based on the 
Training Data Set and Testing (Holdout) Data Set 
Classified at 100% Accuracy for Karate Ability (High and 
Non High) for the Karate Specific Tests. 
 

Classification 

Sample Observed Predicted 

 High Non High Percent Correct 

Training High 10 1 90.9% 

Non High 1 6 85.7% 

Overall Percent 61.1% 38.9% 88.9% 

Testing High 1 0 100.0% 

Non High 1 3 75.0% 

Overall Percent 40.0% 60.0% 80.0% 

Dependent Variable: Participants ability level.  
 

 
Table 2: The Neural Network Solution Based on the 
Training Data Set and Testing (Holdout) Data Set 
Classified at 88.9% and 80.0% Accuracy Respectively for 
Karate Ability (High and Non High) for the General 
Motor Fitness Tests. 
 
 
 

 
Figure 1: Diagrammatic representation of neural network 
architecture for karate specific tests with one hidden layer 
(hyperbolic tangent).  
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The classification accuracy for the general motor 
fitness tests were 88.9% for the training and 80.0% 
for the testing samples respectively (refer to table 2).  
Diagrammatic representation of neural network 
architecture for karate specific tests with one hidden 
layer using a hyperbolic function and the output 
layer an identity function are represented in figure 1.  
 

Parameter Estimates 

Predictor Predicted 

Hidden Layer 1 Output Layer 

H(1:1) H(1:2) 

Participants 

= High 

Participants 

= Non High 

Input Layer (Bias) .723 -.129   

Karateagil -.884 .417   

Po.punch 1.444 -.549   

Sp.punch -2.338 1.123   

Balance 2.069 -.784   

Latsplit 1.137 -.653   

Hidden Layer 1 (Bias)   .487 .518 

H(1:1)   .982 -.975 

H(1:2)   .502 -.497 

  
Table 3: Parameter Estimates for Hidden Layer 1 and 
Output Layer for High and Non High Karate Athletes for 
the Predicted Outcome (Classification).  
 
Synaptic weights display the coefficient estimates 
that indicate the relationship between the units in a 
given layer to the units in the following layer (refer 
to table 3). The synaptic weights are based on the 
training sample, even if the active dataset is 
partitioned into training, testing and holdout data. 
The number of synaptic weights can become large 
with large numbers of variables in the analysis and 
as a consequence these weights are generally not 
used for interpreting network results. 
 

 
Figure 2: Predicted by observed chart indicating 100% 
probability of correct classification for ability level.  

The predicted by observed chart (figure 2) supports 
the accuracy of the model. The top left box plot is 
for the high performers (p=1) and the top right box 
plot for the non high performers (p=1) and the 
reverse probabilities apply (p=0).  
The cumulative gains chart shows the percentage of 
the overall number of cases in a given category 
“gained” by targeting a percentage of the total 
number of cases (refer to figure 3). 
 

 
Figure 3: The cumulative gains chart shows increase in 
percentage against gain, indicting 50% results in 100% 
gain. 
 
 

 
Figure 4: The lift chart displayed is derived from the 
cumulative gains chart and the values on the y- axis 
correspond to the ratio of the cumulative gain for each 
curve to the baseline. 
 
For example in figure 3, the point on the curve for 
the non high performer category is at 50% on the x-
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axis and indicates gain of 100%, meaning that if you 
score a dataset with the network and sort all of the 
cases by predicted pseudo-probability of non high 
performer, you would expect the top 50% to contain 
approximately 100% of all of the cases that actually 
take the category non high performers. Once again, 
indicating the accuracy of the model.  
The lift chart displayed in figure 4 is derived from 
the cumulative gains chart and the values on the y- 
axis correspond to the ratio of the cumulative gain 
for each curve to the baseline. Thus, the lift at 50% 
for the category non high performers is 100% gain 
and gives the ratio of 100%/50% = 2.0. It provides 
another way of looking at the information in the 
cumulative gains chart and minimal lift occurs 
beyond 50% (refer to constant negative slope from 
50% to 100% on lift graph). The cumulative gains 
and lift charts are derived from the combined 
training and testing samples. Table 4 indicates the 
importance and normalized importance of the 
variables in the neural network analysis.  

Independent Variable Importance 

 
Importance 

Normalized 

Importance 

Karateagil .122 39.6% 

Po.punch .148 47.8% 

Sp.punch .267 86.4% 

Balance .309 100.0% 

Latsplit .154 49.8% 
Table 4: Displays Independent Variable Importance and 
Normalized Values.  
 

Figure 5: Normalized importance as a histogram. 

Table 4 and figure 5 indicate the most important 
discriminating variables in the neural network 
analysis are balance and karate speed punch. 
Similar analysis using the general motor fitness data, 
which classified 88.9% correctly from both ability 
groups indicated arm cranking (100% normalized) 
and Margaria power test (85.6% normalized and a 
leg power test) were the most important 
discriminators for the general motor fitness tests.  
Discriminant analysis was marginally less effective 
in classifying ability level when using the karate 
specific tests, however slightly more accurate when 
using the general motor fitness tests. The general 
motor fitness tests produced 91.3% (Wilks’ Lambda 
= .425, p=.003) and karate specific tests produced 
95.8% (Wilks’ Lambda = .362, p<.001) correct 
classifications, respectively. The means and standard 
deviations for sit and reach flexibility, arm crank, 
Wingate peak power and Margaria power test are 
displayed in table 5 and high performance athletes 
display higher scores than the non high performance 
athletes on all tests.  

Variables 
Mean Std. Deviation 

High 

(n=12) 

Sit-Reach (cm) 38.16 8.93 

Arm Crank (W) 230 9.34 

Wing. Peak (W) 1092 119.54 

Margaria (W) 919.7 134.50 

Non 

High 

(n=11) 

Sit-Reach (cm) 29.18 11.23 

Arm Crank (W) 206.64 18.30 

Wing. Peak (W) 976.18 125.59 

Margaria (W) 748.9 167.14 

  
Table 5: Means and Standard Deviations for High and 
Novice Karate Athletes Based on Significantly Different 
General Motor Fitness Variables (p<0.05 to 0.001). 
 

Function 
Variables 

1 

Sit-Reach (cm) .041 

Arm Crank (W) .047 

Wing. Peak (W) .000 

Margaria (W) .004 

(Constant) -15.525 
Table 6: Canonical Discriminant Function Coefficients 
with Unstandardized Coefficients to Derive Equation. 
 
Table 6 displays the unstandardised canonical 
discriminant function coefficients and table 7 the 
classification function coefficients for the high and 
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novice groups enabling the derivation of the 
discriminant function scores for both groups.  
 

Participants 
Variables  

High Non High 

Sit-Reach (cm) .206 .115 

Arm Crank (W) 1.056 .951 

Wing. Peak (W) .022 .021 

Margaria (W) .045 .035 

(Constant) -158.826 -124.452 
Table 7: Classification Function Coefficients for Each 
Ability Group with Fisher's Linear Discriminant 
Functions. 
 
Table 8 indicates the accuracy of classification based 
on general motor fitness constructs. In this model 
91.3 % of both ability groups were classified 
correctly. In this context the classification was 
marginally better (2.4%) than the neural network 
solution. 
 
  Participants Predicted Group Membership 

Total   High Novice 

Original Count 
d im e n si on 2  

High 12 0 12 

Novice 2 9 11 

% 
d im e n si on 2  

High 100.0 .0 100.0 

Novice 18.2 81.8 100.0 

 
Table 8: Classification Results where 91.3% of Original 
Grouped Cases Correctly Classified. 
 
The means and standard deviations for the karate 
agility test, power punch, speed punch, balance and 
lower limb bilateral flexibility or lateral split are 
displayed in table 9. One again, the scores are higher 
for the high performance athletes when compared to 
non high performance athletes. The timed scores of 
karate agility and speed punch tests (referred to as 
speed in the tables 9, 10 and 11) reflect that a lower 
score is equated with higher ability on these tests or 
faster speed means lower score.  
Table 10 displays the unstandardised canonical 
discriminant function coefficients and table 11 the 
classification function coefficients for the high and 
non high  groups, which enable the derivation of the 
discriminant function scores for each ability group.  
The values in table 11 represent unstandardized 
classification coefficients. 

Variables 
Mean Std. Deviation 

High Agility (s) 7.52 2.37 

Power (kg) 71.16 7.27 

Speed (s) .33 .11 

Balance (s) 3.46 1.32 

Latsplit (cm) 40.50 7.69 

Non 

High  

Agility (s) 9.85 2.54 

Power (kg) 63.50 9.23 

Speed (s) .53 .18 

Balance (s) 1.65 .68 

Latsplit (cm) 27.91 9.18 

 
Table 9: Means and Standard Deviations for High and 
Novice Karate Athletes Based on Significantly Different 
Karate Specific Fitness Variables (p<0.05 to 0.001). 
 

Function 
Variable 

1 

Agility (s) -.122 

Power (kg) .011 

Speed (s) -3.375 

Balance (s) .439 

Latsplit (cm) .055 

(Constant) -1.252 
Table 10: Canonical Discriminant Function Coefficients 
with Unstandardized Coefficients to Derive Equation. 
 

Participants 
Variable 

High Non High 

Agility (s) 1.306 1.616 

Power (kg) 1.093 1.064 

Speed (s) 25.986 34.559 

Balance (s) .827 -.289 

Latsplit (cm) .381 .242 

(Constant) -57.938 -54.758 
Table 11: Classification Function Coefficients for Each 
Ability Group with Fisher's Linear Discriminant 
Functions. 
 
Table 12 indicates the accuracy of classification 
based on karate specific motor fitness constructs. 
The classification accuracy was 95.8% (Wilks’ 
Lambda = .362, p<.001) correct classifications. 
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  Participants Predicted Group Membership 

Total   High Non High 

Original Count 
di m e ns io n 2  

High 12 0 12 

Non 1 11 12 

% 
di m e ns io n 2  

High 100.0 .0 100.0 

Non  8.3 91.7 100.0 

a. 95.8% of original grouped cases correctly classified. 

  
Table 12: Classification Results where 95.8% of Original 
Grouped Cases Correctly Classified. 
 
The discriminant analysis performed marginally 
lower (4.2%) than the neural network solution using 
the same subset of variables, however it should be 
noted that the differences between the two 
approaches were not that different.  
 
4. DISCUSSION 
 
Neural networks, specifically the multilayer 
perceptron (MLP) networks, were more effective in 
predicting group membership and displayed higher 
predictive validity when compared to discriminant 
analysis for the karate specific tests consisting of 
karate agility test, power punch, speed punch, 
balance and lower limb bilateral flexibility or lateral 
split. However, the discriminant function analysis 
using the general motor fitness tests of Margaria 
power test, sit-reach flexibility, arm crank and 
Wingate power test for peak power marginally out 
performed the neural network approach. This 
presents some what contradictory findings. If the 
outcomes of this research are utilised in talent 
identification, using karate specific tests would 
provide marginally better classification outcomes. 
This argument was supported by the karate expert 
used in this research to design the karate specific 
tests, who believed these types of specific tests 
should provide a greater differentiation or 
discrimination between karate athletes of different 
abilities as an outcome of karate specific training or 
as a natural propensity for the sport.  
The surprising finding was the general motor fitness 
tests used in the research almost performed as well 
as the karate specific tests. In this context the 
general motor fitness tests, especially arm crank 
power (arm power test) and Wingate power test for 
peak power (leg power test) may in fact be testing 
some underlying power constructs that were also 
measured to some degree by the karate specific tests.  
In terms of training implications the findings may 
also provide direction as to what sports specific 

constructs can be trained, such as karate agility, 
power punch, speed punch, dynamic balance and 
lower limb bilateral flexibility or lateral split, which 
are thought to be sport specific. Many of the 
anthropometric, general and some of the sports 
specific tests did not provide discriminant or 
predictive validity, such as anthropometrics of 
height, weight, age; general motor fitness of 
standing long jump, isometric grip strength, peak 
aerobic power, anaerobic Wingate power for time to 
peak power and power/weight; and Karate specific 
motor fitness test of reaction time. These non 
discriminating tests based on this research should 
probably not be included within tests attempting to 
identify karate ability in adult males. It is important 
to emphasise that both groups in the study were 
mature males with no significant differences for 
height, weight and age and so developmental 
maturation factors can be discounted.  
 
5. CONCLUSION 
 
Karate specific tests using classification and 
predictive validity methods, such as multilayer 
perceptron neural networks and discriminant 
function analysis, both provided accurate 
classification of high and non high performance 
karate ability groups. However, the multilayer 
perceptron neural network method performed 
marginally better than discriminant function analysis 
and provides a model for talent ID in karate.  
 
Acknowledgements 
We wish to thank the karate participants in the 
study. 
 
References 
Fausett, L. (1994). Fundamentals of neural networks: 

Architectures, algorithms and applications. Upper 
Saddle River NJ: Prentice Hall. 

 
Norusis, M. (1985). Advanced statistics guide: SPSSX. 

Chicago, IL: SPSS Inc. 
 
SPSS Inc. (2007a). SPSS statistics base user’s guide 17.0. 

Users Guide. Chicago, IL: SPSS Inc. 
 
SPSS Inc. (2007b). SPSS Neural NetworksTM 17.0. 

Chicago, IL: SPSS Inc.  
 
StatSoft, Inc. (2010). Electronic statistics textbook. Tulsa, 

OK: StatSoft. WEB: http://www.statsoft.com/textbook/. 
 

 



 
  

AN INVESTIGATION INTO THE POSSIBILITY OF THEORETICAL 
MODELLING FOR THE PURPOSES OF EXAMINING THE NON-

ASSOCIATIVE NATURE OF PROBABILITIES OF GAME BASED SKILL 
TASKS WITHIN COMPETITIVE SPORTS MATCHES 

 
Joe Walsha,b 

 
a Australian Catholic University 

b COPAAL: The Centre for Physical Activity Across the Lifespan 
Corresponding author: joewalsh@acu.edu.au 

 
 

Abstract 
 
Mathematical modelling has been used in many sports to predict game winners based on past performances. 
This has been done for individual as well as team sports. There is also the possibility of determining 
probabilistic expectations for results of matches. As an alternative to examining this construct from game 
result data, this paper examines prospects for such predictions based on execution of game based skill tasks. 
This methodology is directed towards selecting an example sport and investigating solving the problem of 
predicting the outcome of individual elements of the competitive match. The possibility of doing this via the 
probabilities of successful play execution, by an attacking side, is examined. The ability of the defending team 
to execute the appropriate strategy for defence is also examined. This rudimentary theoretical model is then 
used to investigate the associative nature of winning probabilities involving matches between different teams 
in the example sport. These probabilities are shown to be non-associative, therefore in some example cases the 
use of predictions based on game dependant tasks will be shown to be superior for individual match prediction 
than those probabilities derived from results of past performances. There are also implications for the structure 
of tournaments from the results of this paper. 
 

Keywords: Mathematical model, match analysis, performance prediction, touch football 
 

 
1. INTRODUCTION 
This is a hypothetical exploration of the possibility 
of investigating attacking and defending options for 
different teams within a sport and evaluating the best 
options for these teams. Certainly attempting to 
divulge the probable outcome of a sports match or 
ranking teams by looking at offensive and defensive 
abilities of a team has been considered as a viable 
avenue to pursue (recently, for example Govan, 
Langville, & Meyer, 2009). Similarly the potential 
for prediction via examination of a team’s ability to 
execute certain relevant skills has also been 
preliminarily investigated (for example Zetou, 
Moustakidis, Tsigilis, & Komninakidou, 2007, in 
volleyball). 
In touch football most defensive structures will be 
forced to give an attacking option to the offensive 
side due to there being less onside defensive players 

than available attackers. Therefore the option for 
defensive structure most usually selected is typically 
the one that is hardest for the attackers to execute 
and defenders must take note of the weaknesses of 
the attacking side in designing their strategies. 
Various types of defence present different 
opportunities for an attacking side to score if they 
have the personnel to successfully select and execute 
the available option. For example a “man on man” 
defence does not adjust for the fact that one of the 
defenders is offside as this defender effected the 
touch on the person performing the rollball (the act 
of bringing the ball into play, following a touch or 
change of possession). (For further clarification on 
this and other touch football terminology, the reader 
is referred to two compatible publications, namely 
playing rules from Touch Football Australia, 2007 
and Federation International Touch Inc., 2003.) This 
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presents opportunities for the attacking player 
assigned to this defender to score. In this situation, 
given that these two players are of similar agility and 
no mistakes are made by the attacking team, a 
touchdown should be scored. Several variations of 
defence are therefore initiated. These options include 
some variation, either instantaneous or delayed, of 
compressing the defence around the ruck (the area 
between the attacking player performing the rollball 
and the half (the player who is to take possession of 
the ball, behind the player who performs the 
rollball)) to force passing plays. Some variations of 
this involve leaving certain players unmarked. An 
example of this would be leaving a player unmarked, 
such that an attacking player not known for his/her 
passing game would have the option to create a 
scoring play if they could execute a long (e.g. 25-
30m) pass to an eligible wing (those two players in 
the team positioned closest to either sideline) 
receiver using their non-dominant hand. For this 
particular player, this would be an unlikely option to 
be executed successfully and hence a wise selection 
of defensive structure. Similar to this example there 
are numerous other defensive options that attempt to 
capitalise on the strengths and weaknesses of various 
attacking teams, both focused on individual players 
within a team and according to how the players 
coordinate their strengths and weaknesses within a 
team structure. At a district, state or national 
representational level, these strengths and 
weaknesses of opponents will usually be well known 
by the coaching staff of the defending team.  
A few additional terms that will be mentioned 
include line attack, which will refer to a state of play 
in which the attacking team has gained sufficient 
territory that they are close enough to the opponents 
line in order to launch a successful attack on the 
following play. Second phase play is used to refer to 
an attacking play conducted immediately after an 
unsuccessful attack with the purpose of scoring due 
to defensive disarray caused by the previous attack. 
The author has also submitted another paper (Walsh, 
2010) to this conference and more extensive 
definition of these terms is available in this paper on 
Markov States for touch football. This paper is an 
extension of the Markov states paper, focusing on 
one particular set of states. 
Another consideration that will be relevant to this 
paper is the importance placed on achieving a 
second or third placed position within a contest. At 
least since Galton 1902, much scientific literature 
has been published on tournaments. Following from 
this paper, it has been clearly established that there 
is an expectation of recognition for other teams that 
achieve victory, not just the team that comes first. It 

is clear from the literature on the design of 
tournaments that a major goal for the organisers is to 
maximise total effort of all participants by designing 
a contest that will engineer appropriate results as 
well as the potential to achieve sufficient recognition 
according to the achievement obtained. This 
recognition and reward are the performance 
incentives necessary for maximising participant 
effort. A relevant example of this would be 
Ehrenberg & Bognanno, 1990. In this paper on PGA 
golfers, it was found that the athletes responded 
more optimally when the level and structure of 
tournament prizes was enhanced. Similarly Becker 
& Huselid, 1992 found that driver performance in 
racing increased under similar conditions. 
Incidentally in this latter case however driver safety 
also decreased. It is also evident that when this 
recognition was accompanied by participant 
uncertainty as to whether it would be correctly 
assigned, the quality of an athlete’s performance 
would be reduced. Certainly there is an equivalency 
in the work rate shown in many fields, such as for 
example workplace labour when rewards are 
attributed to effort and the enhanced performance of 
athletes at tournaments. Many of the purely 
theoretical models of both economic labour and 
work input and athletic tournaments are therefore 
interchangeable (Green and Stokey 1983). This 
would best be seen by examining some of the many 
well established foundation papers within this area, 
such as Lazear and Rosen (1981), Nalebuff and 
Stiglitz (1983) and O’Keeffe, Viscusi, and 
Zeckhauser (1984). 
In addition to increasing performance, it is also clear 
that sometimes incentives can cause teams to 
deliberately lose games. Studies such as Taylor & 
Trogdon, 2002 indicate that when incentives are 
present to lose, teams are more likely to do so. In 
this particular paper, evidence implied that NBA 
team performance responded to changes in the 
underlying tournament structure to adapt to the rule 
changes allowing preferential choice of draft picks 
for losing teams. 
 
2. METHODS 
Let us start by considering the simplest model for a 
sport such as touch football 
Consider two hypothetical teams, Team A and Team 
B. Team A has 4 set attacking plays designated as 
AA, BA, CA, and DA respectively (with the subscript 
denoting the play) in this example we are using A or 
D for denoting an attacking or a defending play. AA, 
BA, CA, and DA are the probability that the play will 
be executed as intended by the attacking team. Team 
B has a set defensive policy with probabilities AD, 
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BD, CD, and DD of successfully defending moves AA, 
BA, CA, and DA respectively. We can therefore write 
this as: 

Team A (AA, BA, CA, DA) 
Team B (AD, BD, CD, DD) 

For example:  
Team A (0.8, 0.6, 0.3, 0.2) 
Team B (0.95, 0.85, 0.1, 0.2) 

So here Team B adopts a defensive structure, which 
gives Team A the option of scoring via move AC or 
AD, but defending moves AA and AB more 
effectively (e.g. AA and AB are quick release plays 
focusing attack on the central area of the field, 
whilst AC and AD focus attack towards the sidelines 
with for example a long pass). 
In order to model this situation, assume that if Team 
B executes defence correctly, with the probabilities 
show above, Team A will not score from this 
particular play. In order to score it is required for the 
defence to be unsuccessful at blocking all options 
for this particular attack and given that this attack 
would be presented with an opportunity to score, 
that Team A successfully executes the appropriate 
option for this particular play. To re-iterate, in order 
to score a touchdown, Team A must execute an 
attack correctly, given that B does not defend it 
successfully. 
We must therefore consider the probability that 
Team A executes their attack correctly and Team B 
fails to defend this. Therefore firstly consider 
whether A and B can be considered as independent 
events. They may well not be so. Certainly it is well 
known in sport that a defence that exerts a great deal 
of pressure on an attacking team may change (most 
likely reduce) successful execution of a move. This 
could be incorporated into the probabilities of the 
defence successfully stopping the attack, as a 
probability of either directly stopping the move or 
applying pressure which results in its failed 
execution. However some teams may respond to this 
pressure better than others so if probabilistic 
descriptors are to be designed for incorporation into 
team statistics then this is best done as a component 
of the attacking team statistics. There is the 
possibility for development of a factor that 
represents pressure. If the defensive team can 
pressurise the attacking team it could be 
incorporated into model design such that it will 
activate a pressure function built into the attacker’s 
probability of success. This could vary across teams, 
for some teams reducing the chance of successful 
execution of a move, while for other teams it would 
have little or no effect. This however is very hard to 
quantify. Whilst the average defending and attacking 
probabilities, or even the time taken to execute 

stages within an attack or defence can be easily 
measured using game video data, the pressure a team 
places on another team and how it affects the 
probability of executing an attack is difficult to 
measure purely from game data. It could be 
considered that the distance of defending players 
from attackers and their approach 
velocities/accelerations could be extrapolated in 
order to develop a play pressure function. This could 
then be incorporated as an additional factor affecting 
execution of a particular attacking move. This would 
be different for different teams as some teams would 
absorb this pressure poorly and the probability of a 
successful score would decrease. Additionally others 
would absorb it well, or at a higher level use the 
momentum of the defenders to contribute to the 
successful execution of the first and/or second phase 
execution of their scoring strategy. This could be 
examined via analysis of the success ratio of set 
moves and if this success was dependant on the 
distance of the defending players from the attackers. 
Hypothetically this would be an interesting option to 
examine. However, consider this case for teams with 
a good level of experience where there is enough 
game data to be of use to the coaching team. In this 
case, if there was enough data to extrapolate a 
displacement function, the condition would be most 
likely purely academic. This is because most teams 
at this level would place pressure on the opposition 
on all plays and all plays would be executed under 
defensive pressure. It would be most likely that 
without any pressure from the defensive structure, it 
would become very easy to execute most moves and 
this fact would be well known to the higher level 
performer. For the lower to intermediate level teams 
with poor technical skills and limited technical 
coaching the pressure would fluctuate with each 
defensive action. Excluding defensive mistakes 
(which would be represented by the defenders 
failing to execute the correct defence response as per 
the previously mentioned probability functions), at a 
higher level all defences would place pressure on the 
opposition for the key attacking players and plays 
would therefore be executed under pressure. The 
degree of pressure would be therefore factored into 
successful defensive probabilities as all attacking 
and defending teams at a high level would be used to 
applying pressure and operating under pressure, so 
this could be fairly assumed at all plays. There are 
some plays which (such as players that are to throw 
a long pass standing deeper and thus further from 
advancing defenders or giving the ball to an 
intermediate, unpressured player that is situated in a 
preferential isolated position to allow undisturbed 
execution of the pass) are designed to reduce 
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pressure on the key players at the key points in the 
play. This bonus would however already be 
represented in probabilities for correct execution of 
the particular play as it would be a higher value 
anyway, as it would already be accounting for the 
fact that this helped for a given team’s execution of 
this play. Importantly some moves are best 
conducted when the defenders are very close to the 
attackers in order to reduce the opportunities for the 
defence to accurately read the play. Therefore use of 
a displacement from opposition based pressure 
function would not be appropriate for all plays and 
at this stage in model development it is best to make 
an approximation. This approximation would be that 
at high level of performance, attacking players are 
used to being pressurised by defence. The defence 
pressurises attacking teams according to their 
defensive probability functions and therefore 
independency within probability functions can be 
assumed to exist between attack and defence 
probability functions, but overall probability of 
scoring is dependant on both of these functions, 
therefore implying that this latter probability has no 
degree of independence. 
If Team B’s defence and Team A’s attacking 
probabilities, as expressed above, are independent 
then:  

 
Figure 1: Defensive and Offensive probabilities for an 

attack by Team A against Team B 
 

A∩B = P(A)(1-P(B)) 
 
Let us now use Teams A and B from our previous 
example. The chances of scoring on any set play for 
set plays A-N are given as follows:  
The chance of Team A scoring on any set play (A-
N) against opposition B are given below: 

(P(AA)(1-P(BA), P(AB)(1-P(BB)), P(AC)(1-
P(BC)),……, P(AN)(1-P(BN)) 

 
Giving for our example two teams: 

(0.8(0.05), 0.6(0.15), 0.3(0.9), 0.2(0.8)) 
 
Which equates to: 

(0.04, 0.09, 0.27, 0.16) 
This implies that the coaching staff are best to 
employ moves C and D against this particular 
defence. These are also the attacking options that the 

defensive team are making available to the offensive 
side, this is because these moves are those which the 
offensive team is least capable of executing 
successfully, however due to the defensive structure 
presented, they become the most beneficial attacking 
options for scoring. Extrapolating this concept, if 
sufficient data on defending or attacking teams is not 
available then a probability could be estimated from 
successful execution of a particular class of 
defensive or attacking strategy. 
Consider now offensive and defensive line attack 
profiles for Teams A and B 

Team A  
Attack profile (0.8, 0.6, 0.3, 0.2) 
Defence profile (0.8, 0.6, 0.3, 0.2) 
Team B  
Attack profile (0.95, 0.85, 0.1, 0.2) 
Defence profile (0.95, 0.85, 0.1, 0.2) 

We already have calculated P(Team A scoring 
against Team B), we now have P(Team B scoring 
against Team A) for the various scoring options 
available 
= (0.9(0.2), 0.85(0.4), 0.3(0.7), 0.1(0.8))  
= (0.18, 0.34, 0.21, 0.08) 
While this hypothetical data is just for successful 
execution of line attack/line defence, it can be seen 
that per attack executed, the best attacking options 
for Team B, when playing against Team A are 
options B, C, A, D in that order. Different attacking 
options work well against different defensive 
patterns and rely on the attacking team being able to 
adapt to the scoring opportunities presented by a 
particular defensive structure. 
It can be clearly seen that different line attacks are 
optimal for different teams and when facing 
different defensive structures. For example Team B 
may have not employed a man on man defence in 
order to provide opportunities for Team A to score 
with a long pass, whilst Team C may structure their 
defence in a manner that requires Team A to attempt 
to use their agility in order to score, by adopting a 
man on man defensive structure with profile: 

Team C (0.6,0.5, 0.8, 0.7) 
So for Team A: 
P(A scoring against C) = (0.8(0.4), 0.6(0.5), 
0.3(0.2), 0.2(0.3)) 
= (0.32, 0.3, 0.06, 0.06) 
This would imply that moves A and B are the 
attacking options with the higher probabilities of a 
successful score. This differs from those that should 
be employed against Team B due to the alternative 
defensive structure. 
A factor of interest is to consider whether there can 
exist teams D, E and F such that 
P(D scoring against E)> P(E scoring against D) 
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And  
P(E scoring against F)>P(F scoring against E) 
But 
P(D scoring against F)<P(F scoring against D) 
 
3. RESULTS 
Let us now define the parameters that govern the 
probabilities that these teams will successfully score 
or defend a given play. Clearly it is easier to 
engineer such a situation with more attacking plays 
and their corresponding probabilities for defence 
available to choose from for each team. However we 
will consider if this is possible for a situation with as 
few as two attacking plays and their corresponding 
defence for each team. Let Team N have attacking 
plays αN and βN and defensive structure such that the 
probabilities of stopping these two plays are γN and 
δN respectively. We can therefore express each team 
as a 1x4 probability matrix such that 
 

Team N is given by (αN, βN, γN, δN) giving 
us 
 
Team D (αD, βD, γD, δD) 
Team E (αE, βE, γE, δE) 
and 
Team F (αF, βF, γF, δF) 

 
Given the assumption that the correct tactical 
approach is chosen by the coaching staff/players 
with regard to the attacking play selected against a 
particular defence (which is a reasonable assumption 
given at a high level, coaches are well aware of the 
strengths, weaknesses and methodologies of their 
opposition): 
 
If P(D scoring against E)> P(E scoring against D)  

Then Either     βE(1-δD)<αD(1-γE)>αE(1-γD) 
Or                   βE(1-δD)<βD(1-δE)>αE(1-γD) 

 
If P(E scoring against F)> P(F scoring against E) 

Then Either     βF(1-δE)<αE(1-γF)>αF(1-γE)   
Or                   βF(1-δE)<βE(1-δF)>αF(1-γE) 

 
Similarly if P(F scoring against D)> P(D scoring 
against F) 

Then Either     βD(1-δF)<αF(1-γD)>αD(1-γF)   
Or                   βD(1-δF)<βF(1-δD)>αD(1-γF) 

 
Of course if we cannot assume that the correct 
attacking play is chosen against a particular defence, 
then for one of these teams to have the better chance 
of scoring than its opposition obviously we need to 
change the conditional nature of these equations to a 
situation where both conditions apply for each set of 

teams. So for example for teams D and E, if P(D 
scoring against E)> P(E scoring against D) 

Then Either     βE(1-δD)<αD(1-γE)>αE(1-γD)   
And                   βE(1-δD)<βD(1-δE)>αE(1-γD) 

 
Let us however once again return to the situation 
where the offensive team have chosen the correct 
attacking option. Consider the following situation: 
α and β are two types of attacking play focusing on 
exploiting different kinds of defence. Usually there 
will be significant difference in the ability of a 
defensive team to defend against each of these 
attacks as there will be a different focus on both 
plays and they will be designed to exploit very 
different defensive shortcomings. Let us assume 
that: 
Team D can successfully execute an attacking play α 
with a higher probability than play β.  
Team D can defend attacking play β with higher 
probability than attacking play α. 
Team E can successfully execute an attacking play β 
with a higher probability than play α.  
Team E can defend attacking play β with higher 
probability than attacking play α. 
Team F can successfully execute an attacking play α 
with a higher probability than play β.  
Team F can defend attacking play α with higher 
probability than attacking play β. 
If the teams are described by the following matrices: 

Team D (αD, βD, γD, δD) 
Team E (αE, βE, γE, δE) 
and 
Team F (αF, βF, γF, δF) 

 
First we can consider the following example of such 
a situation: 

Team D (0.6, 0.5, 0.5, 0.6) 
Team E (0.5, 0.6, 0.5, 0.6) 
and 
Team F (0.6, 0.5, 0.7, 0.4) 

If P(D scoring against E)> P(E scoring against D)  
Then Either     βE(1-δD)<αD(1-γE)>αE(1-γD) 
Or                   βE(1-δD)<βD(1-δE)>αE(1-γD) 

 
So  

Either     0.6(0.4)<0.6(0.5)>0.5(0.5) 
Or                   0.6(0.4)<0.5(0.4)>0.5(0.5) 

Giving 
Either     0.24<0.3>0.25 
Or           0.24<0.2>0.25 

The first condition being met, implying that by 
selecting the correct approach, P(D scoring against 
E)> P(E scoring against D). 
Similarly if P(E scoring against F)> P(F scoring 
against E) 
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Then Either     0.5(0.4)<0.5(0.3)>0.6(0.5)   
Or                   0.5(0.4)<0.6(0.7)>0.6(0.5) 

The second condition being met, implying that by 
selecting the correct approach, P(E scoring against 
F)> P(F scoring against E). 
Similarly if P(F scoring against D)> P(D scoring 
against F) 

Then Either     0.5(0.4)<0.6(0.5)>0.6(0.3)   
Or                   0.5(0.4)<0.5(0.4)>0.6(0.3) 

The first condition being met, implying that by 
selecting the correct approach, P(F scoring against 
D)> P(D scoring against F). If we model these three 
teams as having an equal ability to gain sufficient 
field position in order to structure an attacking play, 
then all teams have an equal probability of making a 
given number of scoring attacks. Therefore if a team 
has a higher probability of scoring once it is in this 
attacking position it will also have a higher 
probability of winning the game. Since P(D scoring 
against E)> P(E scoring against D), P(E scoring 
against F)> P(F scoring against E) but P(F scoring 
against D)> P(D scoring against F) the probability of 
one team beating another at a sport with similar play 
structure to that discussed in this paper has thus been 
shown to not be of an associative nature.  
Assuming the teams are similar in ability with their 
more successful offensive and defensive options 
having probability n+∆, and their less favoured 
options having probability n, where 0<n<1, ∆<n, 
0<∆>1 and n+2∆<1, then we can consider this 
algebraically. Clearly If Team D has an attacking 
option for which Team E’s defence does not 
optimally defend, but for Team E’s favoured 
attacking option Team D can more optimally defend, 
Team D would stand more likelihood of prevailing 
in this encounter. For this situation the matrices 
become: 

Team D (n+∆, n, n, n+∆) 
Team E (n, n+∆, n, n+∆) 

 
If P(D scoring against E)> P(E scoring against D)  

Then Either     
(n+∆)(1-(n+∆))< (n+∆) (1-n) >n(1-n)  
Or   (n+∆)(1-(n+∆))< (n) (1-(n+∆) >n(1-n) 

Clearly by inspection, given the parameters 
confining the values of the variables, the first of 
these equations is correct, whilst the second is not 
valid. This therefore confirms the previous 
observation with regard to these two teams. 
We can then consider a Team F for which the 
favoured defensive option is the opposite focus, but 
of similar standard to teams D and E, however the 
attacking structure is less specialised, meaning 
players can execute a range of different attacking 
options, though none as well as the more specialised 

teams D and E. A real world example of this would 
be the situation where Team D has an exceptional, 
highly agile team or player able to execute a variety 
of stepping, or diving plays relying on the superior 
agility of their players. Team E meanwhile might 
have a player or players that are less agile, but 
highly proficient in a long range passing game. 
Team F might have players able to execute attacking 
players with less proficiency than the other two 
teams but might able to use both styles in their 
attack. Therefore we have:  

Team F (n+0.5∆, n+0.5∆, n+∆, n) 
If P(E scoring against F)> P(F scoring against E)  

Then Either     
(n+0.5∆)(1-(n))< (n+∆)(1-n) > (n+0.5∆) (1-
(n+∆)) 
Or  
(n+0.5∆)(1-(n))<(n)(1-(n+∆))>(n+0.5∆)(1-
(n+∆)) 

Clearly via inspection, the conditions in the first line 
are met, but the conditions in the second line are not. 
Therefore P(E scoring against F)> P(F scoring 
against E) and assuming other variables governing 
the performance of the two teams are comparable, 
Team E should win this encounter. 
However these conditions are not met for Team D. 
In fact, examining this relationship 
IF P(F scoring against D)> P(D scoring against F)  

Either (n+∆)(1-(n+∆)) < (n+0.5∆)(1-(n)) > 
n(1-n) 
Or (n+∆)(1-(n+∆)) < (n+0.5∆) (1-(n+∆)) > 
n(1-n) 

Then from the first of these two equations, Team F 
should have the higher probability of scoring, 
provided ∆> 0.5 -1.5n. This can be displayed 
graphically as per Figure 2.  
Consider Team G (n, n, n+2∆, n). Clearly via 
inspection P(F scoring against G)> P(G scoring 
against F).  Additionally (E scoring against G) > P(G 
scoring against E) also by inspection. For (D scoring 
against G) > P(G scoring against D)   

Then Either     
n(1-(n+∆))< (n+∆) (1-(n+2∆) >n(1-n)  
Or   n(1-(n+∆))< (n) (1-(n)) >n(1-n) 

The success probabilities of D’s attacks are therefore 
(n+∆) (1-(n+2∆) and n(1-n). While for G these are 
n(1-(n+∆)) and n(1-n).   
Clearly (n+∆) (1-(n+2∆) >n(1-(n+∆))< n(1-n) 
Therefore if (n+∆) (1-(n+2∆)< n(1-n) D has greater 
probability of attack success. Which is so if 
3n+2∆>1. If 3n+2∆=1, the two teams attacks having 
equal chance of success, whilst if 3n+2∆<1, Team G 
is more likely to prevail in this contest.  
Expanding this model it can be shown that given 
n+Γ∆<1 and Γ>0, any team (n, n, n+Γ∆, n), will be 
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defeated by teams E and F. If Γ=(1-n)/( ∆+n) this 
team will have an attack as effective as Team A’s 
best attack and the teams (within the confines of this 
limited model) can be considered equivalent. If 
however, Γ is less than this value Team A has the 
most effective attacking option and if Γ is greater 
than this value, Team A has a less effective options 
to select in attack than the primary option of this 
other hypothetical team. 

 
Figure 2: Area indicating Team F’s probabilities of 
scoring. The coloured area meets ∆> 0.5 -1.5n and 

n+2∆<1 for 0<n<1, 0 >∆<0.5. 
 

 
Figure3: Graph of probabilities between Team D and 

Team G. Coloured area indicates region for which 
3n+2∆<1 and n+2∆<1 for 0<n<1, 0 >∆<0.5. 

 

 
Figure 4: Graph of Γ=(1-n)/( ∆+n), the area below this 

three dimensional surface satisfies the condition Γ<(1-n)/( 
∆+n), a requirement for the hypothetical team defined 
using parameter Γ, to have a more effective attacking 

option than any of team A’s options. 
4. DISCUSSION 
Just because a team is better at line attack/defence 
than another team, it does not mean that they are the 
better team. The teams must also drive the ball to the 

position where they can set up an attempt to line 
attack, something the other team is trying to stop 
them from doing. For an effective model of a game 
of touch football we need to consider the different 
phases of the game and the transition between the 
different phases. This however must be developed in 
steps and this paper is focused on the initiation of 
model development with room for future expansion.  
This examination of one component of the sport of 
touch football needs to be further examined and 
modelled within the context of models representing 
the other game elements. Once this is done this 
model needs to be examined with respect to real 
game data. If the non-associative nature of this 
relationship is found to be statistically significant 
then this will have implications for this category of 
sport. Provided this significance can be extrapolated 
to the probabilities of winning/losing a game (e.g. if 
the teams were equal in other parameters), then these 
implications would include tournament design, 
particularly with relevance to the finals structure of 
tournaments. An example of this would be coaching 
decisions with regard to purposefully losing games, 
or failing to win games by a given margin in order to 
change tournament finals placing and receive a more 
probabilistically favourable pathway to the final. 
Certainly the potential for purposefully losing games 
is not a new concept. We have already seen one 
example of this in the NBA, where there is a 
prospect to gain higher honours and greater renown 
at a later stage, it is clear that purposefully losing 
games is a path that could feasibly be taken by some 
teams. This sort of ethical choice would be shown to 
be necessary if this non-associative nature of 
winning probabilities was found to be of 
performance significant. Of course this would be in 
the context of sheer mathematical probabilities of a 
winning result, without consideration of moral and 
psychological issues. It must also be remembered 
that whilst recognition and reward are known to 
enhance the effort from competitors, it is also clear 
that uncertainty as to whether this recognition will 
correctly be given reduces this effort. A team may 
be playing in a tournament where they could be 
eliminated by a generally less effective team, but 
with a structure that is more effective in this 
particular situation. According to the literature the 
possibility and uncertainty generated by this would 
therefore reduce effort from competitors, 
undermining a primary goal of tournaments. 
The implications of this study can be applied to 
other sports with similar strategies, which defend 
one or two particular attacking options specifically 
at the expense of others. The relevance of this will 
therefore vary from sport to sport, however in 
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certain sports, such as for example gridiron and 
touch football team defences will adopt certain 
formations which present a favourable attacking 
option, which is tailored to the relative strengths and 
weaknesses of the two teams. Often as indicated in 
the introduction the strengths and weaknesses of a 
given opponent will be well known at a higher level. 
This situation would however only of course apply if 
these results are based on a series of league type 
match results involving many different teams. Of 
course in the situation in which these predictions 
were based on a series of results involving events 
with only the same two teams involved in each event 
the conditions of the associative nature of 
predictions between 3 or more teams would not be 
relevant as only two teams are used to supply data 
sets. 
 
5. CONCLUSIONS 
Many factors are discussed and some only in outline, 
requiring further evaluation and exploration in future 
papers. The simple probabilities involved within this 
paper could be crudely estimated from observing 
game data. This paper however, allows some ability 
to look into the statistical significance of any trends 
based on number of data points selected from and 
allows, whilst crude, at least some degree of 
quantifiable basis for results prediction and attacking 
or defending options chosen by coaches. For 
example which moves and defensive options will be 
most appropriate against which opposing teams 
This paper simply and logically shows that the most 
important part of touch football, namely the action 
of attacking the scoreline to score touchdowns and 
the defence of this line can be shown to be non-
associative between different teams. This was done 
by consideration of as few as two attacking options 
and their associated defence. Clearly the likelihood 
of such a non-associative situation arising in a 
tournament can be considered more likely when a 
range of dozen or so plays are well practiced by all 
times given that such a situation can be engineered 
with as few as two different attacking plays. 
As discussed in the introduction, one of the 
important aspects of a tournament is that the best 
team wins when a particular tournament system is 
used. Logically it is therefore also important that the 
second best team finishes in second place, whilst the 
third best team finishes in third place and soon. This 
is particularly important when medals, trophies or 
other accolades are awarded for these places. It is 
therefore important that the correct finals structure is 
identified to facilitate this. Whether the probability 
of winning a game is of an associative nature when 
considering games between several teams ranked as 

being of different standard is an important issue to 
consider. This may well in fact be an important 
consideration not just for touch football, but 
additionally for other similar invasion type games 
such as gridiron and rugby league. 
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Abstract 
 
The International Sports Shooting Federation (ISSF) World Cup Series for air pistol consists of four events 
each year.  Each event comprises two stages: four qualifying rounds and a final round for the top eight 
competitors.  This paper considers best predicting the outcome of both qualifying and final rounds throughout 
the event, as well as how this information can be utilised to develop a guide for shooters wanting to improve 
their standing during competition.  Due to the differing scoring methods used during an event a two staged 
approach was required and a variety of methods and models examined to best evaluate this, including multiple 
and logistic regression, discriminant analysis and simulation.  The 2005-2008 World Cup Series results in the 
Women’s 10m Air Pistol were used with a simulation derived from distribution and probabilities determined 
to be the most appropriate and accurate method of prediction.  This was confirmed in practice using data from 
a single World Cup competition held in 2009. . [Anthony, I did not want to change the abstract as I am not 
sure of the form in which it was submitted however think it may be appropriate to mention data  
 
Keywords: simulation, modeling, shooting, prediction 
 
 

 
1. INTRODUCTION 
 
With its beginnings in war, hunting and archery, the 
first known competitive shooting event occurred in 
Bavaria late in the 15th Century.  A painting from 
Switzerland from the early 16th Century depicts a 
rifle match reminiscent of modern setups, and 
wooden targets from the same era are somewhat 
common in German collections. 
 
Since its inception in 1896, the modern Olympic 
games has hosted shooting events utilising both live 
and static targets. Although few women participated, 
competition was technically mixed gender. In the 
1970s a female competitor was awarded the silver 
medal for a rifle event.  In 1984 several women’s 
events were introduced, however it was not until the 
early 1990s that mixed gender competition was 
abandoned completely. The 10 metre Women’s Air 
Pistol, the subject of this research, was introduced to 
the Olympic agenda in Seoul in 1988. 
 

The International Shooting Sport Federation (ISSF) 
has existed in one form or another since 1907 and is 
now the preeminent governing body for several 
shooting disciplines. In 1986 the ISSF initiated the 
World Cup series in response to a request from the 
International Olympic Committee for a qualification 
system. World Cup performances can be 
acknowledged as world records. 
 
Competition ranges from Olympic Games and 
World Cups, held in Europe, North and South 
America, Asia and Australia, through to regional 
contests, with numerous events in shotgun, rifle and 
pistol.  The number of competitors can vary greatly, 
possibly due to the depth of competition level, 
location and timing, and has observed to be 
anywhere between 40 and 140 participants. 
The women’s 10m air pistol begins with four 
qualifying rounds consisting of 10 shots each. 
Interestingly, each shot score is rounded down to the 
nearest whole number (i.e. using a floor function), 
resulting in a maximal single shot score of 10, 



214 A Two-Stage Simulation to Predict Medalists in Pistol Shooting 

  

maximal round score of 100, and maximal 
qualifying score of 400. 
 
Upon completion of qualifying rounds, the top eight 
competitors advance to the final, with a shoot-off 
adopted in the case of a tie for eighth place.  It is at 
this point that the scoring method is unique.  Scores 
are cumulative throughout the tournament and each 
shot during the final is scored to one decimal place, 
resulting in a maximum final round score of 109 (i.e. 
ten shots of score 10.9) yielding a total potential 
event score of 509.0. The competitor with the 
highest total is awarded gold, next silver and third 
bronze with competition often incredibly close. One 
observed event concluded in a tie breaking shoot-out 
with the gold medal decided by only 1mm. 
 
A computerised target system is utilised for scoring, 
feeding back results at the conclusion of each 
qualifying round and after each final round shot, 
typically on a monitor.  Strict rules apply in relation 
to timing between shots. 
 
Forecasting the results of competitive sporting 
events is a much-considered topic in literature; 
however it is ratings models that prove popular in 
this regard.  Most models utilise the past 
performance of the relevant individual or team.  A 
noteworthy exception is the method formulated by 
Duckworth and Lewis (1998). Used to reset targets 
in interrupted cricket matches, it is a method 
formulated from past scores and suitable for use at 
the different stages of play for any teams.   
 
Specific papers on the prediction of sports shooting 
and multi-staged approaches were not found. 
Utilising a complete set of data from the women’s 
10m Air Pistol World Cup events for the years 2005-
2008 (excluding World Cup Finals), we aim to 
construct a dynamic in-competition method of 
predicting the outcome of both the qualifying and 
final rounds for all competitors.   
 
2. METHODS 
 
As a precursor to the approaches taken, we need to 
consider the nature of shooting data utilised in this 
research. 
 
2.1. The data 
 

The qualification stage (for our purposes, stage one) 
of the tournament consists of four rounds of ten 
shots. Let us denote the score at round i for player k 
as Ri,k , which is the sum of each shot at shot j, 
denoted sj,k , rounded using the floor function as in 
(1) below 
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The cumulative qualifying score at round i for player 
k is given by Qi,k which is given as 

∑
=

=
i

m
kmki RQ

1
,,    (2) 

where }.4,3,2,1{∈i  

 
The use of the floor function in scoring has a bearing 
on (2) especially for shooters that are shooting 
scores ‘close to the integer’. For instance, suppose 
shooter A scores {9.2, 9.3, 9.2, 9.4, 9.8, 9.6, 8.8, 8.9, 
10.1, 9.9} which sums to 94.2 and receives Ri,k =89. 
This exhibits no difference to a shooter B scoring 
{9.6, 9.5, 9.9, 9.8, 9.5, 9.9, 8.9, 8.9, 10.5, 9.9} which 
sums 96.4 yet also receives Ri,k =89. 
 
The finals stage (for our purposes stage two or round 
five) consists of ten shots measured to the single 
decimal level. To make this stage shooters must 
make it into the top eight at round i=4, with tie-
breaking procedures used if there is equality in 
scores for eighth.  
 
Scores from (2) are added to the ten final shots to 
form the grand total, Gi,k with ranks deciding the 
final order, so 

k

i

j
kjiki QsG ,4

1
,}0{, 1 +⋅= ∑

=
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}10,...,0{,9.100where , ∈≤≤ is kj and }{1 k is the 

indicator function taking value 1 when k is true. 
 
The distribution of the data in the qualifying rounds 
is left-skewed, which is to be expected given the 
nature of the sport (predominately good shots, very 
few poor and excellent). In the data for the 
qualifying rounds, a score of 100 occurs only 
(approximately) 0.2% of the time, a score of 99 
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occurs only 1.1% of the time; and 98 around 4% of 
the time (see Table 1). 
 

Score R1 R2 R3 R4 Total 
  Frequency   
98 59 53 42 53 207 
99 13 21 15 6 55 
100 1 2 2 3 8 
  % Frequency   
98 4.5% 4.0% 3.2% 4.0% 4.0% 
99 1.0% 1.6% 1.1% 0.5% 1.1% 
100 0.1% 0.2% 0.2% 0.2% 0.2% 
Table 1: Frequency and Percentage Frequency of top 
three round scores 
 
 However we found that in the finals round the data 
was roughly symmetrical; part of this is due to the 
fact that each shot is now measured and recorded to 
one decimal place (which allows for wider 
dispersion). Another explanation could be that 
players may 'give up' when out of medal contention. 
 
So, given that there are differing stages, and 
different scoring systems within, a two-stage model 
was required to predict qualification and finals 
place. The how is now for discussion. 
 
2.2. Preliminary Analysis 
 
Prior to arriving at the appropriate method, a variety 
of models were explored, including multiple and 
logistic regression; and discriminant analysis.  
Whilst some interesting results were observed, these 
were determined to be inappropriate given the 
dependant nature of the data. Ultimately it was 
decided that a simulation model derived from the 
distribution of probabilities of all past scores, rather 
than grouped past performances of an individual, 
was the most applicable method for investigation.  
 
2.3. Probabilities and the Model 
 
To calculate the probability of the available 
outcomes for any given round score Ri it was first 
necessary to categorise the data into bands. For the 
first stage this was determined by mapping the total 
qualifying round score (i.e. Qk) over three bands, 
namely scores always observed qualifying at the end 
of round 4 (Q), scores sometimes observed (maybe) 
qualifying at the end of round 4 (MQ) and scores 
never observed (do not) qualifying at the end of 
round 4 (DNQ). Following this, counts are 

performed on the bands to determine the likelihood 
of falling in one of the three bands for each Ri,k. So 
essentially, we are determining the conditional 
probability of Q, MQ and DNQ given the current 
round score. 
 
Similarly, categorising the data was necessary in 
stage two, however due to the more precise nature of 
the scoring, a different approach was required.  
Banding was again determined by the final outcome, 
in this case medal and no medal, however counts 
were performed on the shots observed within each 
cumulative rank rather than score. This approach 
was imperative due to the dependent nature of final 
stage score on qualifying as seen in (3). Bands were 
divided into medal (M) and no medal (NM) as 
defined previously in the paper. Probabilities can 
again be calculated using these figures. 
 
2.4. Data smoothing 
 
Once the bands were determined and probabilities 
calculated, a degree of noise was found. Sargent and 
Bedford (2009) demonstrated that application of a 
non-linear smoother to AFL data improved 
forecasting by removing noise.  Here several 
smoothing methods are applied to both the 
qualifying and final round data.  Initially, stage one 
probabilities were interpolated if there was a need to 
account for any as yet unobserved scores.  Following 
this, a Tukey T4253H smoother was imposed on the 
transition probabilities for both stage one and two 
data (see Figure 1). Tukey (1971) offers a diverse 
mix of nonlinear smoothers using running medians 
with which to remove unwanted noise from data 
sets. A comprehensive discussion on the use of 
median smoothers is given in Sargent and Bedford 
(2009). As an example of the need to utilise the 
T4253H smoother, Table 2 provides the values and 
effect of the smoother as applied to the round 1 
probabilities for band Q. 
 
As seen for a score of 99, the P(Q│R1,k = 99) < 
P(Q│R1,k = 98) due to sample variation. This is was 
seen as an unlikely outcome, given that P(Q│R1,k = 
100) = 1, thus the smoother was used. For notational 
purposes, we denote the smoothed probabilities as 
P*. 
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R1 P(Q│R1) P*(Q│R1) 
91 0 0 
92 0.01 0 
93 0.00 0.01 
94 0.03 0.04 
95 0.08 0.07 
96 0.12 0.11 
97 0.13 0.16 
98 0.29 0.25 
99 0.23 0.49 
100 1 0.87 
   

 
Table 2: Round 1 scores banded by the chance of 
qualifying (Q) at the end of Round 4; raw and 
smoothed likelihoods. 
 
A similar process was applied to date for the finals 
round. However, due to the variability in Qk, 
attempting to band based on this measure yielded 
farcical scenarios.  
 
Suppose that in tournament 1, the gold medal score 
was 493.1. In tournament 2, let Q1 = 370 for the top 
qualifier. Based on Q1 in tournament 2 it would be 
impossible to reach the gold medal score of 
tournament 1. Thus prediction of a medal based on 
entering score in poorer tournaments may yield 
predictions outside of reasonable bounds. 
Specifically, it would predict that no one would win 
a medal!  
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 

The same process was used for each shot in the final 
round, however scores were replaced with ranks. 
The bands were divided into medal (M) and no 
medal (NM). Table 3 provides the smoothed values 
for ranks at the end of round 1. Again, for notational 
purposes, we denote the smoothed probabilities as 
P*. 
 

rank(s1) P*(M│s1) P*(NM│s1) 
1 0.75 0.25 
2 0.70 0.30 
3 0.58 0.42 
4 0.39 0.61 
5 0.22 0.78 
6 0.13 0.87 
7 0.11 0.89 
8 0.11 0.89 

Table 3: Post final round shot 1 scores banded by the 
chance of medal and non medal (M, NM); raw and 
smoothed likelihoods. 
 
2.5. Probability distributions 
 
We define the process results detailed in 2.4 as 
follows. 
 
Let  

)|(* , xRzP kii ==Ω   (4) 

 
where { } { }400,...,0,,, ∈∈ xDNQMQQz  and 

iΩ denotes the adjusted probability of qualify, 

maybe qualify or do not qualify for any player k at 
round i where the round score R is value x. 

Band data by Ri 
into Q, MQ, 
DNQ  

Determine P(Q│R); 
P(MQ│R); 
P(DNQ│R). 

Apply T4253H 
smoother to all 
probabilities. 

Standardise 
probabilities 
/ interpolate iΩ

if i<3 then 
i=i+1 else 
Stage 2  

Band data by sj,k 
into M,NM  

Determine P(M│s); 
P(NM│s). 

Apply T4253H smoother 
to all probabilities. iΨ

if i<9 then i=i+1 else 
end.  

Figure 1: Flowchart of the smoothing process to obtain classification likelihoods. 
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Let us also denote 
 

))(|(* , xGrankzP kii ==Ψ  (5) 

 
where { } { }8,...,1,, ∈∈ xNMMz  and iΨ is the 

adjusted probability of medal or no medal for any 
player k at round i where the cumulative score G is 
ranked  x. The above set of probabilities yield quasi- 
transition matrices used in the simulation at each 
stage of the tournament. For example, for i =1, 
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so a player at score 90 or lower always fits into the 
DNQ band of shooters and a player at score 96 has a 
11% chance of being a Q, 31% of MQ and 58% of 
DNQ. If a player falls into the DNQ band this does 
not imply that the player will not qualify, rather that 
this shot at this stage typically came from a player 
that DNQ. This logic will be visited in the next 
section. 
 
In similar vein for shot i =0 (i.e. before the first shot 
of the finals round) 
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so a player ranked sixth to eighth at the end of 
qualifying won a medal 15% of the time.  
 
So a complete tournament consists of a qualification 
stage { }321 ,, ΩΩΩ and finals stage 

{ }9210 ,,,, ΨΨΨΨ … . These transitions alone do not 

offer any solution as such; they are simply the 
likelihood at stage i to either qualify or win a medal. 
However, coupled with both actual and forecast 
scores, we can determine an approximate final 
qualifying score and rank and if in the top eight, 
medal position at any stage. Let us now set up this 
process.  
 
2.6. Simulation of Ri and sj,k 
 
The ability to forecast the likelihood of qualifying, 
and medalling, required extensive distribution fits. 
Whilst we first had estimates of conditional 
probabilities of both qualifying ( )iΩ and 

medalling( )iΨ , we then needed to fit the 

distribution of scores for the corresponding 
predicted states on actual data. That is, we then used 
the banded scores at each round to determine the 
distribution of shots at stage i. This was fundamental 
to realistically simulating tournaments. For example, 
if a player shoots a round 1 score of 93, they have a 
12% chance of MQ. So, given this information, what 
is the distribution of shots for all players at round 1 
given that are in the state MQ? Players that shot a 93 
may well go on to shoot a 100, others maybe a 90, 
however all players in this range have a distribution 
of shots. For this we utilised the @Risk package, 
and found all scores for shots fired within each band 
followed the binomial distribution. 
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So our final model consisted of distribution fits for 
each qualification type (Q, MQ and DNQ) and each 
stage Ri when i = 2,3 and 4; and distribution fits for 
two finals outcome (M, NM) of rank(Gi,k) for each 
stage i = 0,..,9 in the finals. So, let 

),(~ ,,, mimimi pnBXQ   (6) 

be the distribution of shots for the qualification 
rounds, Ri when i = 2,3 and 4 and player k is in state 

{ }DNQMQQm ,,∈ . Also, let 

 

),(~ ,,, mimimi pnBXF   (7) 

be the distribution of shots for the finals rounds, 
when i = 0,…,9 and player k is in state 

{ }NMMm ,∈ . This feeds into the final simulation 

model, with the process detailed in Figure 2. 
 
3. RESULTS 
To begin testing of the simulation, we simulated a 
hypothetical tournament 10,000 times. We set the 
tournament length to k = 56 competitors. As a way 
of validating the simulation, we investigated the 
distribution of scores throughout the tournament; the 
type of competitor that wins a medal; and the scores 
by final rank. Given this was a hypothetical 
tournament, the first round was also simulated, 
something which is of no use in practice. 
 
Stage 1: Qualifying Simulation Set Up 
 
 
 
 
 
 
 
 
 
 
Stage 2: Finals Stage Simulation 
 
 
 
 
 
 
 
 
 
 
 

 To determine the likelihood of competitors winning 
a medal, we split the first round shots from excellent 
to good, i.e., from around 99 to 90. The rank of the 
competitors after round 1 was matched against all 
subsequent results. Notably, )()( 1RrankGoldP ∝ , 

with 
13.0)1)(|( 1 ≈=RrankGoldP

10.0)2)(|( 1 ≈=RrankGoldP and 
.08.0)3)(|( 1 ≈=RrankGoldP  

All competitors had won the gold at least once, 
indicating that it is at least possible to shoot the 
poorest R1 score and still win a gold medal. Whilst 
in many sports this is unlikely, shooting is different 
in that a comeback (and indeed failure) is still 
possible with three rounds remaining. 
 
Figure 3 below displays the likelihood of gold by 
rank in round 1. We also exhibit the distribution of 
finalists by round 1 rank using boxplots in figure 4. 
Notably, the dispersion for the IQR is tighter for the 
gold, and wider as the rank declines. 
 
In figure 5, we plot the distribution of all scores for 
the medallists. The output reveals an expected 
outcome, with the mean score for a gold medal at 
491.2, silver at 489.1 and bronze 487.7.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Generate 
Yi,k~U(0,1) 

i=1  k=1 if Yi,k < [ ]1,ixi =Ω else Generate 
Yi,k~U(0,1) 

Qii XQR ,1 ∈+  

if Yi,k < [ ] +Ω = 1,ixi [ ]2,ixi =Ω
           

else 
 

MQii XQR ,1 ∈+ DNQii XQR ,1 ∈+

if k<n then k=k+1 
else  

if i<5 else 
stage 2  

i= i + 1  

i=0 k=1 if Yi,k < [ ]1,ixi =Ψ else 

Miki XFs ,, ∈  

 

NMiki XFs ,, ∈
 

if k<8 then k=k+1 
else  

if i<9 else 
end sim.  

i= i + 1  

Figure 2: Flowchart of the simulation. 
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Figure 3. Round 1 rank by P(Gold). 
 
 

 
Figure 4. Boxplots of final position by round 1 rank. 
 
 

 
 
Figure 5. Distribution of scores for medals. 
 
The middle 90% of data for gold spans 488 to 494.6 
and contains 74.5% of silver. Only 0.2% of silver 
scores occur in the top 5% of gold scores. 
 
As a test case, we used the 2009 Munich World Cup. 
In this event, we had a interesting scenario whereby 
one competitor shot an R1 of 100, yet did not qualify 
for the finals. This meant the simulation would 
certainly be tested in terms of prediction ability, 
given this unusual outcome.  
 

First, we input all R1,k scores then simulated 20,000 
times to determine probability of medals, and top 
eight finish. We then re-simulated each stage, re-
entering results as if live. 
 
Table 4 exhibits the predicted mean round score for 
the top ranked position, and the eighth ranked 
position. Arguably it is the likely eighth that is most 
informative, as this provides an estimate of the score 
needed to qualify for the finals. After the second 
round of shooting, the simulation estimated the 
actual result and did not deviate from this prediction 
after the third round. 
 

 Predicted R4 at end Actual 
Position R1 R2 R3 R4 
1st  392 390 388 390 
8th 385 384 384 384 

Table 4: Predicted and actual results: Munich 09 
 
Using Table 4, we inspected the scores of all 
competitors and ascertained the required scores for 
round 4 for all competitors (shown in Table 5). 
Notably, two competitors needed ‘easy’ rounds of at 
least 93 (65.2% of all shots at this point were >=93), 
one competitor needed a 94 and shot a 92 to miss 
out. No competitor requiring 98 or more qualified. 
 

Score to Q Freq # qualify 
>100 66 0 
100 2 0 
99 5 0 
98 4 0 
97 5 1 
96 9 3 
95 3 2 
94 1 0 
93 2 2 

Table 5: Final round shots by estimated score of 384 
 
 
At the end of round 3, there were 15 competitors 
‘qualified’ due to a large number tied for seventh. At 
the end of round four, the 16th ranked round three 
competitor qualified with a final round of 97. 
 
Finally, we looked at  the predicted medal score at 
each point throughout the tournament. Again, the 
bronze estimate provides a reasonable medal 
estimate, and was typically underestimated 
throughout the tournament. 
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Figure 6: Predicted medal scores by Rounds 
 
Interestingly, the medal was decided by the last shot. 
Xin Tong (479.3) took the lead for the first time 
from Olena Kostevych (479.0) after the ninth shot in 
the final. Olena went into the final round with a huge 
five point lead, however shot several poor shots. On 
the final shot, Xin shot her worst for the final at 9.3, 
and Olena shot an impressive 10.4 to take gold. 
 
4. DISCUSSION 
 
The simulation time is of great importance given 
that the in-game use of the results. The simulation 
run time varied markedly by the number of 
competitors, given that for each competitor we had 
to simulate 22 distributions of data.  
For the Munich simulation, 20,000 simulations for 
91 players took around 20 minutes. As live data was 
added, the simulation run marginally faster, due to a 
reduced load on simulated data. For example, at 
20,000 simulations when R4 was unknown, runtime 
was around 10 minutes. Plans are underway to 
improve the runtime. 
 
The usefulness of the simulation becomes apparent 
when competitors need to know how they are 
performing, and particularly, an estimate of 
qualification requirements (or medals). As seen in 
the example given for Munich 2009, the score 
required to qualify for the finals converged to that 
observed by the end of round 2. This could simply 
be converted into an array of values needed for each 
competitor.  
Estimating the required number of iterations is 
important. For this work, we simply ran 20,000 
simulations, however utilising convergence of the 
estimates for the medals may shorten the number of 
simulations. Furthermore, we did not validate the 
bounds of error, and this will required more 
simulation work. 

The implemented simulation would need to be 
leaner, and the simulation can be cut down through 
the removal of multiple distribution simulations. 
Estimating effect size also remains important-we 
would like to know what it takes to win a gold medal 
with greater certainty. 
A set back might be that there is no dependency in 
shooting form; a ratings model might assist in 
improving prediction accuracy. 
The trial of the work with competitors is planned.  
The psychological aspect of such predictions is also 
very important. The knowledge of 
underperformance may have a negative rather than 
positive effect. This is an investigation of its own. 
 
5. CONCLUSION 
 
We have demonstrated the constraints and 
challenges faced in simulating a shooting 
tournament. The framework provided, whilst 
requiring further testing, is certainly capable of 
running live. We aim to further determine the 
specifics of winning medals and making the 
qualification stages therein. 
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Abstract  
 
Tennis is typically modeled using two parameters, pa, the probability player A wins a point on his service, and 
pb, the probability B wins a point on service (Carter and Crews, 1974; Pollard, 1983). Sports where serving is 
an advantage (e.g. tennis) or a disadvantage (e.g. volleyball), are called ‘bipoints’ (Miles, 1984), whereas 
sports where serving is ‘neutral’ (e.g. squash) are called ‘unipoints’. Although our primary interest in this 
research is related to tennis, the results are applicable to many sports, particularly ‘racquet family sports’. 
For many tennis matches the proportion of points won by each player on service is recorded. As the winner 
must have won the last point, last game and last set, the winner’s service statistics can have an upwards bias, 
and the loser’s service statistics a downwards one. We address several questions. For example, in a game, set, 
and match, what are the typical sizes of these biases? What is the size of the negative correlation between 
player A’s proportion of points won on serve, and player B’s? How does nesting (points within games, games 
within sets, and sets within the match) affect the bias? In volleyball for example where serving is generally a 
disadvantage rather than an advantage as in tennis, does the bias operate in a ‘reverse manner’ to tennis? The 
commonly used sports scoring systems, B2n-1 and Wn (n = 2), are studied. How does the bias in these systems 
change as n increases? Some of the examples in this paper might be of particular interest to teachers and 
students of probability and statistics. 
 

Keywords: Bias, tennis, squash, volleyball, best of 2n-1 scoring, win-by-two scoring, teaching 
probability and correlation/dependence, gambling in sport 
 

 
1. INTRODUCTION 
 
For many years tennis has been modelled using two 
parameters, pa, the probability player A wins a point 
on service, and pb, the probability player B wins a 
point on service (Carter & Crews, 1974, and Pollard, 
1983). Thus, games such as tennis and volleyball 
involving two types of points are called bipoints 
games, whilst games requiring only one type of 
point for accurate modelling, such as squash 
(Pollard, 1985), are called unipoints games (Miles, 
1984). Although our primary interest in this work is 
related to tennis, many of the results are applicable 
to the scoring systems used in other sports, 
particularly those in the ‘racquet family of sports’. 
In the first five subsections of the Methods section 
we consider various unipoints scoring systems. For 
these systems the outcome of a point does not 
depend on who is serving. In particular we consider 

the B2n-1 system, the convolution of such systems, 
the Wn system, a single advantage game of tennis, 
and a ‘nested’ system. 
In the next two subsections of the Methods section, 
we consider the situation in which a player’s 
probability of winning a point does depend on 
whether he is serving or not. This is the bipoints 
case. In particular, we consider B2 (B3), B4 (B3) and 
a (modified) tiebreak game. 
 
In the last three subsections of the Methods section 
several practical bipoints cases are considered…a 
single set of tennis, best-of-three sets of tennis, and 
best-of-five sets of tennis. 
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2. METHODS 
 
Unipoints: The bias in B2n-1 
We consider unipoints within the best-of-2n-1 points 
(B2n-1) scoring system (n = 2, 3, 4, …). Player A has 
a probability p of winning each point, and points are 
independent. We start with a simple example. When 
n = 2, A can win or lose in 2 or 3 points, and the 
proportion of points he wins in one play of B3 is 
equal to 2/2, 2/3, 1/3 or 0/2 with probabilities p2, 
2p2q, 2pq2 and q2, where q = 1 - p. The expected 
value of the proportion of points won by A in B3, 
E(Prop), is equal to the above proportions weighted 
by their respective probabilities. As shown in Table 
1, when p = 0 6, E(Prop) = 0.616, so the bias in this 
case when using Prop to estimate p is equal to 0.016. 
Some comments for B3 (n = 2) and p = 0.6 are 
1. P(2 points are played) = 0.36 + 0.16 = 0.52, and 
P(3 points are played) = 0.288 + 0.192 = 0.48. 
2. E(Number of points) = 2*0.52 + 3*0 48 = 2.48. 
3. P(A wins given 2 points) = 0.36/0.52 = 9/13. 
4. P(A wins given 3 points) = 0.288/0.48 = 0.6. 
5. The better player has a higher probability of 
winning when the match is shorter. 
6. Given 2 points are played, E(Prop) = ((2/2)*0.36 
+ (0/2)*0.16)/0.52 = 9/13 = 0.6923. 
7. Given 3 points are played, E(Prop) = ((2/3)*0.288 
+ (1/3)*0.192)/0.48 = 8/15 = 0.5333. 
8. The expected proportion of points won by the 
better player is higher when the match is shorter. 
9. Proportion of points won by the winner = (2/2)* 
0.52 + (2/3)*0.48 = 0.84. 
10. Proportion of points won by the loser = 0.16. 
11. If A wins, E(Prop) = ((2/2)*0.36 + (2/3)*0.288) 
/(0.36+0.288) = 0.851851. 
12. If B wins, E(Prop won by B) = ((2/2)*0.16 
+(2/3)*0.192)/(0.16+0.192) =0.818818. 
13. P(A wins) = 0.648, and P(B wins) = 0.352. 
14. E(Prop points won by winner) = 0.648*0.851851 
+0.352*0.818818 = 0.84, as in 9 above. 
15. If X1 = # points played and X2 = # points won by 
A (when p=0.6), then, P(X1=2, X2= 0) = 0.16, E(X1) 
= 2.48, E(X2) = 1.488, E(X1*X 2) = 3.744, cov(X1, 
X2) = 0.5376, and the corr(X1, X2) = 0.1425 > 0. 
16. If Y2 = proportion of points won by A when 
p=0.6, cov(X1, Y2) = -0.03968. When estimating p, 
we are interested in using Y2. But E(Y2) = (E(X2) - 
cov(X1, Y2))/E(X1). That is, E(Y2) is not equal to 
E(X2)/E(X1) as the relevant covariance is not zero.  
 
 
 

E(Prop) p = 0.6 p = 0.7 p = 0.3 
B3 0.616 0.728 0.272 
B5 0.6189 0.7316 0.2684 
B7 0.6189 0.7303 0.2697 
B9 0.6182 0.7280 0.2720 
B11 0.6173 0.7257 0.2743 
Table 1: E(Prop) for B2n-1 (unipoints) 

 
For B2n-1 the probability A wins by n points to i 
points, P(i), and the probability A loses n/i , Q(i), are  

in
i

in qpCiP +−= 1)(  and in
i

in pqCiQ +−= 1)( , 

(i = 0, 1, .., n-1). Thus, an expression for E(Prop) 
can be derived. For p = 0.6, the bias has its 
maximum value for B7 (which is just the no ad game 
in tennis). For p = 0.7, the bias has its maximum for 
B5. Note that as n tends to infinity, the bias tends to 
zero, and the bias is negative when p < 0.5. 
 
Unipoints: The bias in several B2n-1 systems 
For two B3s and p = 0.6, E(Prop) = 0.6081, a bias of 
0.0081, approximately half the bias of 0.016 for a 
single B3. For three B3s and p = 0.6 E(Prop) = 
0.6053, a bias of approximately one-third of 0.016. 
Thus, the biases in a full set of tennis resulting from 
the biases within each player’s service games are 
reduced considerably from the single-game biases. 
 
Unipoints: Bias in the win-by-n points system, Wn 
In an advantage game of tennis, the win-by-two or 
W2 system is used to determine the winner of the 
game if the game score reaches deuce. For W2 the 
probability A wins by (i+2) points to i, P(i), and the 
probability A loses by (i+2) to i, Q(i), are given by 

2)2()( ppqiP i=  and 2)2()( qpqiQ i= , 

(i = 0, 1, 2, …), and so an expression for E(Prop) 
can be written down. For p = 0.6, E(Prop) = 0.6362 
(Table 2), a bias of 0.0362 which is greater than that 
for B3. The bias increases as n increases, and then 
decreases. When p = 0.7, the bias is greatest for W3. 
Clearly, the bias in Wn converges to zero (n large). 
 

n P(A wins), p = 
0.6 

E(Prop), p = 
0.6 

P(A wins), p = 
0.7 

E(Prop), p = 
0.7 

2 0.6923 0.6362 0.8448 0.7594 
3 0.7714 0.6502 0.9270 0.7727 
4 0.8351 0.6549 0.9674 0.7709 
5 0.883 0.6554 0.9857 0.7646 

Table 2: Values for Wn scoring system (unipoints) 
 
Unipoints: Bias in an advantage game of tennis 
For an advantage game of tennis, when p = 0.6, 
E(Prop) = 0.6264, a bias of 0.0264, bigger than the 
bias in any B2n-1 when p = 0.6. E(Prop) = 0.7391 
when p = 0.7, and when p = 0.5, E(Prop) = 0.5. 
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Unipoints: Bias in a nested scoring system, B3(B3) 
We can consider B3(B3) using first principles, but it 
is perhaps a little easier using probability generating 
functions. Let X1 = the number of points won by A, 
Y1 = the number of points played, and Z1 = an 
indicator variable that equals 1 if player A wins the 
first B3 ‘game’ played. Then, the probability 
generating function (PGF) for (X1, Y1, Z1) (with 
respective variables (s, t, u) is 

))21()21((),,( 2222 qtsuppstqtutsF +++=  

If these variables for the second B3 played are 
denoted by (X2, Y2, Z2), then the PGF for the sums 
(X1 + X2, Y1 + Y2, Z1 + Z2) is given by the square of 
the above PGF, and this is equal to 

))21()21(( 2442244 qtspupstqt +++  
4222 )21)(21(2 tqstpstspuq +++  

where these three terms refer respectively to A 
losing, A winning and A drawing a B2(B3) nested 
match. In order to get the relevant PGF for winning 
a B3(B3) match, it is necessary to multiply the draw 
component by a win component for the third B3 
game. Thus, the PGF for the case where A wins the 
B3(B3) match can be shown to equal the product of 

)42( 75526442444 tspqtspqspt ++  and 

)441( 22tqqt ++ . 

Noting the coefficients of si *t j in this expression for 
this case where A wins the B3(B3) match, the 
proportion of points won by player A  
equals 4/4 with probability p4 (here i = 4 and j = 4), 
equals 4/6 with probability 2p4q2, (i = 4, j = 6), 
equals 5/7 with probability 4p5q2, 
equals 4/5 with probability 4p4q, 
equals 4/7 with probability 8p4q3, 
equals 5/8 with probability 16p5q3, 
equals 4/6 with probability 4p4q2, 
equals 4/8 with probability 8p4q4, and 
equals 5/9 with probability 16p5q4 (i = 5 and j = 9). 
The above analysis can be repeated for the case 
where A loses B3(B3), giving 9 corresponding 
expressions. E(Prop) for this B3(B3) match is equal 
to the sum of these 18 values weighted by their 
respective probabilities, and equals 0.6225 when p = 
0.6 (verified by first principles). Note that this bias 
is greater than that of B2n-1 for any n (when p = 0.6), 
and certainly greater than one with a similar 
expected duration. Nesting has increased bias here. 
 
 
 

Bipoints: Bias in two B2n(B3) systems 
(i) Consider B2(B3) with  A serving in the first 
‘game’ ( a B3 game), and B serving in the second 
‘game’. E(Prop A), the expected proportion of points 
won by player A on service, and E(Prop B) are the 
same as above (as each player serves exactly once). 
 

(pa, pb) P(A wins) P(B wins) P(Draw) E(Prop A) E(Prop B) 
(0.5, 0.5) 0.25 0.25 0.5 0.5 0.5 
(0.6, 0.6) 0.2281 0.2281 0.5438 0.616 0.616 
(0.7, 0.6) 0.2760 0.1400 0.5841 0.728 0.616 
(0.6, 0.7) 0.1400 0.2760 0.5841 0.616 0.728 
(0.3, 0.4) 0.1400 0.2760 0.5841 0.272 0.384 

Table 3: Some characteristics of the system B2(B3) 
 
(ii) Consider B4(B3) with A serving first with 
probability pa of winning each point, and B serves in 
the second game (B3) with probability pb. A serves 
3rd and B 4th, if necessary. The ‘set’ is won by the 
first player to win 3 ‘games’, or the set is drawn at 2-
2. Each ‘inner nest’ can result in 4 outcomes…A 
wins in 2 points, A wins in 3 points, A loses in 3 
points or A loses in 2 points. Thus, A can win the 
match in 3 games (AAA) in 8 ways (keeping track 
of number of points played in the first, second and 
third games). He can win each of the ways BAAA, 
ABAA and AABA in 16 ways, etc. Thus, A can win 
in 56 ways, and he can lose is 56 ways and there are 
96 draw possibilities. We have the following results. 
(a) When pa = pb = 0.5, P(A wins) = P(A loses) = 

0.3125, P( Draw) = 0.375. Denoting the 
proportion of points won by player A on service 
by Prop A, correspondingly for B, E(Prop A) = 
E(Prop B) = 0.5. 

(b) If pa = pb = 0.6, P(A wins) = P(A loses) = 
0.3001, P(Draw) = 0.3998. E(Prop A) =0.6081 
(see above), and E(Prop B) = 0.5863. The result 
AAA (with only one service break) is more 
likely to occur than the result BBB with two 
service breaks. In the first case AAA, B never 
gets the chance to improve his service 
proportion having lost his first serve, and hence 
his lower proportion of points won on serve. 

(c) If pa = pb = 0.4 (as in ‘volleyball’ where 
serving is a disadvantage), P(A wins) = P(A 
loses) = 0.3001, P(Draw) = 0.3998 (as in (b) 
above), E(Prop A) = 0.3919 and E(Prop B) = 
0.4137 (each can be obtained by subtracting the 
relevant numbers in (b) from unity). The result 
AAA is now less likely than the result BBB. In 
the second case BBB, player B, having ‘broken 
the odds’ and held service in the second game, 
does not have to risk lowering his service 
proportion with a second service game. 
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(d) If pa = 0.7 and pb = 0.6, P(A wins) = 0.3985, 
P(A loses) = 0.1831, P(Draw) = 0.4184, E(Prop 
A) =0.7144, and E(Prop B) = 0.5647. The result 
AAA is more likely to occur than the result 
BBB. Given AAA, player B never gets the 
chance to improve his service proportion having 
lost his first serve. 

(e) If pa = 0.6 and pb = 0.7, P(A loses) = 0.3985 
(see (d) above), P(A wins) = 0.1831, P(Draw) = 
0.4184. E(Prop A) =0.6081 as earlier (as A 
always has 2 serves), and E(Prop B) = 0.6995. 
The difference between this example and (d) is 
striking. The bias for the second server is again 
negative (-0.0005), in this ‘tennis context’ 
(where pa > 0.5 and pb > 0.5). 

(f) If pa = 0.6 and pb = 0.0, P(A wins) = 0.8761, 
P(A loses) = 0.0, P(Draw) = 0.1239, E(Prop A) 
= 0.6081 as earlier, and E(Prop B) = 0.0. 

(g) If pa = 0.0 and pb = 0.6, P(A wins) = 0.0, P(A 
loses) = 0.8761, P(Draw) = 0.1239, E(Prop A) = 
0.0, and interestingly E(Prop B) = 0.6929. Thus, 
unlike above, the bias is strongly positive for 
this second server. Hence, this is considered 
more closely. BBB occurs with probability 
0.648, and B’s expected proportion of points 
won on service given BBB is 0.851851 (see 
earlier). BABB and BABA contribute to E(Prop 
B) , and have values (i.e. corresponding to 0.648 
and 0.851851) of (0.2281 and 0.510101) and 
(0.1239 and 0.198347) respectively. 
Considering BABB, there are 2 ways the first 
service game of B could have occurred (loss in 
2 points or loss in 3) and there are 2 ways the 
second service game of B could have occurred 
(win in 2 points, or win in 3). Thus, there are 4 
ways the two service games of B could have 
occurred, with associated proportion of points 
won on service and probabilities given by (2/4 
and 0.16*0.36), (2/5 and 0.16*0.288), (3/5 and 
0.192*0.36), and (3/6 and 0.192*0.288). These 
4 have a total probability of 0.2281, and a 
contribution to E(Prop B) of 0.1164. (0.1164 is 
more exactly 0.116352, and 0.2281 is more 
exactly 0.228096, so the ratio 0.1164 divided by 
0.2281 is more exactly 0.510101.) The draw 
BABA is now considered in detail. It has a 
probability of 0.1239 and contributes 
0.0.024576 to E(Prop B). The ratio (0.0.024576) 
/(0.123904) is equal to 0.198347). Adding all 
the contributions to E(Prop B), we have 
0.648*0.851851 + 0.116352 + 0.024576 = 
0.6929, as above.  

(h) If pa = 0.6 and pb = 1.0, P(A wins) = 0.0, P(A 
loses) = 0.5801, P(Draw) = 0.4199, E(Prop A) = 
0.6081 as earlier and E(Prop B) = 1.0. 

(i) If pa = 1.0 and pb = 0.6, P(A wins) = 0.5801, 
P(A loses) = 0.0, P(Draw) = 0.4199, E(Prop A) 
= 1.0, and E(Prop B) = 0.5311, a negative bias 
for the second server in this tennis context (pa, 
pb > 0.5). 

Concluding, the interdependency of E(Prop A) and 
E(Prop B) can be quite complex as it depends on 
who is the first server, who is the better player, and 
the size and sign of the difference pa – pb. 
 
Bipoints: The bias in the tiebreak game 
The joint distribution of (Prop A, Prop B) for the 
tiebreak game is outlined. Consider, for simplicity, 
the tiebreak with the modification of a draw at 6-6. 
Suppose A serves first, and the outcome is A wins 7-
3. The last point (10th) was a b-point lost by B (with 
probability qb). The first 9 points were 5 a-points 
and 4 b-points. A won 6 of these 9 points (i.e. won 2 
a-points and 4 b-points, or 3 a-points and 3 b-points, 
or 4 and 2, or 5 and 1). Correspondingly, the pair of 
variables (Prop A, Prop B) were (2/5, 0/5), (3/5, 
1/5), (4/5, 2/5) and (5/5, 3/5), after including the 
10th point. The probabilities of these four outcomes 
are (5C2pa2qa3)(qb4)(qb), (5C3pa3qa2)(4C1pbqb3)(qb), 
(5C4pa4qa)(4C2pb2qb2)(qb), and (pa5)(4C3pb3qb)(qb). 
The (Prop A, Prop B) distribution can be derived. 
Observations from Table 4 include 
(a) Prop A and Prop B are negatively correlated. 

The ‘stopping rule’ for this modified tiebreak 
game (B12) often stops play when one player is 
by chance doing ordinarily or relatively well, 
and the other player is doing ordinarily or not 
doing so well (Rows 2, 3). 

(b) In the tennis context (ie. pa > 0.5 and pb > 0.5), 
for two equal players, the bias in both Prop A 
and Prop B is slightly negative, and slightly 
more for the player who serves second (see 
rows 2 and 3). 

(c) In the tennis context, for two unequal players, 
the bias for the better player is increased 
(relative to two equal players). That is, it is less 
negative, or positive. Correspondingly, the bias 
for the weaker player is decreased i.e. more 
negative. Thus, if pa, pb > 0.5, the bias in Prop 
A (or Prop B) has an extra positive component 
when playing a weaker player, and an extra 
negative component against a better player. 
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The correlation between Prop A and Prop B is +1.0 
if the duration of the tiebreak is exactly 12 points, 
and it equals -1 if the duration is exactly 7 points. 
The stopping rule of this modified tiebreak game has 
lead to an overall negative correlation, even though 
points have been assumed to be independent. 
 

1 (pa, pb) E(PropA) E(PropB) Correlation 
2 (0.6,0.6) 0.5972 0.5969 -0.1751 
3 (0.7,0.7) 0.6951 0.6943 -0.1610 
4 (0.7,0.6) 0.7026 0.5871 -0.1619 
5 (0.6,0.7) 0.5889 0.7034 -0.1607 
6 (0.7,0.5) 0.7096 0.4814 -0.1447 
7 (0.5,0.7) 0.4831 0.7113 -0.1455 

Table 4: Modified tiebreak game characteristics 
 
The bias in a single set of tennis 
An exact analysis of a full set is possible, but very 
tedious. Simulation (4,000,000 sets), using the 
software developed by Brown, Barnett, Pollard, 
Lisle and Pollard (2008), was used to get estimates 
of the bias (Table 5). SS1 is an advantage set and 
SS2 is a tiebreak set. Estimates of pa and pb are pa^ 
and pb^. The proportion of points won by the winner 
on service is p(W) and the proportion of points won 
by the loser on service is p(L). Although all values 
in Table 5 have 4 decimal points, accuracy is not 
quite to that level. This has been done so that the 
reader can get a feel for various differences in the 
table, including some on which no comment is 
made. 
 
Some observations when (pa, pb) = (0.65, 0.65) are  
(a) p^(first server) – p^(second server) equals 

0.0033 or 0.0034. Also, (pa^ - pb^) given A 
serves first minus (pa^ - pb^) given B serves 
first is 0.0067 for SS1 and 0.0068 for SS2. This 
difference is a measure of the differing bias 
between that when serving first and that when 
receiving first. 

(b) The correlation coefficients between pa^ and 
pb^ are smaller in absolute value for SS2 than 
for SS1, and they are all negative. 

(c) The proportion of points won on service by the 
winner is considerably larger than the 
proportion of points won on service by the 
loser, even though the players are equal. 

 
Some observations when (pa, pb) = (0.7, 0.6) are 
(d) The biases are positive for the better player and 

negative for the weaker player. 
 

(e) (pa^ - pb^) – (pa – pb) is 0.0234 and 0.0177 for 
SS1, and 0.0203 and 0.0147 for SS2. Also, (pa^ 
- pb^) given A serves first minus (pa^ - pb^) 
given B serves first equals 0.0057 for SS1 and 
0.0056 for SS2. These differences are slightly 
smaller than in (a). 

(f) The correlation coefficients between pa^ and 
pb^ are smaller in absolute value for SS2 than 
for SS1, and are smaller in absolute value than 
those in (b) above. 

(g) The proportion of points won on service by the 
winner minus the proportion won on service by 
the loser, minus (pa – pb), is greater than zero, 
as expected. 

 
The bias in a best-of-three sets match of tennis 
The results for best-of-three sets matches are given 
in Table 6 (4,000,000 matches). System SS3 is three 
advantage sets, SS4 is two TB sets followed by a 
third advantage set, SS5 is three TB sets, and SS6 is 
two TB sets followed by a 10 point TB match 
decider (as used in some doubles events). 
Some observations when pa = pb = 0.65 are 
(h) The value of p^(first server) – p^(second server) 

equals 0.0006, 0.0007 or 0.0008, and (pa^ - 
pb^) given A serves first minus (pa^ - pb^) 
given B serves first equals 0.0014, 0.0015 or 
0.0016 for SS3 to SS6. As expected, these 
values are smaller than the corresponding ones 
from Table 5, as the effect on bias resulting 
from serving first decreases as the matches are 
‘longer’. 

(i) The correlation coefficients get smaller in 
absolute value as we go from SS3 to SS6. 

(j) The proportion of points won on service by the 
winner is larger than the proportion of points 
won on service by the loser, but the differences 
are smaller than in Table 5. 

 
Some observations when (pa, pb) = (0.7, 0.6) are 
(k) The biases are positive for the better player and 

negative for the weaker player. 
(l)  (pa^ - pb^) – (pa – pb) ranges from 0.0177 or 

0.0162 for SS3 down to 0.0111 or 0.0097 for 
SS6. Also, similarly to (e), (pa^ - pb^) given A 
serves first minus (pa^ - pb^) given B serves 
first equals 0.0015, 0.0015, 0.0016 and 0.0014 
for SS3, SS4, SS5 and SS6. These are smaller 
than in (e). 

(m) The correlation coefficients are smaller in 
absolute value than those in (f). 
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Scoring 
System 

First 
Server 

(pa, pb) Pa^ pb^ (pa^ - pb^) 
-(pa – pb) 

Correlation 

 (pa^, pb^) 
P(W) p(L) P(W) - p(L) 

- (pa – pb) 
SS1 A 0.65,0.65 0.6512 0.6478 0.0034 -0.2218 0.7047 0.5944 0.1103 
SS1 B 0.65,0.65 0.6479 0.6512 -0.0033 -0.2210 0.7047 0.5944 0.1103 
SS2 A 0.65,0.65 0.6535 0.6501 0.0034 -0.1747 0.7053 0.5984 0.1069 
SS2 B 0.65,0.65 0.6501 0.6535 -0.0034 -0.1753 0.7053 0.5983 0.1070 
SS1 A 0.7, 0.6 0.7101 0.5867 0.0234 -0.1415 0.7227 0.5741 0.0486 
SS1 B 0.7, 0.6 0.7094 0.5917 0.0177 -0.1599 0.7236 0.5774 0.0462 
SS2 A 0.7, 0.6 0.7103 0.5900 0.0203 -0.1195 0.7225 0.5779 0.0446 
SS2 B 0.7, 0.6 0.7096 0.5949 0.0147 -0.1365 0.7234 0.5812 0.0422 

Table 5: The bias results for a single set of tennis when (pa, pb) = (0.65, 0.65) and (0.7, 0.6) 
 
(n) The proportion of points won on service by the 

winner minus the proportion won on service by 
the loser is slightly bigger than (pa^ - pb^) for 
SS3 to SS6. 

 
The bias in a best-of-five sets match of tennis 
Corresponding simulations of best-of-five sets 
matches were also carried out, but are not reported 
here due to space limitations. Suffice it to report that 
the various trends observed in going from one set to 
three sets continued. A few figures of interest 
however, are reported in the results and conclusions. 
 
 
3. RESULTS 
 
For B2n-1 (unipoints), the proportion of points won 
by player A, p^, is a biased estimator of p, the 
probability A wins a point. If p > 0.5, the bias is 
positive. It increases initially as n increases from 2, 
reaches a maximum, then decreases and converges 
to zero. When p < 0.5, the bias is negative.  
When two or more B2n-1 unipoints systems are used, 
the bias was seen to decrease (in absolute value). 
The bias when B2n-1 systems are nested was shown 
to be typically greater than without nesting. 
The bias for the Wn system was seen to be greater in 
absolute value than for the B2n-1 system, but 
otherwise it had similar characteristics. 
The bias in a single advantage game of tennis is 
greater than that of the B2n-1 system. 
In bipoints systems the interdependency of pa^ and 
pb^ can be quite complex, as it can depend on who 
serves first, who is the better player, and the size of 
pa – pb. Stopping rules for sports typically lead to 
negative correlations for pa^ and pb^. 
In a single tiebreak set of tennis when pa = 0.7 and 
pb = 0.6, the total bias, (pa^ – pb^) – (pa – pb), was 
equal to 0.020 when A served first, and 0.015 when 
B served first. The correlation coefficient between 

pa^ and pb^ was -0.120 (A first) and -0.137 (B first). 
P(W) – P(L) was 0.145 (A first) and 0.142 (B first). 
For a single tiebreak set of tennis when pa = 0.65 
and pb = 0.65, the total bias, (pa^ – pb^) – (pa – pb), 
was equal to 0.003 (A first) and -0.003 (B first). The 
correlation coefficient was -0.175 (A or B first). 
Also, P(W) – P(L) was 0.107 (A or B first), a 
substantial amount given that the players are equal. 
For a best-of-three tiebreak sets match when pa = 
0.7 and pb = 0.6, the total bias, (pa^ – pb^) – (pa – 
pb), was equal to 0.016 (A first) and 0.014 (B first).  
 
The correlation coefficient between pa^ and pb^ was 
-0.071 (A first) and -0.074 (B first). P(W) – P(L) 
was 0.119 (A first) and 0.118 (B first). 
For a best-of-five tiebreak sets match when pa = 0.7 
and pb = 0.6, the total bias, (pa^ – pb^) – (pa – pb), 
was 0.012 (A or B first). The correlation coefficient 
between pa^ and pb^ was -0.040 (A or B first). Also, 
P(W) – P(L) was 0.112 (A or B first). 
The various results for the best-of-three tiebreak sets 
match are less than the corresponding results for the 
single set, and all of the corresponding values for the 
best-of-five tiebreak sets match were smaller again.  
 
 
4. DISCUSSION 
 
The stopping rule in bipoints games such as tennis 
(and volleyball) has been shown to lead to an overall 
negative correlation between the performances of 
the two players/teams. The interdependent number 
of a-points and b-points played leads to this negative 
correlation. This negative correlation would not exist 
if the duration of the match involved a fixed number 
of points of each type. An example of this might be 
in the penalty shoot-out in soccer, where (at least 
initially) each team has a fixed number of penalty 
shots. Here the independence (no correlation) 
bipoints model would appear to be a reasonable first 



 
 

 
Scoring 
System 

First 
Server 

(pa, pb) pa^ pb^ (pa^-pb^) 
-(pa – pb) 

Correln 

 (pa^, pb^) 
p(W) p(L) P(W) – p(L) 

- (pa – pb) 
SS3 A (0.65, 0.65) 0.6499 0.6491 0.0008 -0.2250 0.6826 0.6164 0.0662 
SS3 B (0.65, 0.65) 0.6491 0.6499 -0.0008 -0.2249 0.6826 0.6164 0.0662 
SS4 A (0.65, 0.65) 0.6512 0.6504 0.0008 -0.1844 0.6839 0.6177 0.0662 
SS4 B (0.65, 0.65) 0.6504 0.6511 -0.0007 -0.1846 0.6838 0.6177 0.0661 
SS5 A (0.65, 0.65) 0.6513 0.6507 0.0006 -0.1763 0.6836 0.6185 0.0651 
SS5 B (0.65, 0.65) 0.6506 0.6514 -0.0008 -0.1759 0.6836 0.6185 0.0651 
SS6 A (0.65, 0.65) 0.6514 0.6507 0.0007 -0.1180 0.6819 0.6203 0.0616 
SS6 B (0.65, 0.65) 0.6507 0.6515 -0.0008 -0.1177 0.6819 0.6203 0.0616 
SS3 A (0.7, 0.6) 0.7079 0.5902 0.0177 -0.0834 0.7099 0.5883 0.0216 
SS3 B (0.7, 0.6) 0.7079 0.5917 0.0162 -0.0901 0.7100 0.5896 0.0204 
SS4 A (0.7, 0.6) 0.7081 0.5921 0.0160 -0.0704 0.7101 0.5901 0.0200 
SS4 B (0.7, 0.6) 0.7081 0.5936 0.0145 -0.0732 0.7102 0.5914 0.0188 
SS5 A (0.7, 0.6) 0.7079 0.5924 0.0155 -0.0706 0.7097 0.5907 0.0190 
SS5 B (0.7, 0.6) 0.7079 0.5940 0.0139 -0.0736 0.7098 0.5921 0.0177 
SS6 A (0.7, 0.6) 0.7061 0.5950 0.0111 -0.0709 0.7071 0.5940 0.0131 
SS6 B (0.7, 0.6) 0.7060 0.5963 0.0097 -0.0727 0.7071 0.5952 0.0119 

Table 6: The bias results for a best-of-three sets match when (pa, pb) equals (0.65, 0.65) and (0.7, 0.6) 
 
approximation to the practical situation. Another 
example might be in rifle shooting when two (or 
more) shooters have a fixed number of shots. 
 
 
5. CONCLUSIONS 
 
The statistics for many sports matches are biased. 
In sports such as squash it is widely accepted that 
only one type of point is really necessary for 
accurately modelling the sport. In such unipoints 
sports the expected value of the proportion of points 
won by the better player, E(p^), is greater than the 
probability that the better player wins a point, p, for 
all the commonly used scoring systems. Thus, if the 
proportion of points won by the better player, p^, is 
used as an estimator of p, it will tend to overestimate 
it. Further, if the proportion of points won by the 
winner (not necessarily the better player) is used as 
an estimate of the winner’s probability of winning a 
point against that opponent, it will tend to be even 
more of an overestimate. 
Sports where serving is an advantage and two types 
of point are considered necessary for modelling 
purposes (eg. tennis) are called bipoints sports. In 
bipoints sports the expected value of the proportion 
.of points won by the better player on service, 
E(pa^), is greater than the probability that the better 
player wins a point on service, pa, for the commonly 
used scoring systems. Also, the expected value of 

the proportion of points won by the weaker player 
on service, E(pb^), is less than the probability that 
the weaker player wins a point on service, pb. Thus, 
if pa^ is used as an estimator of pa, it will tend to 
overestimate it, and if pb^ is used as an estimator of 
pb, it will tend to underestimate it. 
In bipoints sports such as tennis and volleyball, pa^ 
and pb^ are negatively correlated variables for many 
scoring systems. For a given sport and parameter 
values, the bias in a scoring system with a large 
expected duration is typically smaller than that in a 
scoring system with a smaller expected duration.  
More specifically, in tennis the proportion of points 
won on service is typically biased upwards for the 
better player and downwards for the weaker player. 
The total effect of these two biases is about 0.014 for 
a best-of-three tiebreak sets match (when pa = 0.7 
and pb = 0.6), and about 0.012 for a best-of-five 
tiebreak sets match (when pa = 0.7 and pb = 0.6). 
Although these are not substantial amounts, it would 
appear to be useful to know the typical sizes of these 
biases. It could be of marginal relevance in the 
gambling context. 
In a best-of-three tiebreak sets match between two 
equal players (say pa = pb = 0.65), the proportion of 
points won on service by the eventual winner of the 
match is shown to be about 0.065 on average greater 
than the proportion of points won on service by the 
loser. For a best-of-five tiebreak sets match between 
these two equal players, this difference is shown to 



228 Bias in Sporting Match Statistics 

  

average about 0.049. It would appear that these are 
quite substantial amounts given that the two players 
are actually equal. 
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Abstract 
 
This paper analyses match outcomes in test cricket. Our analysis is based on 146 international test matches, 
from November-2005 to April-2010. We model match outcome given the position at the end of each session. 
Match outcome probabilities are determined using multinomial logistic regression. Theses probabilities can 
facilitate a team captain or management to consider an aggressive or defensive batting strategy for the next 
session. We investigate how the outcome probabilities (win, draw, loss) vary session by session and how the 
covariate effects vary session by session. The covariates in the models include the score or lead, overs-
remaining, run-rate, the pre-match strength of teams, batting resources, and home factor and toss outcome 
indicators. Our analyses suggest that lead has a small effect on the match outcome early on but dominates 
later. On other hand batting resources dominate throughout the match. 
 
 

Keywords: Test cricket, multinomial logistic regression, strategy 
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Abstract 
 
In this paper, we build upon the work of Lewis (2008) and combine the Duckworth-Lewis methodology, used 
primarily in setting revised targets in interrupted limited-overs cricket matches, with a credibility theory model 
to obtain a dynamic approach to estimating a team’s final first innings total based upon the current state of 
play.  The approach is valid for limited-overs matches of any duration, and can even be applied in 
circumstances where the first innings has been shortened during play due to weather or other interruptions.  
Finally, we use a database of international limited-overs matches to assess both appropriate values and 
structure for the credibility factor as well as the accuracy of the proposed projection method. 
 
 

Keywords: Credibility theory, credibility factor, Duckworth-Lewis method, dynamic estimation 
 
 

 
1. INTRODUCTION 
 
During play in the first innings of a limited-over 
cricket match, it is natural to speculate on what the 
likely final total will be based on the current score.  
Accurate estimates in these circumstances, available 
dynamically as play progresses, can have beneficial 
impacts both on playing strategy as well as the 
entertainment value of the match for those watching.   
Indeed, as Bailey & Clarke (2006) demonstrate, 
predictions of first innings totals, as well as eventual 
margins of victory, are of wide interest; for example, 
as an aid in sports betting markets.  However, 
current practice for broadcasters of limited-overs 
cricket matches is based simply on assuming various 
common, fixed run-rates per over for the remainder 
of the innings.  However, as Lewis (2008) indicated, 
such an approach is unrealistic and unsatisfactory for 
a number of reasons, and he suggested ways in 
which the Duckworth-Lewis (D/L) methodology, 
currently used primarily in setting revised targets for 
interrupted matches, might also be used for various 
other calculations of interest, including first innings 
score projection.   
 
Specifically, suppose that the team batting first in a 
limited-overs cricket match has scored s runs and 
lost w wickets with v out of their maximum of M 

overs still remaining.  In order to project the likely 
total score at the completion of the innings, we first 
need to assess how much of the innings has been 
completed.  This may initially seem a trivial 
question, as the “obvious” answer is proportion p = 
(M−v)/M of the innings has been completed and, 
thus, proportion 1−p remains.  This naïve and overly 
simplistic definition of the remaining portion of the 
innings, based only on number of overs, is the basis 
for the simplest and most common current score 
projection technique, which simply posits a (fixed) 
rate, r, of runs scored per over for the remaining 
portion of the innings, so that the projected score is: 

(1 )run rateP s p Mr s vr− = + − = + . 
 
However, Duckworth & Lewis (1998, 2004) 
demonstrated clearly that focusing solely on the 
number of overs played to determine the effective 
proportion of the innings that has been completed is 
not appropriate.  Instead, the fundamental principle 
of the Duckworth-Lewis methodology is based 
around “scoring resources”, which take into account 
not only the proportion of overs remaining to a 
batting side, but also the number of wickets still 
available.  Indeed, it is quite clear that a batting side 
that has already lost 9 of their available 10 wickets is 
nearly finished with their innings, no matter how 



232 What Will They Score? In-Game Projection of First Innings Final Scores in Limited-Overs  
Cricket 

 

many overs they may have remaining.  Accordingly, 
we define R(v,w) to be the Duckworth-Lewis scoring 
resources remaining to a batting side when they have 
v overs of their innings remaining and have lost w 
wickets (for details regarding the calculations of 
Duckworth-Lewis resource values, see Duckworth 
& Lewis, 2004).  We can then drastically improve 
our projections over those based on the naïve runs 
per over approach by considering instead a rate of 
runs per unit of resource, u, over the remaining 
scoring resources as 

( ,0) ( , )P s uR M s uR v wρ= + = + , 
where R(M,0) represents the scoring resources 
available to the batting side at the beginning of their 
innings (when the maximum M overs are still 
available and no wickets have been lost) and ρ = 
R(v,w)/R(M,0) is the proportion of the original 
available scoring resources that still remain to the 
batting side when the projection is to be calculated.  
In fact, once we have recognised the problem as one 
pertaining to scoring resources rather than simply to 
overs, we can replace R(v,w) and R(M,0) by Rrem and 
Rmax, the resources currently remaining to the batting 
side and the maximal resources available to the 
batting side, which now may have been calculated 
according to the Duckworth-Lewis methodology to 
reflect any shortenings to the innings made 
necessary by weather or other interruptions.  In this 
case, the score projection becomes 

max remP s uR s uRρ= + = + . 
 
 
2. A CREDIBILITY THEORY BASED 

PROJECTION METHOD 
 
One natural choice for u is the observed scoring rate, 
uobs = s/(Rmax – Rrem).  Using this choice produces the 
so-called “direct scaling” projection: 
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This direct scaling approach often performs quite 
well in accurately predicting the final score, 
especially if it is applied after a reasonable 
proportion of the innings has been completed.  
However, the direct scaling approach is highly 
sensitive to extreme scoring rates over short periods.  
That is, if a batting team scores a very high (or very 
low) number of runs during the early portion of their 

innings, corresponding to the use of a relatively 
small proportion of their available scoring resources, 
the resulting direct scaling projection of their final 
score can be wildly unrealistic.  Indeed, as a simple 
example, if a batting team has scored no runs in the 
first couple of overs, the direct scaling score 
projection will necessarily be zero, which is 
nonsensical.  Moreover, this issue has been 
magnified in recent times with the explosion of 
Twenty20 cricket, a game in which short, extremely 
high bursts of scoring are commonplace.   
 
Alternatively, “expert opinion” might be used to 
determine an appropriate choice of u, potentially 
taking into account a range of match-specific 
conditions.  While this approach may seem 
appealing, it has the clear disadvantage of requiring 
unique, sometimes almost intangible inputs for each 
match.  Moreover, “expert opinion” is notoriously 
variable, and may well be locally influenced (if only 
sub-consciously) by the observed scoring rates.  The 
vagaries of “expert opinion” might be removed by a 
more systematic modeling of first innings totals 
using match-specific factors, such as that carried out 
by Bailey & Clarke (2006).  However, while such an 
approach certainly reduces the subjectivity in the 
projections, it adds a degree of complexity which 
makes it difficult to implement generically.  
Moreover, such an approach may fail to adequately 
account for the highly relevant information available 
in the current score of the actual innings for which a 
projection is being made.  Therefore, in what 
follows, we choose to set u according to a credibility 
theory model, which takes the form 

(1 )u y zπ π= − + , 
where 0 1π≤ ≤  is a weighting factor, y is an 
estimate of the future scoring rate of the innings 
which is based on a relatively small amount of 
directly relevant information and z is an estimate of 
the future scoring rate that is based on a relatively 
large amount of perhaps only indirectly relevant 
information (see Bulmann & Gisler, 2005, among 
others, for an introduction to credibility theory).   
 
Employing this approach for first innings score 
projection, it is straightforward to set y = uobs, as this 
is plainly the most directly relevant information 
regarding the plausible scoring rate for the 
remainder of the innings.  The choices for π and z 
are somewhat more equivocal.  As noted above, 
choosing a value for z based on expert opinion or on 
models including match-specific characteristics has 
merit, but will not facilitate a simple, automatic 
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process and is subject to the substantial problem of 
disagreement among “experts” and various model 
structures (nevertheless, a potential area of further 
research would be the inclusion of these approaches 
into the determination of z).  So, in what follows, we 
shall set z equal to the overall average of completed 
first innings scores from recent international 50-over 
matches. This value was denoted G50 by Duckworth 
& Lewis (1998), and is currently set at 245.  [NOTE: 
the use of the average score in 50-over matches is 
necessitated by the fact that D/L scoring resources 
are calibrated so that R(50,0) = 1; that is, a full unit 
of scoring resources corresponds to the resources 
associated with a 50-over innings.] Finally, based on 
a heuristic argument outlined in the Appendix, we 
choose a weighting factor of the form 

( ) 1k
rem maxR Rπ −= , 

for some appropriately chosen value of 1k ≥ . This 
form of the weighting factor ensures that as the 
resources remaining, Rrem, diminish, so does the 
weighting factor, with the result that u becomes 
increasingly weighted to the observed scoring rate.  
This aspect of the weighting factor appropriately 
reflects the fact that as an innings draws to a close, 
the observed scoring rate is an increasingly accurate 
reflection of the actual final scoring rate. 
 
Using this approach, we combine the above choices 
to construct a credibility estimate for the scoring rate 
during the remainder of the innings: 
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resulting in the first innings projection formula: 
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, (1) 

provided uobs > 0 [otherwise, the projection formula 
becomes P = (Rrem/Rmax)

k(RmaxG50)].   
 
The projection formula (1) shows that the approach 
proposed here constitutes either a damping (if uobs > 
G50) or an enhancement (if  uobs < G50) of the direct 
scaling target.  Moreover, the degree of damping or 
enhancement is decreased as the proportion of 
available resources already used increases. 
Similarly, the degree of the damping or 
enhancement decreases as the observed scoring rate 
approaches the overall average score of G50.   Figure 
1 shows the degree of damping or enhancement for 
various scoring rates and resources remaining using 
k = 2.  The damping and enhancement occur in the 
upper corners, where the proportion of scoring 

resources remaining is high.  Damping occurs in the 
upper right corner, where scoring rates are very 
high, and enhancement in the upper left corner, 
where scoring rates are well below average.  
 
Of course, the degree of damping and enhancement 
shown in Figure 1 will vary according to the value 
of the tuning constant, k, and so an appropriate value 
of this parameter must be determined.  Before 
discussing that choice in detail, we note that 
choosing k = 1 amounts to projecting the final score 
by assuming the remainder of the innings will see 
the batting team score at the overall average 
resource usage rate (i.e., a usage rate corresponding 
to an overall score of G50), while as k increases, the 
projection approaches the direct scaling method.  
Thus, as k increases, the damping and enhancement 
plot would become increasingly flat.  
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Figure 1: Contour plot of the degree of damping or enhancement 
of Pdirect (using k = 2). 
 
 
3. CHOOSING THE TUNING PARAMETER 
 
In order to assess the most appropriate choice for the 
tuning parameter, k, we investigate a database of 574 
international cricket matches played between June 
2005 and December 2009.  The collection consists 
of a mixture of 50-over One-Day International 
(ODI) matches and 20-over Twenty20 International 
(T20I) matches.  For each match, the final first-
innings score is recorded, as well as the scores when 
any multiple of 5 overs was remaining. For example, 
for a standard ODI, the scores at 5, 10, 15, 20, 25, 
30, 35, 40 and 45 overs were recorded, while for a 
T20I, the scores at 5, 10 and 15 overs were recorded.  
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Overall, the collection included 101 full T20I first 
innings, 451 full ODI first innings and 22 ODI 
matches which were shortened to between 22 and 49 
overs at their outset.  In total, this created a set of 
4,981 partial-innings scores (including the 0 runs for 
0 wickets scores at the start of each match) from 
which projections could be made and subsequently 
assessed for predictive accuracy.  One reason for 
using partial-innings scores at 5-over intervals is to 
reduce any dependency between scores from the 
same match.  In the analysis that follows, we 
proceed as if all 4,981 partial-innings scores 
represent independent pieces of information.   
 
We start by presenting some descriptive statistics 
regarding the database of matches.  Table 1a shows 
the average (standard deviation in brackets) scores at 
various stages of the T20I first innings, and Table 1b 
shows the same for full-length ODI first innings. 
 

Overs Played Wickets Down Runs Scored 
5 1.25 (1.10) 38.62 (10.80) 
10 2.59 (1.46) 74.58 (17.32) 
15 4.32 (1.59) 113.06 (25.96) 
20 N/A 157.76 (35.04) 

Table 1a: Average scores (standard deviations in brackets) at 
various stages of 101 T20Is. [NOTE: Wickets down at completion 
of innings not available in dataset.] 
 

Overs Played Wickets Down Runs Scored 
5 0.67 (0.77) 19.83 (8.64) 
10 1.28 (1.02) 43.23 (14.55) 
15 1.97 (1.30) 66.34 (19.11) 
20 2.62 (1.47) 88.57 (23.57) 
25 3.17 (1.59) 109.92 (27.14) 
30 3.64 (1.74) 132.51 (30.76) 
35 4.11 (1.79) 156.73 (34.21) 
40 4.68 (1.70) 184.08 (38.68) 
45 5.60 (1.61) 216.72 (45.02) 
50 N/A 244.09 (63.87) 

Table 1b: Average scores (standard deviations in brackets) at 
various stages of 451 full ODIs. [NOTE: Wickets down at 
completion of innings not available in dataset.] 
 
Initially, we estimate the value of k using a simple 
least-squares approach.  Specifically, for each of the 
4,981 partial-innings scores in the dataset, we 
calculate the difference between the actual final 
score, S, and the projected final score as a function 
of k, say P(k).  That is, for the ith partial-innings 
score in the dataset, calculate Pi(k), the projected 
score based on the choice of value k, according to 
the projection formula (1). Then choose the tuning 
parameter as the value of k that minimises  

{ }
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This approach yields an estimate of k = 1.6046.  
(Solutions to this and all subsequent minimization 

problems were carried out using the nlmin function 
within the computer package S-Plus). However, as 
Figure 2 demonstrates, the accuracy of a projection 
will be inversely related to the amount of scoring 
resources remaining at the time the projection was 
made.   
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Figure 2: Difference between projections, Pi(1.6046), and actual 
final score versus resources remaining at time of projection. 
 
To account for this heterogeneity, we use a weighted 
approach to estimating the value of k, appropriately 
accounting for differential accuracy of predictions.  
So, we use the alternative objective function 

2
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where Rrem,i is the resources remaining associated 
with the projection Pi(k).  The form of this function 
is based on a weighted normal log-likelihood applied 
to the runs remaining to be scored; that is, the values 
Si – si are assumed to be normally distributed with 
mean Pi(k) – si and standard deviation ,rem iRγσ .  

 
The chosen structure for the standard deviation is 
based on the increasing spread observed in Figure 2, 
and also allows the estimation of a generic spread 
parameter, σ, which equates to the accuracy of a 
score projection at the start of a 50-over innings, P = 
G50 = 245.  Minimising dw(k,γ,σ) yields the normal-
based estimates and standard errors of k, γ  and σ 
shown in Table 2 below.  In addition, Figure 3 
presents a plot of weighted differences between 
projections and actual scores 

,

( )i i
i

rem i

P k S
e

Rγσ
−

=  

using the estimates of k, γ and σ derived, and 
suggests that the weighting scheme adopted has 
remedied the heterogeneity problem arising when 
un-weighted least squares was used.  However, 
while Figure 3 appears more homoscedastic, there is 
still an issue when resources remaining are small.  
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Figure 3: Weighted difference between projections and actual 
final score, ei, versus resources remaining at time of projection. 
 
An investigation of the partial-innings scores 
associated with those matches with weighted 
residuals in the lower left corner of Figure 3 
revealed that they were associated with matches in 
which either the ninth or tenth wicket partnership 
produced an unusually high number of runs.  This 
circumstance highlights a key problem with a 
normal-based approach.  While the runs yet to be 
scored in a match will likely be reasonably 
symmetrically distributed around its average value 
when a reasonable amount of the innings still 
remains to be played, when the innings is nearly 
complete, the distribution of runs yet to be scored 
tends to be skewed.  This phenomenon arises  
because runs yet to be scored cannot be negative, 
and when 8 or 9 wickets have already been lost, it is 
likely that only a few more runs will be scored, yet 
in a small number of cases the last batting few 
partnerships will produce a large number of runs. 
 
In response to this problem, we consider an 
alternative distribution for the values Si – si, using a 
gamma distribution rather than a normal distribution, 
but maintaining the same mean and standard 
deviation structure.  Doing so yielded the maximum 
likelihood estimates and standard errors for the 
parameters shown in the final column of Table 2.   
 

Parameter 
Normal-based 

Estimates 
Gamma-based 

Estimates 
k 1.4858 (0.0360) 1.6781 (0.0389) 
γ 0.5917 (0.0141) 0.7059 (0.0138) 
σ 55.49 (0.80) 59.95 (0.85) 

Table 2: Parameter estimates (standard errors in brackets) using 
normal- and gamma-based models. [NOTE: Standard errors 
calculated as the square-root of the diagonal entries of the inverse 
of the Hessian matrix of the log-likelihood function evaluated at 
its maximum; that is, the observed Fisher information.] 
 
The estimates from the two different methods are 
reasonably similar (although, the differences are 
statistically significant).  However, the gamma-
based estimate for σ is more closely in line with the 

observed standard deviation of 63.87 for first 
innings scores in full 50-over matches (see Table 
1b).  As such, we prefer this method. 
 
 
4. CONCLUSION 
 
The proposed projection formula fits the observed 
data well, and using our database, we have arrived at 
a projection formula of the form: 
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This method is based on the direct projection 
approach, which works well in a wide range of 
circumstances, but also behaves more stably in 
situations where the observed scoring rate is extreme 
over a relatively short period. 
 
As an independent assessment of the accuracy of the 
method, projected first innings totals were calculated 
for a new set of 44 matches (8 T20Is and 36 ODIs) 
played between January and April 2010.  Projections 
were again made from each partial-innings score at 
the end of overs which were multiples of 5.  This 
yielded 345 predictions which could be assessed for 
accuracy.  Figure 4 shows the histogram of the 
differences in the projections and the actual final 
first innings scores for these 345 predictions.  In 
addition, Figure 4 shows the histogram for 
projections based on direct scaling, Pdirect.  
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Figure 4: Histograms of differences between 345 actual and 
projected final first innings scores. 
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As can be seen from Figure 4 and from Table 3, the 
projection method proposed here outperforms the 
direct scaling method.  On average, the projection 
method proposed is within 25 runs of the actual final 
score, nearly twice as accurate as direct scaling (the 
actual average final scores for the 8 T20I matches 
was 131.88 with a standard deviation of 37.28 and 
for the 36 ODI matches was 258.36 with a standard 
deviation of 52.53). 
 

Projection 
Method 

Average Absolute 
Deviation 

Standard Deviation of 
Differences 

P 24.45 32.37 
Pdirect 44.46 67.07 

Table 3: Summary of 345 projections from 44 new matches. 
 
Finally, the likelihood framework outlined in the 
previous section provides a ready methodology for 
attaching a likely range to our projected total.  In 
particular, the standard deviation of runs yet to be 
scored is estimated as 0.705959.95 remR , so there is an 

approximate 70% chance that the final score lies in 
the range 0.705959.95 remP R± . Alternatively, we can use 

appropriate gamma-based quantiles to derive more 
precise upper and lower confidence bounds for the 
final score projection.   For the 345 projections from 
the 44 matches played between January and April 
2010, 76.81% of the ranges so calculated actually 
covered the true final first innings score.  This is in 
close agreement with the theoretical value of 70%, 
the excess coverage in part explained by the inter-
dependence of projections from the same match. 
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Figure 5a: Progression of actual and projected score throughout 
the Sri Lankan innings during their 2007 Cricket World Cup 
semi-final match against New Zealand. 
 

We conclude by indicating one way our projection 
procedure can be used to enhance the entertainment 
and information value of live limited-overs cricket 
broadcasts.  Figures 5a and 5b show the run-scoring 
progression from the semi-finals of the 2007 Cricket 
World Cup, and are based on plots shown during 
live cricket broadcasts, whereby the score through 
an innings is depicted as an increasing “worm” with 
dots at the fall of wickets. Figure 5a shows the first 
innings of the match between Sri Lanka and New 
Zealand, in which Sri Lanka batted first, Figure 5b 
the first innings of the match between Australia and 
South Africa, in which South Africa batted first. The 
addition to the common display in these plots is the 
inclusion of the projected score and likely range, 
based on our proposed methodology, above the run-
scoring “worm”.  The display shown here is for the 
entire innings; however, at any stage of play, the plot 
can be produced up to the current over. 
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Figure 5b: Progression of actual and projected score throughout 
the South African innings during their 2007 Cricket World Cup 
semi-final match against Australia. 
 
Note that the variation in the projections can also 
serve as an indication of which team is currently 
performing better in the game; that is, whether the 
batting side has begun to improve their performance 
or the bowling side has begun to rein them in. 
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Appendix 
 
A simple heuristic argument using geometric series 
expansion shows why choosing  

( ) 1k
rem maxR Rπ −=  

is appropriate.  The direct scaling projection is: 
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Thus, a simple way to adjust the direct scaling 
method to reduce the effect of extreme scoring rates 
is to replace s by (Rmax – Rrem)G50, which is 
equivalent to replacing uobs by G50, after a certain 
point in the infinite series expansion: 
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Clearly, the later in the expansion the replacement 
takes place, the closer the projection is to the direct 
scaling projection.   
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Abstract 
 
Data mining can be viewed as the process of automatically extracting previously unknown information from 
large databases and utilizing this information to make crucial business decisions. In Data mining data is looked 
for patterns and relationships which later on lead to some previously unknown facts, i.e. knowledge. The 
sports world is known for the vast amounts of statistics that are collected for each player, team, game, and 
season. Since the processing of data is much slower than its generation, this information is not useful in most 
of the cases; especially for the players or even teams of limited resources. It is virtually impracticable to get 
any advantage from that data. Using data mining, this raw data could be converted into wealth of knowledge. 
A study was conducted wherein Cricket, which is also known as game of records, was taken as the model 
sport. Ball to ball data of a batsman was mined to prepare a decision tree. This decision tree highlighted the 
strong & weak areas of that batsman. Using this decision tree, that batsman could be suggested to improve his 
weak areas. On the other hand, this decision tree could also be used for selection of a batsman against any 
particular team or situation. The results of this study were presented to stakeholders in Pakistan Cricket Board 
(PCB), who validated and appreciated the results. 
 
 

Keywords: Data Mining, Classification, Decision Tree, Cricket, Performance Enhancement 
 
 

 
1. INTRODUCTION 
 
Data mining is the blend of some tools and 
techniques for the exploration of knowledge from 
huge amount of data (Han, Jiawei and Micheline 
Kamber, 2006). In Data mining data is looked for 
patterns and relationships which later on lead to 
some previously unknown facts, i.e. knowledge. 
Moreover the future events can be predicted from 
these patterns and relationships. Areas where the 
presence of Data mining can be felt includes 
industrial applications,  criminal investigations, bio-
medicine (Chen et al, 1998), sports (K. Solieman, 
Osama 2006) and counter-terrorism (Bhavani 
Thuraisingham).  
Most customers when they go out for shopping 
normally follow a similar pattern. It has been seen 
that when a customer purchases milk & bread, he is 
likely to purchase butter. It’s the data mining which 

disclose these patterns. On the basis of this 
knowledge recommendations to the vendor/customer 
can be given. 
Another area where loads of data is generated and 
gathered is the world of sports, where data is 
collected for players, their teams, season and venue 
where the matches have been played. The statistics 
that are gathered for a cricket player might be – runs 
scored, wickets taken, centuries made, batting 
average maintained, batting strike rate maintained, 
bowling average accomplish, bowling strike rate 
achieved etc for each match.  
The level of competition is high in the world of 
sports, the difference of skills and temperament is 
very low between the international teams so a slight 
edge normally goes a long way. By tradition it was 
considered that the experts of the game are the 
repository of all the knowledge regarding that game, 
experts might be scouts, coaches or even managers.  
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Considering the significance of historical data in the 
field of sports and games, it is imperative to find the 
patterns in that data which can lead to new 
knowledge. This could extremely helpful not only 
for the player and their coaches but also for 
managers and the contractors of the teams who offer 
expensive contracts to the players. 
In this study Classification technique is proposed for 
mining and knowledge extraction from sports data.   
 
 
2. METHODOLOGY 
 
Since data mining is a growing area, the techniques 
are constantly changing, as new improved methods 
are discovered. Decision tree classification can find 
out interesting trends from historical data of any 
cricket player. Decision tree classification has 
certain distinct qualities which are listed in (Borisov, 
A., Chikalov, I., Eruhimov, V., & Tuv, E. (2005), 
(Rose Quinlan 1996) and (SK Murthy (1998)). 
 
The Life Cycle of any data mining application 
consists of following six phases (Crisp).  
 

1. Business understanding  
2. Data understanding  
3. Data preparation  
4. Modelling  
5. Evaluation  
6. Deployment  

 
 

 
 
 
Business understanding 
Major concern of this study is towards the 
performance enhancement of batsman using data 
mining. So ball to ball data about a batsman batting 
will be collected.  
 
 

Data understanding 
Before processing it’s imperative to understand the 
data. There must be a domain expert there, who 
would be able to set direction of data mining expert 
by pointing out what are most important pieces of 
data and how does they relate to each other. Because 
selection of relevant attributes is crucial to Data 
mining success, without adequate understanding of 
data, the return on the resources invested in data 
mining would certainly be disappointing. In quest of 
finding the most important attributes that deals with 
the performance of a batsman we consulted experts 
of the game and finally concluded the following 
attributes 
 
Bowler Style 

To keep things simple and easy to understand, 
bowlers a batsman faced were categorized as 
fast, medium and spinner. This categorization is 
important because some batsmen have good 
technique against faster bowlers but they are 
vulnerable against the spinner and vice versa. 

 
Foot 

There are distinct shots which can be played on 
front foot as well as back foot. It can be a good 
measure of players technique as it is seen that 
some batsman hesitate to play on the front foot 
and others fails because they commit 
themselves on back foot or on front foot too 
early. 

 
Ball Length 

All the balls were categorized on the length. 
This attribute could have the values like short 
pitch, good length, fuller length or even full 
toss. Choice of attribute is obvious as there are 
only few players who can play the balls of every 
length with ease. 

 
Ball Line 

Ball line is another judge of batsman's 
technique. Some players are strong on the leg 
side and others feel it comfortable to play on the 
off. Earlier days of the Indian former captain 
Sourav Ganguly is an example, who played 
almost every ball on the off side, conversely 
former kiwi Captain Stephen Fleming when he 
came to bat used to play every ball on the leg 
side. 
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Shot Played 
What shot the player is playing. This variable is 
categorized as following 

• Beat  
• Cover Drive 
• Cut, Edge 
• Flick 
• Glance 
• Left 
• Lifted Drive 
• Off Drive  
• On Drive 
• Pull  
• Push 
• Reverse Sweep 
• Smashed 
• Square Drive 
• Stop 
• Straight Drive 
• Sweep 
• Thump 

 
Result  

A variable named ‘Result’ was added to the 
above data. This variable is the output 
(dependent) variable. This variable has only two 
values i.e. ‘convincing’ or ‘not convincing’. If 
the batsman has scored a run, it is marked as 
‘convincing’ and if he hasn’t scored any ‘not 
convincing’.   
As it is not possible to infer from the available 
data (Cricinfo) that whetter or not batsman has 
played a convincing shot or not, runs scored 
was used to infer that whether or not the shot 
played was ‘convincing’ or ‘not convincing’ 

 
Data preparation 
Data collection and preparation for the evaluation of 
the proposed model was not an easy task. Ball to ball 
data of a batsman was required. Keeping this issue 
in mind major sports organizations were consulted 
and data from multiple sources especially from 
(CricInfo) was obtained and integrated. A Pakistan 
test cricketer Imran Nazir was selected as a model 
batsman. The batting data of Imran Nazir for season 
2006-07 was collected, transform & integrated.  
 
The shape of our final data will look like. 
 
 
 

Bowler 
style foot 

Ball 
length 

Ball 
Line shot Result 

FAST BACK 
Full 
Length OFF LEFT Convincing 

FAST LEFT 
Full 
Length OFF LEFT Convincing 

MED LEFT 
Good 
Length 

ON 
DRIVE LEG 

Not 
Convincing 

IUM           

FAST LEFT 
Short 
Pitch OFF LEFT Convincing 

FAST LEFT 
Full 
Length LEG LEFT 

Not 
Convincing 

FAST LEFT 
Full 
Length OFF LEFT Convincing 

FAST LEFT 
Short 
Pitch LEG PULL Convincing 

FAST LEFT 
Good 
Length LEG 

ON 
DRIVE Convincing 

  
Modelling 
In this phase, many data mining modelling 
techniques are selected and applied, and their 
parameters are calibrated to most favourable values. 
Typically, for the same data mining problem, several 
techniques might work. Stepping back to data 
preparation phase is sometimes required because of 
the difference in the format of data used in different 
techniques. 
For this particular study, we selected decision tree 
modelling approach.  

 
Evaluation and Validation 
How well your mining models have performed 
against real data is accessed in the process of 
Validation. It is imperative that you authenticate 
your mining models by considering their quality and 
characteristics before their deployment into the 
production environment (MSDN). Following 
metrics are used to access the quality of a data 
mining model. 
 
Accuracy is a measure of how well the model 
correlates an outcome with the attributes in the data 
that has been provided. The accuracy of these rules 
was checked with the help of confusion matrix 
(Kohavi and Provost, 1998). A confusion matrix is 
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built as a comparison of actual values that exist in 
the testing dataset against the values that the mining 
model predicts.  
     
Usefulness deals with a variety of metrics that tell 
you whether the model provides useful information.  

 
To evaluate the proposed methodology, dataset was 
divided into two partitions, training subset and test 
subset. First a decision tree was build using training 
subset and its accuracy was verified using test 
subset. After this the results are discussed with a 
domain expert to gauge the usefulness of results.  
 
Deployment 
Creation of the model is usually not the end of the 
project. Depending on the requirements, the 
deployment phase can be as simple as generating a 
report or as complex as implementing a repeatable 
data mining process (Crisp).  
In this particular case, we were only interested in 
getting a decision tree which would highlight the 
strong and weak areas of a batsman.  
 
Example 
To understand the usefulness of decision trees in 
cricket world, consider the start of cricket match 
where two captains are involved in a toss. The 
winning captain has the option to decide whether to 
bat or field first. It’s a difficult decision on his part 
as sometimes this decision plays a major role in the 
outcome of a match. Let’s suppose he decides to 
collect the data of last 10 matches where the 
captains decide to bat first after winning the toss. 
The data set that has been chosen for this table 
comprises of Humidity, Outlook and the number of 
regular batsmen in the team.  
 
Following Table showing the hypothetical data of 
last ten games where the winning captain decided to 
bat first after winning the toss. 

 
Independent Variables Dependent 

Variable 

O
u

tlo
o

k 

H
u

m
id

ity 

N
u

m
b

er 
o

f 
b

atsm
en

 >
 6

 

F
in

al 
O

u
tco

m
e 

Sunny  High Yes Won 
Overcast High No Lost 
Sunny  Low No Lost 
Sunny High No Won 

Overcast Low Yes Lost 
Sunny Low Yes Won 
Sunny Low No Lost 
Sunny High No Won 
Sunny Low Yes Won 
Sunny Low Yes Won 

 
Though it’s an example containing very few records 
but still it is apparently confusing for captain to 
figure out what to do on seeing it in the above 
format. Let’s see how a decision tree model can help 
the captain in understanding the situation. To make 
the decision tree of the above data, we proceed as 
follows: 
 

 
 
An equivalent rule solution is: 

If outlook = Overcast then  
Lost  

Else if outlook = sunny then 
If humidity = high then 

 Won  
Else if humidity = low then 

       If batsmen > 6 then  
                          Won 

                   Else  
                         Lost 

               End if 
        End if 
   End if 

 
From this decision tree the captain and his other 
fellows come to know historically and statistically 
that it is better to put opposition in for bat if the day 
is overcast and conversely If the day is sunny and 
humidity is high batting first would have been a 
better option and finally. If the day is sunny, with 
low humidity, and the team contains at least six 
regular batsmen, batting first is safe; otherwise they 
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should field. Hence, the captain can now make a 
knowledgeable decision after winning the toss.  
This is basically a very simple example to illustrate 
the use of data mining in sports. By looking at the 
proposed example, a captain can easily predict that 
the result of batting first is not going to be 
favourable if the Outlook is overcast.  On the other 
hand, there is fair chance of winning if you opt to 
bat first after winning the toss on a day when 
humidity is high and the outlook is sunny. 
 
3. IMPLEMENTATION AND CASE STUDY  
 
Classification Software was designed in Excel that 
utilized the standard C4.5 algorithm to generate 
decision tree. Excel was selected due to its intuitive 
user interface and ease of use. Its very easy for a 
novice user to input, edit & manipulate data in excel, 
while simultaneously able to mine it. Ball to ball 
detailed data of the Imran Nazir was feed to this 
software which generated the following tree.   
 
 

 
 
 
From the detailed study of the tree which is shown 
above is pruned and made on C4.5 model, we can 
come across the following conclusion about the 
technique of the batsman ,which in our case is  
Imran Nazir. 
 
If length = “full toss” 
                Not convincing 
Elseif length = “full length” 

If direction = “off side”  
                                Convincing 
             Elseif direction = “middle stump” 
                                Not convincing 
             End if 
Elseif length= “good length” 
             If bowler = fast and direction = “off stump” 

and shot tried = “cover drive” 
                                Convincing 

               Else 
                                Not convincing 
               End if; 
             If shot = “cover drive” and bowler = 

“medium fast” 
                                Not convincing 

  Else if shot = “cover drive”   and bowler =    
“spin” 

                                Convincing 
                End if 
                If shot = “cover drive” 
                                Convincing 
                End if 
End if 
 
If we go through above generated rules, we will find 
discover following. 

• Imran Nazir feels comfortable while 
playing 

o “Full Length” balls that come on 
“off side” 

o “Cover Drive” to “Good Length” 
balls especially for “slow” 
bowlers.  

 
•  Imran Nazir feels difficulty while playing 

o “Full toss” balls. 
o “Full Length” balls that come on 

“middle stamp” 
o “Cover Drive” to “Good Length” 

balls “Medium fast” bowlers. 
 
These rules can help in following ways. 

• Coach can use these rules while planning 
practise session, training for batsman. He 
can give more attention to grey areas and 
resultantly the performance of batsman 
would improve. 

• The captain of the team can use these rules 
to select the best batsman for the current 
situation during a match.  

• The opponent team can use these rules to 
exploit the weak areas of a batsman. 

• Keeping in view the weak and strong areas 
of other team batsman, selection of best 
bowlers can be made.   
 

These rules were presented to Imran Nazir & other 
stake holders in Pakistan Cricket Board (PCB), who 
validated and appreciated the results.  
 
Confusion Metrics for the Case Study are as under: 
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• On Training Data the class “Convincing” is 
miss-Classified only 24 times and class 
“Not Convincing” is miss-classified 38 
times. So miss-classification is 1.47% on 
Training Data. 

 
• On Test / Validation Data both of the 

classes have been miss-classified once and 
the miss-classification is mere 4.00 %. 

 
 
4. CONCLUSIONS 
 
Although traditional business organizations has 
immensely benefited from the use of data mining, its 
application in the world of sports is still in infancy. 
But the situation is changing rapidly. Data mining 
has started showing great value in many dimensions 
to organizations in the sports world and the recent 
future will undoubtedly bring increased research as 
well as commercial opportunities in the area of 
Sports Data Mining. 
In this paper, it has been shown that data mining 
could successfully be used to analyse and enhance 
the performance of any batsman. In the future this 
technique could also be used to analyse the 
performance of bowlers, fielders, wicket keepers.    
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Abstract 
 
This paper introduced a novel sport simulation system which provides an actual physical trail of the sport 
performance to be enacted. The case of spatial parallel cable suspended mechanism is addressed. The main 
specifications for this parallel manipulator have been the prescribed workspace for each of the 6 degree of 
freedoms. For such training, there are some facilities to move the end-effector according to the kind of 
simulation including athlete in the workspace. This paper describes the study of the reachable workspace of a 
cable-suspended parallel robot and the workspace under study is defined as the set of all end-effector poses 
satisfying tension-ability condition. Since there are some limitations on the external wrench and the dynamic 
motion of the end-effector, such a workspace is the most desirable workspace for the intended application 
simulating athlete dynamics. Finally, in order to validate the proposed mechanism dynamic investigation is 
considered in workspace determination and the cable forces are computed to observe the relevance result to the 
athlete’s position during the simulated trajectory. 
 
 

Keywords: Sport simulation, cable suspended robot, Dynamic workspace 
 
 

 
1. INTRODUCTION 
 
Some kinds of sports are popular pastime for many 
people. However it requires a large amount of space 
and/or specialized facilities. In some urban area it 
may be difficult to find the necessary space to 
participate in these sports. Moreover, specialized 
facilities may be expensive to build and maintain. 
Additionally, Sports almost is subject to the weather, 
daylight and direct participation in the sport may be 
dangerous and cause injuries.  
 
Accordingly, there is a need for an alternative to 
traditional sport that is not subject to the drawbacks 
noted above. To explore these aspects, we focus on 
robotic mechanisms as sport simulators. This class 
of systems allows people to practice their hobby by 
using real clubs into a screen projection of a sport 
course. Naturally, building such a system will take 
on a different character than the more commonly 

observed cases of developing systems for PC and 
laptop- based modes of interaction. 
The flight simulation is probably the most 
representative application of the interactive visual 
simulator (Roman, 1999). This simulator was built 
with a complex and effective motion system to 
generate the realistic feeling of takeoff, landing and 
in-flight turbulence. This manipulator was first 
presented by Stewart in 1965 and called Stewart 
Platform Based Manipulator thereafter. This parallel 
robot provides several distinct advantages over 
conventional serial robot. Parallel machines are 
characterized by having multiple closed kinematic 
chains and actuate a subset of their joints. Due to 
this general arrangement, a parallel manipulator 
holds the potential for greater stiffness and higher 
speed and payload for a given weight. However, 
workspace is typically substantially smaller than that 
of a similar serial machine.  
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Cable array robots are a class of parallel 
manipulators which utilize multiple actuated cables 
to manipulate objects. They usually have a lower 
moving inertia when compared to its rigid link 
counterpart. Moreover, it has large workspace. For 
sport simulators, it is necessary to attain enough 
motion space. The flexibility of a cable allows the 
replacement of mechanical joints in the design.  
They are ideally suited for large scale applications. 
This robot consist of a fixed base and a centrally-
located end-effector, attached to moving payload, 
connect to cables whose tension is maintained along 
the tracked trajectory. Dealing with this mechanism 
SPIDAR is designed to investigate the effect of the 
force feedback from the environment to an operator, 
on task performance. However, the performance of 
the mechanism itself was not of their interests (Ishii, 
Nakata & Sato,1994).  
The cable array mechanisms have been studied in 
the context of applications such as a virtual sports 
machine. A virtual tennis system which uses radial 
cable drive mechanism to enlarge the motion area is 
designed (Kawamura, Ida, Wada, & Wu, 1995). A 
versatile cable robot as a haptic interface was 
developed for sport simulation (Zitzewitz, Rauter, 
Steiner, Brunschweiler, & Riener, 2009).  
There are many papers in the literature which 
discuss the defining characteristics and the important 
issues relating to this class of robots. Some of them 
are interested in the case of sport simulation. The 
computing load carrying capacity of cable parallel 
robotic manipulators (Korayem, Bamdad, 2009), 
workspace analysis (Barrette, Gosselin, 2005) are 
seen in the theoretical literature. The ideal model 
includes rigid elements. Elastic cable will tend to sag 
under its own weight. The effect of cable sag could 
be reduced by requiring non-zero minimum tension 
values (Korayem, Bamdad, & Saadat, 2007). 
Determining the workspace of cable actuated robots 
can be more complex than for conventional parallel 
robots, as the cable actuators can only apply forces 
when in tension. In this paper, the reachable 
workspace is studied. One particular type of cable 
array robot with six cables is presented in detail 
including kinematic relations and static modelling. 
The shape, boundary, dimensions, and volume of the 
workspace of this cable robot are displayed. A 
simulation system for simulating sport virtual reality 
experiences is done. These results are discussed in 
detail based on the sport simulator.  
 
 

2. MULTIPLE DOF POSITIONING 
MECHANISM IN SPORT SIMULATION 
 
The paper is to present an architecture and 
mechanism to design a simulator on sport area and 
provides sport cases of designing for interactive 
settings where embodied performance is a central 
property, and how this influences the activity of 
programming. We examine a sport simulator setting, 
which is a case where the target activity is heavily 
based on physical action and full body interaction. 
The operational simulation is an operational 
assistance system, which is to train the operation of 
manipulating safely. Such systems include sports 
arcade games, simulators, and training applications 
for different settings requires users to engage in 
extensive bodily engagement to interact with a 
computational system.  
The aim is to explore the multitude of use settings 
that developers may need to relate to robotics. This 
parallel manipulator meets the above needs and 
avoids the disadvantages and drawbacks of the prior 
art. The novel sport simulation system provides an 
actual physical trail of the sport performance to be 
enacted. These parallel manipulators relate to 
apparatus for simulating a sport activity and more 
particularly an interactive sports simulator system 
which provides an actual physical trial of the sports 
performance to be enacted.  
The motion platform is an important sensory device 
for the trainee to fully immerse himself into the 
training scenario. The platform is able to deliver 6 
DOF postures to the trainee, including rotations and 
shifts with respect to X-, Y- and Z-axis. The system 
can simulate the situation of acceleration, vibration, 
and turn over etc.  
Rather than documenting the practices in detail, we 
have chosen to describe specific themes of the cable 
suspended robot, pointing at how they illuminate 
certain aspects and challenges that designers have to 
face when designing for such settings. For example 
it will be easy to provide a frame including 
adjustment means to adjust the inclination of the 
frame relative to a horizontal plane. Through this 
paper we attempt to contribute to an understanding 
of some of the dimensions involved in sport 
simulators, and in particular, the interplay between 
designing practice and its resources, the physical 
experiences, and the motion style contexts of the 
interactive devices.  
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Figure 1: Cable Robot plays a role of trainer  

 
 
3  CLASSIFICATION OF CABLE ROBOTS 
 
The cable robot is a parallel manipulator consisting 
of an upper base plate and a fixed moving plate, 
which are connected together by six cables like 
adjustable links. This manipulator can be expanded 
and contracted individually to control the gesture of 
the platform.  
Based on the number of cables (m) and the number 
of degrees of freedom (n), the cable actuated robots 
were classified into four categories: 

)

)

)

)

1 Incompletely Restrained Positioning Mechanism :

m n+1

2 Completely Restrained Positioning Mechanism :

m n+1

3 Redundantly Restrained Positioning Mechanism :

m n+1

4 Fully Restrained Positioning Mechanism :

m n

<

=

>

≥ +1

 

Here, an aluminium plate is supported by six steel 
cables whose ends are rolled by pulleys connected to 
D.C. motors. Seven actuators are necessary and 
sufficient to produce forces and torques with six 
degrees of freedom. A fully constrained cable robot 
possesses more cables, and therefore presents greater 
risk of cable interference, and therefore limits the 
usable workspace. The mechanical architecture and 
computations also increase in complexity for full 
constraint. 
The fewer cables are used to help avoid cable-
interference problems by taking advantage of the 
end-effector’s weight, which acts similarly to a 

“cable” pulling downward with constant tension .the 
cable robots with fewer cables offer greater 
simplicity and larger workspaces. Overall, IRPM 
robots are often preferable. The objectives of this 
paper are to develop a general algorithm to generate 
the workspace. Here, the research is focused on 
IRPM cable robots. 
 
 
4 CABLE ROBOT KINEMATICS 
 
Cable robots are relatively simple in form, with 
multiple cables attached to a mobile platform as 
illustrated in Figure. 2.  
The Inverse Jacobian matrix is a position and 
orientation dependent matrix and for parallel 
mechanisms it is found to be 

[ ] [ ]
1

1 1

...

...

t

m

m m

u u
J

r u r u

 
=  × × 

 
  

(1)  

where 
1 2, ,..., mu u u  are unit vectors along the cable 

lengths 1 2, ,..., ml l l .   

A feature of parallel robots is that it is difficult to 
obtain Jacobian, where at the inverse Jacobian is 
common. Inverse kinematics of cable-suspended 
robot is computationally simpler to solve compared 
to forward kinematics. The forward kinematics 
equations for parallel mechanism are usually derived 
as a set of implicit equations, or a set of relatively 
complex explicit expressions. Due to the nature of 
parallel mechanisms, a complete analysis of the 
forward kinematics model may be impractical. 
The position and orientation of the moving platform 
is known in inverse kinematics and the problem is to 
determine the cable lengths. The architecture of a 
six-cable robot and reference frames are described in 
Figure. 2. All six cables connect from the base to the 
moving platform.  As is common knowledge:  

o o o
i i i= + −l H a b  

( )1,...,i m=  

 

(2) 

  

Where H is the position vector of the centroid 
moving platform with respect to center of the base 

platform. o
ia , o

ib are the position vectors of 

connection points of the cable i on the moving 
platform and base platform relative to the reference 
frame BO . 
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( ), ,o
i iψ θ ϕ=a R r  (3)  

where ( ), ,R ψ θ ϕ  present the rotation matrix about 

base coordinate frame and ir is the moving platform 

fixed vector to the connecting points. In order to 
develop the kinematics of six-cable robot, consider 
that: 

, ,0  ,  sin( ), cos( ),0   

[0,0, ] 

o T o T
i i i i

T

x y b b

h

α α= =      

=

a b

H
    (4) 

A. INVERSE KINEMATICS  

The equations for the analytic cable lengths can be 
written in the following form: 
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(5) 

B. FORWARD KINEMATICS 

From (5), ( 1 3)ix i = − for this robot is found as: 
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(6) 

The coordinates should be satisfied by the platform 
geometry constraints: 
( ) ( ) ( )1 1 2 2 3 3, , , , , , , ,x y h x y h x y h  

The position of the connection points on the 
manipulator shouldn't be varied. The moving 
platform equilateral triangle side with cable 
connections is considered as extra equations.  
With substituting (6) into (5), nonlinear equations 
will be appeared. This system of equations can be 
solved numerically using Newton-Raphson method 

for finding the position of the robot attachment. All 
numerical calculations were performed in 
MATLAB. 
 
 
5 WORKSPACE ANALYSIS 
 
All the end effector position of the simulator 
according to its current position, velocity, 
acceleration, altitude, and gravity must calculate 
during the operation. The most essential issue in 
cable-suspended robots is maintaining the cables 
tensions. Thus, wrench exertion and cable length 
constraints limit the workspace.  
Workspace for parallel robots is typically generated 
computationally, due to the high complexity of the 
geometry and for cable-suspended robots the 
workspace calculation is related to static equilibrium 
because of the fact that cables can not sustain 
compressive forces. 
The workspace of a robotic system is defined as the 
volume that the moving platform reference point can 
reach. In the literature, with classification of cable 
actuated robots, a number of different workspaces 
had been studied. The reachable workspace is the 
largest workspace definable, and is the set of all 
points that can be reached in at least one orientation, 
regardless of the required orientation of the platform 
at that point, or ability to change orientations. 
The less dexterous regions of the workspace 
corresponded to poses of the manipulator that are 
near singular configurations. As a result, there are 
additional constraints that must be satisfied in order 
for the robot to be in a non-singular pose.  
Generally the moving platform may not be in 
equilibrium at a point in the workspace, whereas for 
a cable-suspended robotic system, the moving 
platform for all points in the workspace is 
equilibrated. The following conditions must be 
satisfied in order for a point to be within the 
workspace.  
1- Tension forces must be above the cable 
pretension, also the maximum tension is considered 
for all cables. 
2- The cables must be capable of exerting a positive 
wrench on the platform. All cable tensions must be 
non-negative to equilibrate the moving platform for 
an applied force. 
3- All active cables must remain in tension to be 
effective for equilibrium or dynamically motions. 
The end-effector may not be in equilibrium at a 
point in the reachable workspace because of the fact 
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that cables can not sustain compressive forces. For 
this reason, there is a need for defining and 
calculating the statically reachable workspace. 
All cable tensions must be non-negative to 
equilibrate the end-effector for an applied force. The 
volume and boundaries of the statically reachable 
workspace depend on the direction of the forces 
acting on the end-effector. Statically reachable 
workspace is directly related with static equilibrium 
of the system given in next section.  
 
 
6 STATIC ANALYSIS 
 
In this case the target activity is heavily based on 
physical action and full body interaction. For 
example an interactive golf simulator environment is 
used by individuals. A golf course in combination 
with a sensor-based device for capturing the physical 
properties of the golf shot, such as ball speed, 
direction, and spin, to calculate the trajectory and 
indicate where in the simulated environment the ball 
will end up. The setup of the system provides an 
interactive context that involves two distinctly 
separate modes of interaction, first, hitting golf shots 
to actually play the game, and second, interacting 
with the simulation to carry out the actions 
necessary to play in the manner one wants. The first 
being a highly physical mode of interaction while 

the second being more of an information seeking 
mode of interaction. 
It is possible to equilibrate the end-effector for all 
points in the reachable workspace when we define a 
statically reachable workspace. 
This section presents statics modeling for the robot. 
Principle of virtual work will be applied to find the 
tension values caused by the wrench on the platform. 
Since the virtual displacements are related to the 
Jacobian matrix. The static balance equation is: 

0t
pJ Wτ + =  (7) 

When the external wrench ( ),
t

p p pW F M= is 

available to tighten the cables, the cable tensions 
are denoted by

1 2( , ,..., )tmT T Tτ = .  

The static equations include of wrench balance on 
platform is used to find the force of each cable for 
planar model. The force equations for the platform 
can be easily expressed as: 

1

0
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i p

i

T F
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+ =∑  
(8) 

1

( ) 0
m

i i p

i

R T Mϕ
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× + =∑ r  

  

(9)  

 

 
Figure. 2. (a) A schematic of the 6-cable robot, (b) A schematic of the base platform 
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7 SIMULATION  
 
In this section, a three-dimensional manipulator with 
six cables is considered. For each cable, there is a 
separate winch and pulley. The end effector carries a 
member of body or sport device like hand, rocket. It 
is kinematically constrained by maintaining tension 
in all six supporting cables. The suspended movable 
platform and the overhead support are typically two 
equilateral triangles.  
The mechanism is shown in a virtual reality 
environment in Figure. 3. In this environment the 
effects of degrees of freedom and the position of 
rocket are described with cable forces. Graphically 
displays articulated geometric figures and allows 
them to be placed and manipulated in a virtual 
environment. This virtual world contains a fully 
functional model of robot, a 3-D tracking device and 
other inputs sensors in sport simulation. The 
simulated environment will have the advantage of a 
knowledge based reactive planner. The knowledge 
based planner allows for flexible and reactive 
planning in an unstructured real world domain.  
 

 
Figure 3: Virtual Reality Toolbox viewer 

 
One type of static workspace can be defined by the 
task required at the set of all points within the 
workspace. The constant orientation workspace is 
defined for a particular orientation of the platform 
and is the set of points that can be reached by the 
centroid of the moving platform when the 
orientation of the moving platform is kept constant.  
Here, all rotation angles are assumed to be zero in 
order to make a stable situation for trainee. 

Moreover the elevation of end effector (rocket) can 
be varied during the motion.  
For a complete description of static workspace, it is 
divided to some layers. Each Z level is considered 
one layer in workspace. The tension norm of cables 
is an important parameter to determine the suitable 
operation elevation.  
 
 

Z(m) Tension Norm (N) 
0.5  15.22 
1  11.62 

1.5  10.87 
 

Table 1: Tension norm in different levels Z 
 
Each cable is tensioned by a motor-pulley direct-
drive system placed on the base platform. According 
to Table 1, motor efforts can be selected.  
The kinematics and the statics of cable-suspended 
robots have been analyzed. Our theoretical study of 
a particular cable-suspended robot has been 
undertaken and to confirm the theory with 
experiments, an experiment test-bed of a planar 
cable suspended robot is fabricated and experimental 
tests have experienced the feasibility of the cable 
system design and proposed models (Korayem, 
Bamdad & Zehtab, 2010). 
The robot workspace refers to the region in which 
the robot can operate, which is a defined volume for 
spatial manipulators. Workspace was computed 
using a numerical method. To calculate the 
workspace, one can either use the idea of null 
vectors or static equilibrium equations. Idea of null 
vectors is very useful when the system is fully 
constrained. 
The side lengths of equilateral triangle shaped base 
and moving platforms are respectively 1.19 m and 
0.17m. In this case, the workspace area is 
characterized as the set of points where the centroid 
of the moving platform pO can reach with tensions 

in all suspension cables. By changing the 
coordinates of pO the workspace shape can be 

expressed in 2D space by a series of dots (Figure 4). 
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Figure 4: The planar workspace for Z=1 m 

 
The raising degrees of the yaw roll and pitch will 
cause hazard situation if the angle is over some 
safety value. The calculation of cable tension by 
equations in Section 3 is applied. In this way, the 
cables tensions are depicted in Figures 5-11.  

 
Figure 5: Cable force 1 

 

 
Figure 6: Cable force 2 

 

 
Figure 7: Cable force 3 

 
Figure 8: Cable force 4 

 
Figure 9: Cable force 5 
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Figure 10: Cable force 6 

 
The investigations conducted earlier, including an 
analytical solution and the search for solutions of the 
problem of synthesizing trajectories, planning and 
implementation of the motion of a cable suspended 
robot are combined. 
For a cable-suspended robot, the optimization 
problem for minimum effort can be posed in the 
tension norm calculation (Figure 11). The position 
of end effector which is in high values of cable force 
or motors efforts can be deleted in path 
determination for sport simulator. The motion 
planner in sport simulation can decide based on the 
cable force contour.  

 

 
Figure 11: The norm of cable forces  

 
8 CONCLUSIONS 
 
The participation of parallel cable robots in sport 
events is considered. The planning mechanism and 
developing a virtual representation allows for both 
autonomous planning as well as planning through 
human-machine interaction.  
According to the actual physical trail of the sport 
performance, the target activity is heavily based on 
physical action and full body interaction. These 

machines have a large workspace and enough space 
for sport player swings is guarantied. The workspace 
determination plays a very important role in the 
sport simulation.  
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Abstract 
 
Tournament roulette is a special type of roulette competition run by some casinos. Competitors play in a series 
of roulette games in which some competitors are eliminated at the end of each game. A game consists of 25 
spins of the wheel followed by an unspecified number of spins until one of seven key numbers on the wheel 
occurs to end the game. The essential strategies to consider are what to do in the end game depending on 
whether or not a competitor is in the possible elimination group. 
 
 

Keywords: roulette, probability 
 
 

 
1. INTRODUCTION 
 
Roulette is a gambling game in which a wheel is 
spun about a vertical axis. In Australia and Europe 
there are 37 slots in the wheel for a white ball to fall 
into indicating the winning number from 0 to 36. 
The lay-out for the wheel is shown in Figure 1. 
 

 

Figure 1: The Australian and European wheel 
 
Up until recently the wheel was situated at one end 
of a long table with the remainder of the table being 

used by players to place their bets using special 
roulette chips. The lay-out for the area to place bets 
is shown in Figure 2. 
 

 
 

Figure 2: The betting lay-out 
 
At my local casino the roulette tables have recently 
been removed and replaced by computer screens for 
placing bets and observing the wheel. Tournament 
roulette is no longer available. 
 
Tournament roulette is a competition organised 
usually by a casino over a number of elimination 
games so that six competitors will meet at a roulette 
table for the final. Each elimination game involves 



256 Tournament Roulette 

  

six players with the top two progressing after the 
first round of games and the top three progressing 
from there on. 
 
Players pay the same fee ($250) to enter, and at the 
beginning of each game are each given chips to the 
non-redeemable nominal value of $2000. With 144 
players entering, all the entry fees are distributed as 
prize money in the following way after the end of 
the final. 
 

First place $20000 
Second place  $7000 
Third place  $5000 
Fourth place  $2000 
Fifth place  $1500 
Sixth place   $500 

 
The casino takes zero percentage and uses the event 
as a marketing tool. 
 
2. THE TOURNAMENT 
 
Each round of the tournament consists of a number 
of games where the field of competitors is reduced 
in size. Each game has a basic section of 25 spins. 
Players must bet at least $5 on each spin and no 
more than $1000. At the end of the 25 spins the 
amount left with each player is totalled and 
announced to all. Then follows the end-game 
section. 
 
In the end game, the competition continues until one 
of seven key numbers (0, 5, 8, 17, 20, 29, 32) comes 
up and then the game terminates. The game also 
terminates when no key number arises after 20 
minutes of the end game. The players with the top 
two amounts in each game of the first round heats, 
and the top three amounts in each game of 
subsequent rounds, progress to the next round where 
they again start with $2000 in chips. 
 
3. THE ODDS 
 
The Australian roulette wheel has 18 black numbers, 
18 red numbers and only one zero. Therefore the 
probability of a particular number coming up is 1 in 
37 or approximately 2.7%. This is the house margin 
for normal roulette. 
 
Bets may be made on various combinations of 
numbers (singles, doubles, triples, fours, sixes, 
twelves and eighteens) and some of these are given 
roulette names such as split, street, corner, etc. The 
pay-out for each betting category is as follows: 

Straight up: A bet placed on any single number 
including zero pays 35 to 1. 
Split: A bet on any two adjacent numbers on the 
table pays 17 to 1. 
Street: A bet covering a row of three adjacent 
numbers pays 11 to 1. 
Corner: A bet covering a square of four adjacent 
numbers pays 8 to 1. 
Six Line: A bet covering any rectangle of two 
adjacent rows pays 5 to 1. 
Column: A bet covering any column of 12 numbers 
pays 2 to 1. 
Dozen: A bet covering a series of 12 consecutive 
numbers starting with either 1, 13 or 25 pays 2 to 1. 
Even chances: A bet covering a group of 18 
numbers such as red or black, even or odd, top 18 or 
bottom 18 (not zero) pays even money. 
 
For each spin, the wheel is spun one way and the 
ball is projected in the opposite direction until it 
comes to rest in a numbered slot, thus determining 
the winning number. All losing bets are first of all 
removed from the betting table by the croupier, and 
then the winning bets are paid out in chips. 
 
4. STRATEGIES FOR THE FIRST 25 SPINS 
 
By calculating the expected gain for each type of bet 
it is seen that, no matter how bets are placed, the 
expected loss will always be exactly 1/37 or 2.7% 
approximately in the long run. Now 25 spins is not a 
particularly long run, but it is long enough to suggest 
that some competitors who place big bets may wipe 
themselves out early. Therefore a good strategy for 
the first 10 spins is to place only one $5 bet on an 
even-money chance each time, and watch to see if 
some players drop out. If a number do drop out then 
the number of opponents to watch in the end game is 
reduced significantly.  Using this strategy, the total 
chip value for the $5-bet player should stay near 
$2000. However if two players in a first round heat, 
or three players in a subsequent round heat, make 
lucky big bets early on that take them well past 
$2000, the $5–bet player must now take some action 
to try to catch up gradually before 25 spins have 
passed. 
 
To help decide on possible actions a computer 
program was written so that the Roulette tournament 
could be simulated. There were six places available 
for players, but three of these slots were used for 
pre-determined types of players. One player doubled 
his bets when he lost and only went back to his 
original bet when he won, another used a less-risky 
Martingale system, while a third bet wildly at 
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random. The remaining slots were used by my 
colleagues and me to try out our various strategies.  
A possible catch–up strategy is to place $540 on 
numbers 1 to 18, and $360 on numbers 25 to 36. The 
expected gain is still the same as betting $30 on 30 
different numbers, that is -1/37 x $900. However it 
is far easier and quicker to place bets on two spaces 
rather than 30. If any of these 30 numbers comes up 
the gain is $180, and the high probability of this 
occurring is 30/37 or approximately 81%. Of course, 
if any of the other seven numbers (0, 19 to 24) come 
up then the loss is $900. In this case put $1000 on an 
even-money chance and pray or hope. 
 
5. STRATEGIES FOR THE END GAME 
 
A clever player notes that there are four black key 
numbers, only two red key numbers, zero, and six of 
the key numbers are in the central column of the 
betting matrix in Figure 2. These facts may be useful 
when trying to decide on betting strategies before 
each spin of the end game. 
 
At each stage of the end game players must try to 
ascertain whether they are within or outside the 
qualifying group and by how much. 
 
When they are within the qualifying group, they 
should gauge their lead over the nearest current non-
qualifier and place $5 on each key number. This will 
cost them only $35 if a key number doesn’t come up 
but if a key number comes up to end the game they 
will profit by $145. 
 
When they are outside the qualifying group there are 
a number of strategies to use depending on how far 
they are outside. Betting on the key numbers will 
produce profits which are $(35 times N), where N is 
the amount bet on each key number. Players must 
add extra amounts to match the amounts placed by 
the nearest current qualifier on any particular key 
number. For example, suppose a current non-
qualifying player is $650 behind the nearest current 
qualifier, who places $5 on number 20 together with 
other bets spread across the table. The non-
qualifying player could place $30 on number 20 and 
$25 on each of the other key numbers. If a key 
number comes up the gain will be $725.  The loss 
will be only $180 if a key number does not come up, 
and the game is still on. 
 
When the deficit to the nearest current qualifier is 
too big, the non-qualifiers could place $500 on each 
outside column and hope that a key number doesn’t 
come up (or one of those other pesky numbers in the 

central column). This will gain $500 with a 
probability 24/37 of occurring. On the other hand a 
bet of $100 on each key number gives a return of 
$2900, but the probability for this is only 7/37. Note 
that the expected gain in all cases is still (-1/37) x 
Amount Bet. 
 
6. CONCLUSIONS 
 
When playing in a roulette tournament the aim of 
any player is to progress through each round to 
eventually participate in the final.  
The simplest strategy in the early part of the game is 
to wait for other players to wipe themselves out, and 
this is a definite possibility. Approaching the end of 
the first 25 spins, players should endeavour to be a 
current qualifier or near to the lowest current 
qualifier. 
 
Strategies in the end game should take account of 
the key numbers, and bets should be made to try to 
stay within the qualifiers or reach that position on 
the next spin. 
 
Although luck plays a primary pivotal role in the 
game of roulette, we believe that mathematical 
strategies can play a secondary role, and this 
sometimes tips the balance in close decision-making 
situations. 
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Abstract 
 
The game of touch football was modelled using a series of modified Markov states. The aim of this model is 
provide a framework allowing model expansion to account for additional game states, time dependence and 
displacement dependence. The model was designed to allow adaptation by application of alternative 
displacement and time dimensional distributions, displacement and time dimensional distribution parameters, 
and state change probabilities. This would allow adaption to the model according to other various styles of 
team play and associated levels and composition of teams. Due to the state based nature of the Markov 
processes involved, the model will be more intensively analysed in following papers focusing on more 
effectively analysing each state in turn. The goal of this model however is to produce a starting framework to 
allow for future development in modelling the sport of touch football. 
 

Keywords: Touch Football, Sport, Modelling, Markov States 
 

 
1. INTRODUCTION 
 
Touch football is one of the most extensively played 
sports in Australasia. In Australia touch is played by 
over a quarter of a million registered touch players, 
half a million school children and up to 100,000 
casual players (Australian Human Rights 
Commission, 2007 and Touch Football Australia, 
retrieved 2010). Touch is mainly popular in those 
states in which rugby league is also popular 
(Queensland, New South Wales and ACT), which is 
not surprising given its origins as a training activity 
for this sport (Mathesius & Strand 1994). While 
New Zealand has less touch players than Australia, it 
is still the largest participation sport within this 
country with over 230,000 New Zealanders playing 
the game. This includes 70,000 under 17 year olds 
and 160,000 adult players (Touch New Zealand, 
retrieved 2010). The running of this sport also 
involves a vast number of hours devoted by support 
personnel such as team coaches, team managers, 
referees, selectors and administrators. Touch is also 
played in other Australasian countries such as 
Samoa, Fiji, The Cook Islands, and Papua New 
Guinea. Countries such as South Africa, England, 
Wales, Scotland, USA, Japan, amongst others also 
regularly enter teams in international tournaments. 

Much of the touch football within these countries is 
of a more casual nature or used primarily as a 
training tool for other sports. Touch as a sport has 
grown rapidly within Australia (Philips 2000). This 
growth seems to be replicated to some extent in 
these other countries; however the greatest density 
of participants is still in Australasia. 
 
Despite the large involvement in touch, very little 
Australasian sports research has been conducted on 
this sport when compared to the main professional 
sports played in Australia and New Zealand. Much 
work has been done on developing theoretical and 
practical modelling systems in sports such as AFL, 
rugby league, rugby union, hockey, cricket, 
basketball, squash, tennis, golf and others. The 
majority of published research related to touch 
football is based on injuries associated with the 
sport, or use of touch players as a subject group to 
test some experimental intervention in fairly 
standard study design. This is not surprising 
considering the large number of touch players 
available. However limited published research has 
been done on the sport itself. One paper that has 
been published Mathesius and Strand 1994 (when 
touch football was called touch rugby in Australia, a 
name still used for it in many other countries) is now 
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sadly outdated as the game has changed 
considerably. Due to the immense volume of time 
devoted to this sport, particularly by the people of 
Australasia, there is a need for a basic framework for 
model development for the sport. 
 
Many invasion type games, in particular sports such 
as hockey, basketball and football codes can be split 
into set phases of game play. This is particularly 
easy for a sport such as gridiron where the very sport 
is designed around set plays. Most other invasion 
games can also be split into several distinct 
components. For example in the game of rugby 
union different set pieces as well as broken play (i.e. 
non-set piece play) will have different outcome 
probabilities for different offensive-defensive team 
combinations dependant on various factors at any 
given point in the game, such as for example game 
score, field position, fatigue and time remaining. In 
fact a myriad of different factors make modelling of 
most team sports exceedingly complex and this is 
particularly so for invasion type sports. Touch 
football is such a sport and may be modelled as 
having several components. The first of these 
components would be a driving phase in which a 
team aims, amongst other goals (such as gaining a 
repeat set of touches via an infringement leading to a 
penalty against the opposition), to gain field position 
from which to enable both execution of scoring 
plays and ensuring less probability of their 
opposition scoring as play is at a larger distance 
from the scoreline. During this phase, the defensive 
team has their own corresponding phase of play in 
which they attempt to both reduce the field 
possession gained by the attacking team in order to 
reduce the attacking options of this team and 
additionally ensure that when they are given their 
limited touches they are deeper in opposition 
territory. A secondary, but nethertheless important 
goal, for the defending team, within this phase is 
also to defend against any potential scoring plays the 
attacking team will attempt to execute, even if far 
from the try line. The next phase of the game to 
consider would be line attack. In this phase of the 
game the attacking team is no longer focused on 
gaining field possession. They have already reached 
an appropriate distance from the defensive try line to 
orchestrate a scoring play. For the defenders this 
phase of the game would be referred to as line 
defence. There is also the ability to manage player 
fatigue and optimal application of personnel via 
substituting players while simultaneously 
completing driving plays or the defence to these 
plays. While touch football is a game where players 
may be freely substituted during the stoppage time 

after the scoring of a try, it is also a game where 
unlimited substitutions (from within a team 
consisting of a limited number of players and 
sometimes limited by gender) are allowed. In order 
to maintain optimal intensity within a game, it is 
usually necessary to substitute players during 
various phases of the game whilst minimising 
disruption of the purposes of these phases. Therefore 
some phases will represent the switching of players 
on a team in either attack or defence. In some 
versions of the game of touch, player fatigue is also 
managed with a break at half time, while in other 
tournaments the teams switch ends of the field and 
restart play at halfway with every touch down and 
there is no half time period (Federation International 
Touch Inc. 2003, Touch Football Australia 2007). 
The version played would affect fatigue 
management and the importance of substitutions. 
The half-time break is usually used at higher level 
tournaments and this half-time period can be 
considered as another phase of the game. There is 
also a phase of play following a tap-off to restart the 
game at half time and a phase of play following a 
penalty.  
 
The author hopes to start with a basic system for the 
various stages of the game of touch and expand on 
this systems. If it can be shown to be appropriate to 
model a stage of the game in this way, the prospect 
of expanding the model with investigation of 
different stages and looking at other eventualities 
that present themselves within the sport can be 
realised. If a working model for the stages of this 
invasion sport can be developed and represented via 
a Markov Chain then future research can expand this 
model to other invasion sports mentioned. Many 
characteristics of the other invasion sports are shared 
by touch football and this will ease adaption. 
Certainly these vary across the different sports, but 
can include limited tackle (touch) counts/plays, a 
single points scoring method, and a game that is 
played over a limited time span. Additionally the 
different offensive and defensive alignments and 
their preferential defence of certain attacking options 
or choice of certain offensive methodologies in 
gridiron closely parallel preferential options and 
patterns in line attack/line defence in touch football 
(see Walsh 2010). Other factors include importance 
of field territory, use of and a limit (either strictly 
numerical or using conjoint numerical and 
displacement based systems) to the amount of 
plays/downs, both games being conducted over a set 
period of time, scoring by crossing a certain line, 
requirements of choice of defenders to preferentially 
defend certain players/zones in man on man, uneven 
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or a compressed defence. By its very nature the sport 
of Gridiron (and ‘American Touch Football’) is 
highly suited to adaption as a Markov Chain as by 
its very nature it is split into discrete stand alone 
plays. Markov Chains have been used to model 
many different systems in many different academic 
fields. In sports, they have had particular success for 
many years in net games, such as squash, badminton 
and tennis (for example Schutz 1970, Schutz & 
Kinsey 1977, Clarke 1979, Croucher 1982, Pollard 
1985, Pollard 1987 and Wright 1988). This research 
has continued progressing over the last 30 years (e.g. 
Newton & Islam 2009), however touch football has 
never been looked at in this manner. 
 
If a Markov model for touch can be designed and 
shown to represent the probability distribution of 
any future state given the current state then this 
could have several practical uses in the future. If the 
model is sufficiently complex to fit game data well, 
probabilities of relevance can be simulated as a 
probability distribution function. This would 
potentially allow for in-game and pre-game strategic 
questions to be resolved. There would be many 
potential applications for such a system. Numerous 
applications could be used advantageously in order 
to assist with team coaching and selecting optimal 
plays. While the application to coaching will be 
apparent from use of match analysis prevalent in 
many professional sports, in touch football there are 
a vast number of participants and potential 
assistance in selecting representative players at 
various level could in fact be highly beneficial. In 
fact teams of selectors must watch all major 
tournaments in order to establish men’s, women’s 
and mixed representative teams at various levels and 
many different age groups. The potential for future 
modelling assistance in this talent identification or 
selection processes is therefore also a consideration. 
This could be extended in many directions, such as 
selecting particular players for facing particular 
opposition as well as for executing or nullifying 
particular plays. Other interesting uses include 
estimating in game win and event probabilities as 
well as points expectation for certain games. These 
particular points could have potential application for 
such features as pre-game as well as in-game sports 
betting, deciding games appropriate for television 
coverage (issues such as the probability of which 
games are more likely to be high scoring or exciting 
games), or allocation of playing areas to different 
teams during a tournament (tournament control 
allocating fields with the best spectator viewing 
areas to those games with higher probability of 
being both higher scoring and highly competitive 

games). These latter issues would have particular 
relevance if such a model was expanded to other 
sports. Rugby league in particular is similar to touch 
football in its basic framework of a tackle, as 
opposed to a touch count. Touch football in fact 
originally evolved from rugby league (Mathesius 
and Strand 1994). With its high commercial 
television exposure, in the future it is not 
inconceivable that some form of statistical 
modelling or Markov based probability distribution 
function process will be used for such allocations. 
 
Terminology used in this paper is based around FIT 
(Federation International Touch Inc., 2003) and 
Touch Football Australia playing rules 7th edition 
(Touch Football Australia, 2007). For the reader 
unfamiliar with the game the terms: toss, tap, 
rollball, touch count, ruck, half (player who takes 
possession of the ball behind the player who 
performs the rollball), ‘period of time’ dismissal or 
‘remainder of the match’ dismissal (player sent off 
temporarily or permanently), drop off, scoreline, 
touchdown, penalty touchdown, onside, offside, 
interception, penalty, attacking or defending set and 
the field dimensions, particularly 5m line and 
halfway line are defined in these publications and 
the reader is referred to these compatible 
publications if definition of these terms is required. 
These publications also make mention of the variety 
of different rules used in different competitive 
environments. The lack of one set system of rules is 
an interesting feature from a modelling perspective. 
The term “park touch” is described to refer to the 
less elite level of touch football, where more rule 
variations are permitted.  
 
Usually the most common long range attack 
conducted as a scoring play is the scoop. This is 
when driving plays (or some other effect) have 
caused defenders to be in an offside position. The 
half runs with the ball towards the defending 
scoreline. This may attract opposing player(s), or 
attacking players may use agility to escape from 
their marking defender and the half will attempt to 
pass to an unmarked player in order that they can 
score. Both long range and short range scoring plays 
may be preceded by a play, the emphasis of which is 
not the scoring of points or advancing the ball 
towards the opposition line, but engineering 
circumstances such as particular opposition 
movements or ball placement to enhance the 
probability of scoring on the follow play. In order to 
simplify the nomenclature (for this and future 
papers), the author wishes to borrow a phrase first 
heard used by the Sydney Rebels Touch Technical 
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Director (NSW, Australia) and refer to this play as 
the “strike dump”. Another concept to consider is 
second phase attacks. If an attack is conducted, but 
is unsuccessful at scoring, it may still have forced 
the defending players to be in a poor position for 
defence. A situation that can be capitalised on by 
launching a quick attack designed to take advantage 
of this misalignment. Such a rapid attack following, 
but dependant on, the misalignment caused by the 
previous unsuccessful attack is referred to as a 
second phase attack. A further attack aimed at 
exploiting the defensive structure adopted as a result 
of this secondary attack would be referred to as a 
third phase attack. Hypothetically there could exist 
fourth and fifth phase attacks, though the difficultly 
in maintaining momentum and coordinating these 
across the attacking team according to the 
hypothetical structure changes of the defensive 
teams, as well as the chance of a touchdown or 
stoppage on an earlier play makes these highly 
unlikely (P~0). 
 
2. METHODS 
 
We first need to define the game states required in 
order to model the game. State 0 is self explanatory, 
namely the determination of the team to start off via 
a coin toss. The winning team captain receives 
possession for the commencement of the first half, 
the choice of direction for the first half and the 
choice of interchange areas for the duration of the 
game. Many assumptions are made in this model and 
the first of these is that the choice of interchange 
areas and choice of direction for the first half do not 
adversely influence the states model. If a situation 
arises for which some environmental or 
psychological factor influences the model due to 
these choices, then this can later be factored in as an 
additional parameter. At a competitive level, fields 
should be situated and both marked and illuminated 
in a manner that such a choice should not influence 
play for reasons of field location. However certain 
environmental factors such as for example sun and 
wind are more difficult to control, so it is feasible 
that such an arrangement could have a small 
influence on the game in certain circumstances. 
Notwithstanding this approximation is still a 
reasonable one for the purposes of creating a skeletal 
framework from which to develop a working model 
for the sport. Additionally similar assumptions are 
commonly made in other many examples of sports 
modelling and yet produce reliable working models 
(e.g. Noubary 2007).  
 

State 1 will be one of two possible states of equal 
likelihood with one of the two teams taking a tap off 
play. This can have several outcomes, the most 
likely being that the defending players effect a touch 
on an attacking player in possession and a rollball 
must be affected with a touch count advanced by 1. 
This is the most likely state transition, however other 
possibilities are that one of the teams might make a 
error leading to the touch count being restarted with 
a rollball for the attacking team, a penalty for either 
team, a turnover resulting in a rollball with a 
restarted touch count for the team that was 
defending, an interception by the team that was 
defending or a try for the attacking team. While 
many of these state changes are unlikely they must 
still be considered. In fact we can consider that 
during the driving phase of play, any of these 
options can occur as well as after a tap off or penalty 
play. The driving phase of play was therefore 
modelled as having 6 states within a Markov process 
representing the touch count for all six touches. The 
first driving state “rollball T0” (with the number 
next to T indicating that zero touches had been made 
by the opposition in this particular touch count) was 
considered replaceable by one of two alternative 
states representing a tap from either a penalty or 
restart from the halfway line. Both of these states 
differ from a conventional rollball in the distance the 
defence must retreat from which the position at 
which play is restarted, therefore the metres play is 
advanced may be distributed differently. Both of 
these states have the same outcome options as the 
first rollball state, though the outcome probabilities 
may slightly differ.  
 
As the touch count progresses the attacking team has 
two primary effective options namely to attempt to 
continue to focus on territorial advantage or attempt 
to score a touchdown (which may also lead to some 
advancement of territorial position even if 
unsuccessful). This leads to the introduction of 
several additional possible states, namely states 
representing an attempt at a long range attack, a 
short range or line attack provided field position is 
appropriate, a touch deliberately allowed to be 
executed by the defending players in order to set up 
a more promising line or long range attacking option 
(the strike dump) and lastly a second, or later phase 
attack after an initial unsuccessful line attack (the 
first phase attacking option). This leads to two 
categories of line attack, those based from a 
deliberately engineered platform and those not set up 
in this way. The probabilities of successful 
execution will depend on the particular attack used 
and the appropriate nature of the platform used for 
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any particular combination of attacking and 
defending teams. We have also explained the 
concept of second (and later) phase attacking play. 
As these later phase options are conducted under 
alternative circumstances, logically the probabilities 
of success will be different to a conventionally 
attacking option. Therefore this stage of the model 
will require a unique state and such a logical 
argument follows for the prospective extended stage 
attacks if these are attempted (or even possible). 
These probabilities will also be affected by the 
actual attacking option chosen requiring either 
further sub-states or additional parameters in the 
probability density function for this particular state 
as the model expands. 
 
For each team there is an optimal position to initiate 
a particular line attack. While short range attacks 
will need to be conducted 5-7m or very close to this 
distance from the touch line, some attacks such as a 
scoop can potentially be initiated from anywhere on 
the field. The probabilities of success depend on 
acceleration, top end speed, avoidance of 
deceleration after attaining maximum speed by the 
scooper and support players (if sufficient distance is 
covered to attain top end speed) and coordination of 
the attack across the team. The primary determinant 
however will be the distance from the opposition 
scoreline and the point when the attack is initiated. 
As the distance increases, the probabilities of 
success will converge towards zero, as the likelihood 
of successful execution reduces dramatically with 
significant distance from the scoreline. This 
particular category of attack could be executed as a 
long range attack as opposed to those that must only 
be initiated closer to the opponents score line, 
namely short range attacks. 
 
In this paper an approximation was made. During 
the driving phase teams have the ability to attempt to 
score at any time in their attacking set, though most 
usually, as field possession is not optimal and a 
successful score is improbable without field 
position, this option will be taken on the last, or 
sometimes second last, touch of the attacking set. 
These attacks were classified as long range line 
attacks. Teams also have a range of short range line 
attacks. In order to initiate these attacks certain 
conditions must be met and these will vary from 
team to team. The successful execution of a line 
attack will be a function of the distance from the 
scoreline at both the touch it is initiated on and the 
previous touch. As the model evolves, the time and 
distance between these touches being executed will 
also need to be factored into the distribution 

function. This will reflect the ability of the defence 
to return to an onside position and make any other 
necessary adjustments. Both the time dependence 
and displacement dependence of this function will 
have a different effect on the probability density 
distribution for different attacking plays. For some 
teams and some moves a second phase attack may 
be launched in some circumstances provided 
possession is retained and the touch is made with the 
attacking players in a suitable position. Some 
defending teams may be more susceptible to such an 
attack than others.  
 
Each driving or line attack state requires 6 sub-states 
to represent the touch count. Each strike dump or 
second phase state requires 5 sub-states to represent 
the touch count. The need for only 5 is due to the 
need for a following line attack or a preceding line 
attack state. Those states that result in the resetting 
of the touch count or a change of possession do not 
require additional sub-states within the current 
model. 
 
The state model in the results section was thus 
developed (Figure 1). The transition between states 
is represented by a arbitrary probability or a 
probability density function according to the 
transition involved.  
 
Assuming an error is made, we can assume possible 
results are: a recount (i.e. play continues and the 
touch count is restarted), penalty, turn over, 
intercept, send off or player sent for time (we 
assumed the probability of these last two options as 
being equal to zero in this simple model, but this can 
be expanded in future work). Other than these 
changes of state, teams have the option to execute an 
attacking play such as a long range attack. We must 
also consider the possibility of entering into this 
state at any phase of play and consider that for 
tactical reasons this is most likely after the 4th or 5th 
touches have been made (a play such as a scoop is a 
high risk play, but there is less at risk as possession 
will most likely be lost anyway). 
 
In the event that the line attack is unsuccessful and 
assuming the touch count has not expired nor some 
other event requiring a turnover of possession, there 
is a possibility that the attacking team will use the 
following play to execute a second phase attacking 
option. The alternative to this is to set up an 
attacking option for the following play or 
alternatively attempt an attack that does not 
capitalize on the disarray in defence caused by the 
preceding attack; however this is a low probability 
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option and therefore an unlikely choice. This last 
option, while a poor choice earlier in the touch count 
may however be the only option if no second phase 
option is available and the 5th touch has been made. 
 
This model makes the following assumptions: no 
substitution is conducted, no players are sent off or 
sent for time, there is no drop-off, there are no 
injuries, fatigue is not considered (i.e. no players 
fatigue) and all players are identical within a team 
(which is certainly not the case). While this is 
imperfect, it is necessary first to generate a basic 
framework for the game. This framework is 
designed such that it can easily be expanded in 
future work. 
 
3. RESULTS 
 
The state transition diagram (Figure 1) was obtained. 
Arrows and diodes (selected due to the intuitive 
nature of the symbol) were used to indicate direction  
 
Previous State 
in Team A’s 
Markov State 
System 

Future State 
in Team B’s 
Markov State 
System 

Notes 

Touchdown 
Scored Offense 

Tap off Restart 
Team B 

 

Interception Turnover of 
Possession T1 

Other 
possibilities for 
state change 
exist for 
interception 

T5 Team A T0 Team B Touch count 
expired, not 
shown in 
diagram. 

Stoppage due 
to Error by 
Offense 

Turnover of 
Possession T0 

Other Possible 
State “Penalty 
Awarded to 
Defense” 

Penalty 
Awarded to 
Defense 

Turnover of 
Possession 
Penalty 

 

State zero, the 
coin toss 

Tap off Restart 
Team B 

P=0.5 

Touch count 
expired 

Roll ball T0 Not shown on 
the states 
diagram, 
transfer after 
state T5 if 
touch is made. 

Table 1: States which result in a change of possession 
from Team A to Team B. 

of possible state change. This diagram relies on the 
assumptions detailed in the methods section. The 
model is a framework allowing easy addition or 
modification of states. State transfer probability is in 
most cases dependant on displacement functions that 
will be expressed in a future paper. Some state 
transfers were deemed to have near zero probability. 
States that were not included in the diagram (For 
clarity as these states could be transferred into from 
most of the other states) were a half-time (where 
applicable with rule variations) and a full-time state. 
Similarly a touch count expired state was also kept 
as a hidden state due to the number of states from 
which this state could be transitioned to. A 
symmetrical state system exists for the opposing 
team, for presentation purposes, only one team’s 
states were shown. The teams were labelled Team A 
and Team B. The state diagram shown is for state 
transitions when Team A is in possession of the ball. 
Certain states would lead to a change in possession 
as indicated in Table 1. In this case the states based 
model would continue, but in a symmetrical set of 
states for Team B.  
 
State transfer was dependant on the touch count T0-
T5, displacement from the opposition score line and 
time. Provisional transfer probability functions were 
developed for state transfers and these will be 
discussed in future work. 
4. DISCUSSION 
 
This is an theoretical paper and is designed to form 
the backbone for further, progressively more 
realistic, work modelling invasion type games. 
Certainly there are a myriad of different effects 
which need to be acknowledged, but are 
approximated as being zero, as being implicitly 
included in the probabilities within the model or as 
being equal for all teams involved. For the purpose 
of future expansions to this model consideration of 
whether a team is winning or losing and its effect on 
morale and motivation could be added. If one team 
is winning or losing, either by a great deal or a small 
amount or the game is close the probabilities of 
success may well change due to psychological 
reasons. These probabilities may also change due to 
the importance of the game. This is hard to represent 
using this simple base model; however it is an area 
in which the model could be further expanded. 
Hypothetically this could be represented using an 
extra construct representing the effect motivation 
and morale of the different teams have to alter 
performance in each of these: situations. It would be 
recommended to use an adaptation of the surrender 
parameter, λ (Rump 2008) for psychological issues 
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such as these. Player fatigue is also a factor that this 
model has not considered. It is something that is 
very relevant to the coach who wishes to optimally 
manage fatigue while ensuring the best players are 
in the key field positions at the appropriate time and 
for as long as they will continue to perform more 
optimally than their non-fatigued replacements. The 
differences between different players themselves and 
their abilities to execute certain key plays represent 
another factor for future expansions to the model. 
 
The model can be adapted for a “park touch”, or 
another tournament if rule variations are used by 
adding additional states. The adaption to the basic 
framework of the model may not however be 
necessary for most rule variations however as they 
do not change the categorization of states. The 
change would most likely be implemented by minor 
alteration to the probability function representing 
transfer between states. Potentially this could also be 
used for modelling the implications of rule 
variations, should changes be considered in the 
future. 
 
A match of many sports is not strictly a Markov 
Chain. This is because in executing a particular 
move or action, the reaction/response of the 
opposition will be influenced by the previous actions 
of both teams in that position and their outcomes. 
This is something attacking teams are aware of and 
purposefully incorporate into their tactics. An 
example would be conditioning a defence to react to 
a particular action with a particular response and to 
begin anticipating that they must respond in a certain 
way. Once this is achieved the same action is 
executed by the attacker, but altered at the critical 
moment in the hope that it is too late for the 
defender to change his anticipated response. For 
teams that have played extensively against each 
other or reviewed each other’s performances 
extensively, this may then not apply to the same 
extent as in the situation where they have no prior 
experience of the way the other team plays. In the 
situation where the team has a set structure that must 
be followed at all times by the players and provided 
that this system is not altered in the game as a 
response to the actions of the opponents or their own 
failed actions, then this game can be modelled as a 
Markov Chain. This would also entitle modelling as 
a Markov Chain a game for a team which had a set 
structural policy to follow, a policy, which would 
only be reviewed after the game or a game 
conducted amongst players with too limited games 
sense (Piltz, 2003) in order to make tactical changes 
throughout the game as play progressed. At a higher 

level it is presumed that leading players and/or 
coaching staff would possess sufficient ability to 
make such changes, however if the optimal 
offensive and defensive patterns had been selected 
against a particular opponent then a run of unlikely 
plays, resulting in a sequence of play which was a 
low probability outcome would not result in 
changing the patterns for a highly astute coach may 
identify this for what it is, namely a highly unlikely 
sequence of events. Therefore, in this case the use of 
a Markov Chain based methodology would still hold 
as valid. 
 
Further consideration needs to be given to the 
distance required for a successful attack. We need to 
consider scoops, which are longer range attacks and 
one might model these using the probability of 
gaining a given number of metres and successfully 
off-loading which can be treated similarly to a new 
type of scoring play with a corresponding defence 
score for each team. For an attack from a dynamic 
platform this requires far less distance from the 
score line. Further work needs to evaluate the 
probability changes caused by preceding attacks 
with strike dumps as a component of the attacking 
structure. Particularly focus should be placed on 
attack types as there is the possibility of attacking 
several times from some sets of six provided that the 
first attacks retain the ball if unsuccessful (e.g. quick 
release plays as opposed to some failed long ball 
plays which may result in a turn-over due to a failure 
to deliver the ball appropriately to the receiving 
player.). Therefore different teams, but particularly 
different attack types will have different probability 
outcome functions requiring further state divisions 
to account for several attacks a team possesses. At 
the moment however, the model views the outcomes 
as probabilities given a short or long range attack, so 
this is not incorrect, just a more macroscopic view. 
As field position develops, teams can structure an 
attack using one of these three methods as is 
relevant: a scoop, a strike dump or primary attack 
followed by a second phase attack, or an attack from 
a dynamic driving platform.  
 
Stationarity is challenged under certain conditions in 
the game of touch. For example a team that has just 
been scored against at the start of a game is unlikely 
to change its game plan, however a team losing by 1 
touchdown with one minute left of the game would 
likely play a more high risk form of game in order to 
try and score on its next set of touches. This 
singularity is also challenged due to the half and full 
time state changes, however by consideration of 
these as special situations and keeping track of time 
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as part of the model (effectively time and 
displacement are further parallel sub-states) this can 
be accommodated within the parameters of the 
model. Eventually it is hoped that GPS data 
combined with real time video analysis could be 
used for conjoint theoretical and practical future 
development of the model. 
 
5. CONCLUSIONS 
Due to the large number of touch players in 
Australasia, the potential international growth of the 
sport and the relative absence of research, especially 
mathematical modelling of this sport, there are 
numerous reasons for developing this particular 
study. This paper provides a basic framework for 
modelling touch football as a Markov Chain. Due to 
the absence of previous work in this area, the focus 
has been entirely on developing a framework for this 
model, without specifically detailing transition 
probabilities. This however is the next stage in the 
process of building a workable and practical model. 
A simple score by score workable method could 
easily be developed, however it is hoped that this 
model, while requiring further work and less 
approximations will eventually be more insightful 
due to more intensive nature of transitions. 
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Figure 1: A Markov States Model for the Game of Touch Football. Arrows and Diodes indicate direction of flow. Several 

state transitions have been coloured in this diagram for clarity. 
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