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Preface

The four previous conferences on Mathematics and Computers in Sport (in 1992, 1994, 1996 and 1998)
were held at Bond University, on the Gold Coast, Queensland. The Conference Director on each of
those occasions was Neville de Mestre, to whom the sporting community as much as the mathematics
community owes a huge debt of gratitude.

It was decided in 1998 that the fifth conference should be held in Sydney, to let its participants
take in the spirit of the 24th Olympic Games commencing in about three months time. Without
doubt, six years of building activity for a host of new stadiums and five-star hotels, the concurrent
roadworks, the new railway line and the sprucing up of Sydney have led its residents and visitors to an
eager anticipation of the Games’ commencement. A tour of the major Olympic Games sites will be a
highlight of the conference for many of its participants.

We have dubbed this fifth conference 5M&CS. As on previous occasions, the range of sports and
associated analytical techniques to be presented is huge. From frisbees to netball, the long jump to
sailing, golf to sprinting, along with the Australian standards of cricket and Australian Rules football,
it seems that just about every sport gets a mention. The treatments of those sports include the
biomechanical, the physical, the mathematical, the statistical and the educational.

These Proceedings begin with the invited papers of our guests, Rod Cross and Mel Siff, followed by
twenty contributed papers, arranged in alphabetical order of author, or first author. All these papers
have been refereed, and I take this opportunity to thank the referees who have had to work within a
very tight time frame. The Proceedings end with three further abstracts; the full papers are presented
as part of the conference program, but are not reproduced here (mostly because the final submissions
were too late for the refereeing process).

For assistance in the organisation of 5M&CS, I am very grateful to the Conference Chair, Neville de
Mestre, to Ron Sorli for managing the website, and to Jesu Romén for secretarial help. T am particularly
grateful also to Tim Langtry, co-editor of the Proceedings, for his technical knowledge and skills. As on
all previous occasions, the Australian Mathematical Society, through ANZIAM, has again been generous
in its financial support.

Graeme Cohen
Director, 5M&CS
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MATHEMATICS AND PHYSICS IN BALL
SPORT'S

Rod Cross
Physics Department
University of Sydney
NSW 2006, Australia

Abstract

The study of sport involves a host of disciplines, including physics and mathematics. Some examples
of the latter are presented, including the collision between a bat and a ball, and a study of proposals
to slow the serve in tennis.

1 Introduction

The purpose of this paper is to describe a few problems encountered in ball sports, as viewed through
the eyes of a physicist. The basic tools available to solve such problems include those commonly
used in theoretical and experimental physics, as well as some mathematical and computational tools.
The emphasis is therefore on the equipment used in these sports rather than on the person using the
equipment, unless the person can be approximated as a spherical or point object. The sports person is
more usually studied by biomechanists, psychologists or physiologists. Nevertheless, one can find some
interesting physics as well as interesting mathematics in human and animal movement. For example, the
centre of mass of a walker rises and falls in a sinusoidal fashion, and describes an arc of radius R ~ 1m
about the foot on the ground (Cross [6]). Consequently, the force on the ground, F = Mg — Mv?/R
drops to zero when the walking speed v ~ 3m™'s. If you walk any faster, you will become weightless
and start running. This explains why little kids with short legs have to run to keep up with their fast
walking parents. The motion of the centre of mass can be analysed using Fourier techniques. Another
interesting problem is why walkers and runners travel at almost constant speed, without continuous
acceleration, despite the fact that they keep pushing backwards with their back foot in order to move
forwards. The reader is challenged to find a simple answer.

A sample of books and papers on the physics of sports is given in the list of references. Armenti [2]
includes 303 references. In the remainder of this paper, we will concentrate on (a) the impact of a ball
with a bat or racket and (b) some proposals to change the rules of tennis in order to slow down the
serve.

2 Impact of a ball with a bat or racket

The collision between a tennis racket (or a cricket or baseball bat) and a ball can be modelled by assuming
that the racket is perfectly rigid and that the handle is not subject to any impulsive force during the
collision (Brody [4, 5]). The racket and ball speeds after the collision can then be calculated from
the conservation equations, in terms of the corresponding speeds before the collision, and an assumed
or measured coefficient of restitution. However, the model provides no information on the dynamics
during the collision, nor does it provide information on the energy coupled to racket vibrations. These
shortcomings can be avoided by modelling the racket as a one-dimensional, flexible beam. The beam
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model also provides information on the effect of the impulse reflected from each end of the racket back
to the ball. For example, if the reflected impulse arrives after the ball leaves the racket, then the ball
has no way of knowing if the handle was free or hand-held, or even if it landed at a vibration node.

The equation of motion for a beam subject to an external force, F, per unit length, has the form
(Graff [11], Cross [7])

o’y 0? 0%y
M5 = Fo 5 (EI a_> : (1)

where p is the density of the beam, A is its cross-sectional area, F is Young’s modulus, I is the area
moment of inertia, and y is the transverse displacement of the beam at coordinate z along the beam.
For a uniform beam of mass M and length L, numerical solutions of (1) can be obtained by dividing
the beam into N equal segments each of mass m = M /N and separated in the z direction by a distance
s = L/N. An impacting ball may exert a force acting over several adjacent segments, depending on the
ball diameter and the assumed number of segments. For simplicity it is assumed that the ball impacts
on only one of the segments, exerting a time-dependent force, F. The equation of motion for that
segment (the nth segment) is obtained by multiplying all terms in (1) by s, in which case
0y, 0y,

m 8;’2 :F—EIsa—;{l, 2)
assuming that the beam is uniform so that £ and I are independent of x. The equation of motion for
the other segments is given by (2) with F = 0. The boundary conditions at a freely supported end are
given by 8%y/0x? = 0 and 8%y/dx® = 0. The boundary conditions at a rigidly clamped end are y = 0
and 0y/0x = 0. The equation of motion of the ball is given by

d2yb _ F
dt? - mb’

3)

where my is the ball mass and y; is the displacement of the centre of mass of the ball. The elastic
properties of the ball can be modelled by assuming that F' = k;Y; during the compression phase and
F = kY during the expansion phase, where Y} is the compression of the ball and p is a parameter
describing the effect of hysteresis in the ball. If k; and ks are constants and if Y, is the maximum
compression of the ball during any given impact, then k1Y, = koY? so ko = k1 /Y~ L. The hysteresis
loss in the ball is equal to the area enclosed by the F' vs Y} curve for a complete compression and
expansion cycle. The parameter p can be chosen to give a total ball loss equal to the experimentally
determined loss.

If a soft ball impacts on a hard beam, so that the compression of the beam is negligible, then
Yy = y» — yn- Alternatively, if the ball impacts on the strings of a racket, and if the string plane is
displaced by a distance Y relative to the frame during the impact then F' is given by F' = k;Ys, where
ks is the spring constant of the strings. In this case, the compression of the ball plus the compression of
the strings is given by Y7 = y, — y,. By equating the forces, it is easy to show that Y, = kY7 / (k1 + ks)
during the compression phase, and Y}, + k»Y}" /ks; = Y during the expansion phase.

It is assumed that the ball is incident at right angles to the string plane. It is also assumed that
at t =0, y, =0, y = 0 for all beam segments, the beam is initially at rest and that dy,/dt = v;. The
subsequent motion of the ball and the beam is evaluated by numerical solution of equations (2) and (3).
These results are used to determine the rebound speed of the ball, vs, and the apparent coefficient of
restitution (ACOR), e4 = v2/v;. In normal play, a racket is swung towards the ball and is not normally
at rest at the moment of impact. The resulting outgoing speed of the ball is easily determined by a
simple coordinate transformation from the racket to the court reference frame.

Numerical solutions of the above equations were tested against experimental results. A rectangular
cross-section aluminum beam of width 32mm and thickness 6 mm was supported horizontally, either
by a 1.2m vertical length of string attached to each end or by clamping one end to a rigid support. A
36 mm diameter, 42 gm superball was mounted, as a pendulum bob, at the apex of a V-shaped string
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support, so that it could impact the beam horizontally and at right angles to the beam. The incident and
rebound speeds of the ball were measured using a He—Ne laser beam directed parallel to the aluminium
beam. From this data, measurements were obtained of the ACOR as a function of impact location along
the beam. The ball was incident at low speed, about 1 ms™?.

Measurements of e4, and the corresponding theoretical estimates of e4, are shown in Figure 1 for an
aluminum beam of length L = 110 cm. The spring constant of the ball was taken as k;, = 2 x 10* Nm ™!
to be consistent with the observed impact duration, about 4.2ms. Agreement between the theoretical
and experimental values of ey4 is remarkably good. The results show that, for a sufficiently long beam,
(a) the impact of a ball near one end of a beam is not affected by the length of the beam or the method
of support at the other end, and (b) e4 for an impact anywhere along the central section of a beam
is independent of the impact location and is not affected by the length of the beam or the method of
support. The quantity e4 remains constant at e4 = 0.45 £+ 0.02 along the beam up to a point about
15 cm from each end. This result implies that the rebound speed is affected only if the impulse reflected
off one end arrives back at the impact point within the 4.2 ms period of the impact.

1 :I T I LI I LI I LI I LI I: 1-0 __I I T I T I T I T __
0.8 F L =110 cm 4 0.8} L =110 cm -
0.6 F 1 06f E

eA o ] r -
0.4 F J 0.4f . 3
0.2F Clamped atx =0 1 0.2F both ends free .

0 - ol by by g by g | 00 1 | 1 | 1 | 1 | 1 |
0 20 40 60 80 100 0 20 40 60 80 100

x (cm) X (cm)

Figure 1: e4 vs o for 110cm long aluminium beams. Experimental data is shown as black dots, and
the solid curves are solutions of (2) and (3).

The dynamics of the situation are illustrated in Figure 2 which shows the theoretical beam deflection,
for a freely supported beam, at equal time increments during and shortly after the impact. An impulse
propagating towards a free end is reflected without phase reversal, so the beam moves further away from
the ball, thereby reducing the rebound speed. A pulse propagating towards a clamped end is reflected
with a phase reversal, sending the beam back towards the ball, thereby increasing the rebound speed.
The reflected pulse has no effect on the ball if the ball rebounds before the reflected pulse reaches the
ball. Figure 2 shows that the beam deflection at the impact point, during the impact, is essentially the
same for impacts at £ = 55cm or z = 90 cm, indicating that the pulse reflected at = 110 cm does not
have a significant influence on the impact. However, for an impact at x = 103 cm, the reflected pulse
acts to deflect the beam away from the ball during the impact, thereby reducing the ACOR significantly.

Calculations are shown in Figure 3 for a graphite/epoxy composite tennis racket of length L = 71 cm
and mass M = 340 gm, modelled as a uniform beam with EI = 150 Nm, giving a fundamental vibration
frequency of 125Hz. The ball was modelled with m, = 57gm, k; = 3 x 10*Nm™! and p = 2.55,
corresponding to an impact duration of 4.64 ms on concrete and a COR = 0.751. Figure 3 shows the
variation of e4 along the long axis of the racket (passing through the handle) when the handle is (a)
rigidly clamped along a 10 cm length at the end of the handle, or (b) pivoted about an axis through the
end of the handle, or (c) freely suspended. The results show that e,4 is zero at a “dead” spot near the
tip of the racket and increases to a broad maximum near the throat of the racket. This behaviour is
easily demonstrated experimentally, at least in a qualitative sense, simply by dropping a ball at various
spots on the strings and observing the bounce. e4 is independent of the handle support at distances up
to 20 cm from the tip of the racket. e4 is affected near the throat of the racket as a result of reflections
from a clamped handle, but this is of no consequence in that the hand does not act as a rigid clamp.
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Figure 2: y displacement of a freely suspended beam.

In practice, the racket tends to pivot about an axis through the wrist (Cross [8]).

The change in ey with string plane stiffness, ks, is relatively small considering the range in k;
normally used in a tennis racket. For example, for an impact at the centre of the strings, e4 = 0.44
when k; = 2 x 10* Nm ™', while e4 = 0.41 when k; = 4 x 10* Nm~'. This corresponds to a 7% change
in the ball speed when it bounces off a racket that is initially at rest. Since the ball rebounds at speed
V2 = eAv1, then in a reference frame where the ball is initially at rest, the racket will be incident at speed
vy and the ball will come off the strings at speed v = v; + v = (1 + e4)v;. In this case, corresponding
to a serve or overhead smash, the above increase in e4 results in only a 2% increase in the ball speed.
Given that ks is proportional to the string tension, then a reduction in string tension from say 60 to 501b
will increase the ball speed by only 0.7%. A more significant increase in racket power can be achieved
by increasing the stiffness of the frame, at least for impacts near the tip of the racket. An increase in
frame stiffness has no effect on racket power for an impact at the vibration node near the centre of the
strings.

3 Proposals to change the serve speed in tennis

There has been a lot of discussion about slowing down the speed of the serve on fast courts such as the
grass courts at Wimbledon. There it has become a first-serve contest, comparable to the quick-draw gun
fights in the old west. Some players win 40% of their good first serves as aces. The serve has become so
dominant at Wimbledon and service breaks so rare, that some players have over 30% of their sets end
in tie-breaks.

The speed and trajectory of a ball can be calculated in terms of measured drag and lift coefficients
(Haake et al. [12]). A 57gm, 65 mm diameter standard ball served at 200 km /hr takes 0.594s to cross
the baseline if it bounces off a clay surface, and 0.568 s if it bounces off grass. These figures are shown
in Table 1, together with data for a serve speed of 180km/hr, plus data for larger diameter balls. In
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strings handle
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Figure 3: e4 vs z for a tennis racket.

Table 1, 6 is the vertical angle of the ball, served down from the horizontal, so that the ball lands on
the service line. It is assumed that the ball is served by a tall player from a height of 2.9 m above the
centre line and is served down the centre of the court to land on the service line. It was also assumed
that clay has a coefficient of friction y = 0.7, and that u = 0.4 for grass. The transit time on grass is
0.063 s longer at the lower serve speed, giving the receiver a significantly better chance of returning the
ball. If the receiver is running at 6 ms~! to reach the ball, he can cover an extra 38 cm in 0.063s.

D (mm) v (km/hr) [ Surface T (sec)
65 200 6.92° Clay 0.594
65 200 6.92° Grass 0.568
65 180 6.43° Grass 0.631
69 200 6.85° Grass 0.586
72 200 6.80° Grass 0.600

Table 1: Transit times

Some of the methods proposed to reduce the serve speed, so that the receiver has more time to react
to the serve, are as follows:

1. Change the surface. Replacing grass with a slow surface will clearly solve the problem. However,
the grass courts at Wimbledon are the heart and soul of “lawn” tennis.

2. Limit the racket power. This would be unpopular, and no-one knows how to do it since it depends
more on racket mass than anything else.

3. Eliminate the second serve. It may prove beneficial for a player such as Sampras to hit first serves
only as opposed to second serves only. The result would be about 35% of the points on serve would end
in a fault and the others would be a one or two hit rally. This could really kill tennis as a spectator
sport.

4. Change the footfault rule. A number of years ago the serve footfault rule was changed. At
that time, foot contact with the court surface had to be maintained until after the ball was struck.
The present rule allows the server to leave the ground and actually be well into the court beyond the
baseline. This allows the server to impact the ball about 15cm higher and up to 60cm into the court.
It also allows the server to get to the net quicker.

5. Change the ball. If the ball is made lighter, it will come off the racket at a higher speed, but it
will slow down more in getting to the receiver due to air resistance. If the ball is made heavier, it will
come off the racket at a lower speed, but it will slow down less due to air resistance. For a small change
in ball mass, the two effects tend to cancel each other out. Reducing the COR of the ball has very little
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effect on serve speed since the serve speed depends primarily on the racket speed. An increase in ball
diameter is much more effective, due to the increased drag on the ball. With a larger ball, the extra
time the receiver has to return a serve on a grass court is comparable to the extra time the receiver has
if the ball bounces on clay (see Table 1).

It is difficult to predict with certainty the effect of using a larger ball on grass. A 69mm ball
introduces a delay of 0.018s for a 200km/hr serve, which is equivalent to serving a standard ball at
194km/hr. A 72mm ball introduces a 0.032s delay, which is equivalent to a standard ball served at
189km /hr. Figures 4-6 indicate that on grass, this will make a relatively minor difference to the fraction
of unplayable serves. As shown in Table 1, the transit time for a 200 km/hr serve on clay, for a standard
ball, is 0.026 s longer than on grass. The larger ball will introduce a comparable delay, but one cannot
assume that the same delay on grass will have the same effect as on clay.

6. Shorten the service court. If the service court is shortened, it would force the big servers to
reduce their serve speed in order to get in a reasonable fraction of their offerings. Calculations of ball
trajectories show that if the service court is reduced by 28 cm, then a 1.93m (6’ 4”) player would need to
reduce his serve speed from 193km/hr to 175 km/hr in order to maintain the same serve angle window
and hence the same percentage of successful first serves. A 1.75m (5’ 9”) player needs to serve at
155km /hr on a normal size court to maintain the same serve percentage as the tall player. If the service
court is shortened by 28 cm, the shorter player could maintain the same serve percentage by reducing
his speed to 145km/hr.

Figure 5 indicates that the percentage of serves won is almost independent of serve speed when the
serve speed is low, especially on the second serve.

7. Raise the net. Raising the net height will also force players to reduce their serve speed in order to
maintain a reasonable serve percentage. Each 1.0 cm increase in net height is equivalent to a reduction
in the length of the service court by 7.6 cm, regardless of the initial ball speed or the initial serve height.

8. Other proposals. The server could be required to be well behind the baseline when serving. If
the server stands 1 m behind the service line, then the transit time to the receiver’s baseline is increased
by 0.02s at a serve speed of 180km/hr (50ms~!). This would also force players to reduce the serve
speed to maintain the same serve percentage. However, it could mean the end of the serve and volley
game. An interesting proposal has been made to narrow the service box by splitting the centre line.
This would also reduce the number of aces.

The effect of these various proposals is difficult to predict with certainty. However, one can make
some progress by analysing the available statistical data, shown in Figures 46 for the 1999 Wimbledon
Open men’s singles matches. Figures 4-6 also show data for the 1999 French Open, where matches
are played on clay, at a much lower pace. Part of the difference can be attributed to the speed of the
surface, which is determined by p. A 200km/hr serve on clay takes 0.026s longer to cross the receiver’s
baseline. In effect, a 200 km/hr serve on clay is equivalent to a serve speed of about 190 km /hr on grass,
in terms of the transit time. However, the main difference between the two surfaces is the rebound
angle of the ball. The ball kicks up at a steeper angle on clay, partly because of the larger reduction in
the horizontal speed of the ball when it bounces and partly because the coefficient of restitution on clay
is larger, meaning that the vertical component of the rebound speed is larger. Most players respond
by reducing their serve speed substantially (by about 25km/hr) at the French Open, in order to apply
more spin. A ball with topspin and with a reduced horizontal speed strikes the court at a steeper angle
and at a higher vertical speed so it kicks up at an even steeper angle.

The Wimbledon data in Figures 46 show that the probability of winning a first serve increases as
the serve speed increases, provided the serve is in. However, the probability that a first serve is good
decreases as the serve speed increases. The net result, considering all serves, is that players normally
win a greater fraction of their second serves than their first serves. Taking an average over all players
and all serves, regardless of whether the serve was in or a fault, players who won their matches at
Wimbledon won 48% of all their first serves and 56% of all their second serves. Players who lost their
matches won 38% of all their first serves and 46% of all their second serves. From this point of view,
a reduction in the first serve speed should not be a serious imposition for most players and might even
increase the chances of a player winning his first serve, depending on the first serve %. For example,
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a larger ball will cause the transit time to increase but it will also increase the first serve % due to
the larger vertical acceptance angle for good serves. If the net height is raised or if the service court is
shortened, the server will be forced to reduce his serve speed in order to maintain the same serve %.
Figure 5 shows that the speed of the second serve does not have a significant effect on the chance of
winning the second serve, so a reduction in the speed of the second serve should have a relatively small
effect.
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Figure 4: Wimbledon and French Open 1999 men’s singles serve % statistics. The serve % is the % of
serves that are good (i.e. not a fault). Solid circles = 1st serve (winners), solid triangles = 2nd serve
(winners), open circles = 1st serve (losers), open triangles = 2nd serve (losers).

100 T LI LI LI T LI 100 TT1T TTT LI LI LI LI
c | | | o] | | | |
g 90 Wimbledon — 90 —
(]
g 80F 1999 O‘.g’%'—. - 80F a .
> 701 N 4 70} .
Q A 0, o 1st 3 &
g 60 A 2 00 serve 60— 4 -
— O — — —
§’ 50 2nd AA 50 . TH
"6 401~ serve 2 nad, | 40 4 A »  French Open ]
0 30 N — 30+ 4 1999 —
° 20 T T RV R YN T 20 ' NS A A A
100120140 160 180 200 220 100120 140 160 180 200 220
Average serve speed (km/hr) Average serve speed (km/hr)

Figure 5: % of good serves won by the server vs serve speed.
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Abstract

This paper describes how biomechanics may be considered as a type of abstract ergogenic aid that
may be applied in sports training to enhance performance through a better understanding and
optimal application of the mechanical principles that underlie the production of strength. The
importance of the fundamental qualities such as starting-strength, acceleration-strength, explosive
strength and reactive ability was established, as was a deeper analysis of the nature of isometric
and eccentric muscle action. In particular, it was found that isometric action may be initiated ex-
plosively and act as an essential component of stretch-shortening or plyometric actions and that its
use need not be confined to maximum strength production. Biomechanical analysis of weightlifting
movements emphasised that eccentric prestretch actions may augment strength and power produc-
tion both under slow and explosive stretch-shortening conditions. Traditional applications of the
classical hyperbolic force-velocity curve and Newton’s second law were reexamined to establish more
appropriate methods of training. Finally, movement against combined free weight—isokinetic and
free weight—elastic modes of resistance was examined to assess if such methods could enhance more
conventional methods of strength training. The findings that emerged from this work have been
successfully applied by a group of elite USA powerlifters, thereby confirming that biomechanics
indeed can serve as an effective ergogenic aid in sport.

1 Introduction

Ergogenic aids conventionally are methods or devices such as anabolic steroids or special shoes that
enhance sporting performance by their use. Applied mathematics and computers may in a different
sense be regarded as similar, though more abstract, ergogenic aids to enhancing performance by enabling
the athlete to train and compete more efficiently and safely. All sporting movement depends on the
expression of strength in specific forms, patterns, intensities and durations in a given situation. Every
movement may be analysed mathematically and computationally to determine the characteristics of
efficient and appropriate motion and thereby enable the scientist and coach to devise training methods
to enhance the performance of any individual athlete.

These training methods generally are aimed at increasing fitness qualities such as cardiovascular
endurance, local muscle endurance, strength, speed and flexibility in as close as possible a balance to
what is considered optimal for a given role in a specific sport. In the case of strength development, a
great deal of training has been based upon physiological and experiential findings that have focused on
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increasing muscle mass, on the nature of the different types of fast and slow muscle unit, the process of
myofibril contraction and the characteristics of muscle metabolism.

It is the objective of this paper to show that biomechanical analysis can play an equally valuable
role in more accurately defining strength as a motor quality, understanding the different forms in which
strength may manifest itself, and improving the methods of strength training and injury rehabilitation.
The value of this analysis is illustrated by the practical application of some of these findings discussed
here being used effectively to enhance the performances of a group of elite athletes.

2 Strength and strength indices

Strength is the ability of a muscle to produce force under specific conditions, where the force of muscle
contraction elicited by reflexive or voluntary nervous excitation leads to torque of limbs acting about
the various joints as fulcra. All sport involves the production of strength to move the limbs, the whole
body or various implements to execute a given motor pattern in a specific type of contact or non-contact
play. This strength may be generated at maximal, as is the case in weightlifting and powerlifting, or
submaximal levels, as is the case in most other sports, but even in the maximal strength sports just
mentioned, the inappropriate generation of high levels of force may be detrimental to the execution of
the skilled movements involved in lifting weights competitively.

In other words, it is not simply the production of strength that is important, but also the production
of appropriate levels of strength and power at different stages in optimal motor patterns in every
sporting movement. Thus, at the very outset, it is vital to emphasise that an increase of strength will
not necessarily improve performance in every sport. Certainly in some sports, the quality of absolute
strength (strength independent of body mass) may be of relevance, but in most sports, relative strength
(relative to body mass) is of far greater consequence.

Another issue of primary concern is that a considerable amount of research into the nature of strength
is based on measurement of joint torque using isokinetic dynamometers. This unjustifiably assumes that
strength is a generalised motor quality that does not display specificity in sporting movement and that
measurement of strength under isokinetic conditions correlates closely with strength production in actual
three-dimensional daily movement.

To progress beyond these oversimplified dynamometric analyses of strength and to better understand
the role of strength in sport, it is relevant to commence with an analysis of a typical force-time curve and
the time derivative of that curve in lifting an unconstrained weight from a given position and returning
it to that position (Figure 1).

The time derivative of the F(t) curve, dF/dt, is known as the Rate of Force Development (RFD)
or, the Rate of Tension Development (RTD) in the muscle. The graphs enable us to define several
fundamental features of strength production, besides maximal strength (Fi,ax) given by the peak of the
F(t) curve, absolute strength (Fi,ax irrespective of body mass) and relative strength (Fi,.x relative to
bodymass, or Fiax/M). In particular, Russian scientists have used these curves to identify the following
(Verkhoshansky [27]):

o starting-strength,
e acceleration-strength,
e strength-endurance.

Starting-strength is the ability to build up working force as rapidly as possible once muscle contrac-
tion has begun and it is always produced under isometric conditions. This fact alone has important
consequences for strength training, because it dispels the notion that the once-popular method of iso-
metric training should be completely abandoned. On the contrary, the ability to generate starting
strength rapidly can exert a profound effect on the dynamics of an entire movement, not only in terms
of the magnitude of the impulse, but also regarding the psychophysiological sensation of “lightness”
that it creates during the crucial initial stage of a highly resisted movement.
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Figure 1: (a) Force—time curve illustrating a method for determining explosive, starting and acceleration
strength. TV is the weight being overcome by the force F(t). Movement occurs only when the force
exceeds the weight W of the object, namely over the shaded portion of the curve. (b) Rate of force
development (RFD) curve obtained by plotting the slope of the force-time graph versus time. The
maximum rate of force development represents the explosive strength (ES) (Siff and Verkhoshansky [24]).

If the load is near maximal, then the initial slope of the F(t) curve is small and the time taken to
produce movement is prolonged. This requires the exhibition of another motor quality known as static
strength-endurance, as opposed to dynamic strength-endurance, which refers to the muscle endurance
required to maintain movement over a given time interval. This quality may be involved in carrying
out a set of repetitions with a load or by maintaining cyclic work of various intensities One may also
identify a property known as explosive strength-endurance which involves the repetitive execution of
explosive effort.

An index of starting-strength, ISS (the Starting or S-gradient), is estimated by means of the formula:

0.5Fmax

to.s

ISS =

where tg 5 is the time taken to reach one half of Fi,x.

Similarly, an Acceleration or A-gradient index is defined to estimate acceleration-strength, the ability
of the muscle to produce force as rapidly as possible under dynamic conditions once the contraction has
already begun:

0.5F max

IAS = ,
tmax - t0.5
where tnax is the time taken for the force to reach Fi,x.

The validity of isolating starting-strength and acceleration-strength has been corroborated by elec-
tromyography, which reveals differences in their neuromotor motor patterns, the recruitment of mo-
tor units and the firing frequency of the motoneurons during explosive force production (Verkhoshan-
sky [27]).

Finally, explosive-strength, the ability to produce maximal force in a minimal time, is estimated by
an Index of Explosive Strength (IES), although mathematically it is given by the maximum slope of the
F(t) curve, i.e. the peak of the RFD curve:

Fmax

tmax

IES =

Explosive force production is also described by another index called the Reactivity Coefficient, RC,
which is the explosive strength index relative to bodyweight or the weight of the object being moved:
Fmax _ RFDmax

RO = — W
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Figure 2: The force—time graph of explosive-isometric muscle tension Fisom and rapid dynamic work
with various percentages of maximal strength for a leg press movement (Verkhoshansky [27]).

Exzxplosive strength is most commonly displayed in athletic movements when the contraction of the
working muscles in the fundamental phases of the exercise is preceded by mechanical stretching. In this
instance, the switch from stretching to active contraction uses the elastic energy of the stretch to increase
the power of the subsequent contraction, a process that is central to the so-called stretch-shortening
cycle and “plyometric” or rapid rebound action. This specific quality of muscle is called its reactive
ability (RA).

The F(t) curve yields even more information if we plot a series of curves produced by examining the
dynamics associated with movement against different loads (Figure 2). First of all, it will be noted that
the greatest level of force or absolute strength (defined by Zatsiorsky as Fy, or maximum maximorum,
the maximum of all maxima achieved under any conditions) cannot be produced against loads that are
not near maximal (Zatsiorsky [31]).

It will also be noted that it takes more than half a second to produce the greatest levels of force.
This has important consequences in sports preparation, because it implies that having great strength
is of little consequence unless the athlete can produce a large percentage of this strength when it is
most needed. The rapid attainment of peak force for lighter loads also reveals that the impulsive force
producing the movement is developed chiefly by starting-strength.

The steepness of the force—time curve and the greater magnitude of maximum isometric than dy-
namic maximum force for equivalent joint angles show that, if isometric exercises are executed with
the accent on RFD, then they can often be as effective for developing explosive strength as dynamic
exercises. Because the protective inhibitory effects usually associated with voluntary muscle action
are not encountered in reflexive isometric contraction, even greater explosive force can be displayed
isometrically than dynamically.

The above has profound implications for the statement that greatest muscle force is produced during
eccentric action. While one can lower eccentrically a load that is as much as 35% greater than what one
can raise concentrically, it is incorrect to imply that muscle tension is greatest under eccentric conditions.
This is corroborated by the finding that superimposed electrical stimulation increases eccentric torque by
more than 20% above voluntary levels and electrically evoked torque alone exceeds voluntary torque by
about 12% (Westing et al. [29]). Interestingly, this research discovered that no corresponding differences
were observed between superimposed and voluntary torques under isometric or concentric conditions,
so it may be that specific neural mechanisms may protect against potentially damaging muscle tension
that could otherwise develop under truly maximal eccentric conditions.
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A comparison between EMG recordings during eccentric and concentric exercise, as well as the
magnitude of the training-induced changes in the EMG, also suggests that eccentric muscular action
may be impaired by mental processes (Handel et al. [9]). One method that to counteract this tendency
for muscle tension to decrease during eccentric actions is to train against a combination of inertial and
elastic or isokinetic loads (see Figure 14).

Eccentric training may have special value in enhancing adaptation to strength training, as suggested
by research showing that submaximal eccentric exercise encourages faster initial adaptation to strength
training than training with near maximal concentric loading (Hortobagyi et al. [13]). Moreover, greatest
concentric muscle tension occurs at higher joint velocities, whereas eccentric activity increases as joint
velocity decreases (Potvin [21]).

These findings have interesting implications for a method known as Compensatory Acceleration
Training (CAT). Proprioceptive feedback makes one aware that the load is changing and enables one to
voluntarily accelerate or decelerate the bar to alter muscle tension. It might be preferable to call this
method Compensatory Action Training, because it does not necessarily alter acceleration significantly,
though it might alter the level of neural excitation. This method can be useful in altering muscle tension
or movement velocity to achieve a specific training goal, because, as we noted above, neural drive may
reflexively attempt to decrease muscle tension during certain phases of movement. Compensatory
Action Training may then be seen to increase muscle tension both by accelerative or mechanical means,
according to Newton II (F = ma), and by increase in neural excitation, especially if the transition phase
between the eccentric and concentric phases of the movement involved is made as short as possible.

Thus, we note that muscle tension in strength training may be increased in the following ways:

e voluntary efforts by using Compensatory Action to counteract any decrease in movement, velocity,

e involuntary use of reflexive explosive rebound or plyometric actions,

voluntary use of prestretch to facilitate stronger muscle contraction,

e use of inertial loads combined with elastic or isokinetic loads,

application of electrical stimulation.

Maximal tension occurs under explosive isometric conditions produced during so-called plyometric
actions when an eccentric action is suddenly terminated and immediately followed by a concentric
rebound, as was confirmed by research using Siff’s tensiometric method (Kirkby [14]). Very often,
maximal tension occurs in positions where mechanical leverage is the poorest, in order to facilitate
movement from such disadvantageous positions (Siff [23]). The formalisation of exercises based upon
this “shock method” of training was carried out during the 1960s by Verkhoshansky and has led to the
popular system known as plyometric training. Further research (Verkhoshansky [27]) has determined
the correlation coefficient (R) between the different strength indices:

e explosive-strength and acceleration-strength: 0.84,
e explosive-strength and starting-strength: 0.52,
e starting-strength and acceleration-strength: 0.27.

Interestingly, the correlation between absolute strength and the values of the curve F'(t) is significant
at its starting point for relatively untrained subjects, but this becomes an unreliable measure as strength
levels increase. This is one of many reasons why training protocols or research studies may be radically
different for elite athletes and novices.

If we return to Figure 1, we will note that the graph involves no information on the muscles generating
the force. If we now take into account the fact that the muscle complex can be prestretched during the
isometric phase, we will see that this can increase the production of starting-strength both by adding
an element of elastic (potential) energy and by activating the stretch reflex more strongly.
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3 Different prestart and prestretch states of muscle action

The effects of different starting states of muscle on the subsequent movement were investigated by
Verkhoshansky (Siff and Verkhoshansky [25]), who showed that when a movement is begun with the
muscles relaxed, they are not optimally ready for work. Under laboratory conditions, a load was
projected vertically upwards on a special machine under the following conditions (Figure 3):

1. muscles relaxed,
2. muscles in isometric tension produced by loading with various weights,

3. muscles stretched dynamically, e.g. during the “wave” phase in swimming,

4. muscles stretched by “shock” loading caused e.g. by rapid braking of a load falling from a height.
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Figure 3: The dynamics of a moving load for different starting states of muscle. The numbers refer to
the states detailed above (Verkhoshansky [27]).

This research showed that some form of prestretching of muscle is essential for enhancing force
production. Where any prestretch is important, especially in explosive and ballistic actions, its timing
of use is critical and its duration must be short, because prolonged or mistimed use can diminish the
dynamic functional force.

A deeper analysis of this starting or prestart state of muscle action yields some further interesting
insights. For instance, Wilson et al. [30] in examining the effects of different delay times in the bench
press showed that the benefits of prior stretch may persist for as long as four seconds, at which stage it
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is suggested that all stored elastic energy is lost (Figure 4 (a)). Chapman and Caldwell [4], on the other
hand, found that the benefits of prior stretching during forearm movement are dissipated within 0.25
second, a value which agrees with findings by Siff [24] in an analysis of explosive elbow flexion without
additional loading (Figure 4 (b)).
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Figure 4: (a) The effect of different time delays on decay of the additional force produced by a preliminary
stretch in a bench press (based on Wilson et al. [30]). (b) The effect of different time delays on decay
of the additional force produced during an explosive preliminary prestretch in unloaded elbow flexion
(Siff [24]).

It is curious that muscle prestretch is usually referred to as separate from isometric muscle action,
but prestretch occurs under isometric or quasi-isometric conditions, revealing that analysis of isometric
training often neglects its role during prestretch and other neuromuscular facilitation processes. As the
role of isometric processes in other events such as ballistic and plyometric actions is examined later,
their importance in many crucial aspects of human movement will become apparent. Isometrics are
not simply a method of muscle action that increases muscle strength at joint angles close to the angle
at which isometric training is executed, but can be as effective for developing explosive strength as
dynamic exercises if executed explosively with an accent on RFD.

Thus, it must be stressed that isometric training is not simply a matter of holding a static muscle
contraction for a given time. Isometric contraction requires a muscle to increase its tension from rest to
a maximum or sub-maximal value over a certain time (rise or “attack” time), to sustain this tension for
another period (the resistance phase) and to decrease this tension to rest or a lower value (decay time).
Consequently, one may distinguish between explosive isometrics, which have a very brief rise time, and
slow isometrics, with a much longer rise time.

This research presented in the above graphs suggests that delays of as long as a second or two can
still produce significant augmentation of the subsequent concentric phase for some activities, but delays
as short as 0.2 second are sufficient to dissipate the benefits of prior stretch during other activities.
Research by Bosco et al. [2] offers a partial solution to this apparent contradiction. They proposed that
individuals with a high percentage of FT fibres in the leg muscles exhibit a maximum plyometric effect
when the eccentric phase is short, movement range is small and coupling time between eccentric and
concentric action is brief. On the other hand, subjects with a high percentage of ST fibres apparently
produce their best jumping performance when the eccentric phase is longer, movement range is greater
and the coupling time is longer.

It is also tempting to attribute these differences in coupling times to specific maximum delays for
each joint action. While this probably is true for different joint actions, it is also important to note that
body exhibits many different reflexes, each of which acts under different conditions and at different rates.
In particular, there are tonic (static) and phasic (dynamic) stretch reflexes and very rapid receptors in
the joint capsules that detect the rates of movement and allow the nervous system to predict where
the extremities will be at any precise moment, thereby facilitating anticipatory modifications in limb
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position to ensure effective control and stability (Guyton [7]). Loss of this predictive function apparently
makes it virtually impossible for one to run, jump, throw or catch.

In addition, weightlifters, powerlifters and sometimes bodybuilders use the so-called prestretch prin-
ciple to produce a more powerful concentric muscle contraction to enable them to lift heavier loads.
In doing so, they begin a movement from a starting position which imposes an intense stretch on the
relevant muscles, hold it for a few seconds and then move as strongly as possible from that position.
It would seem that this longer delay would implicate a tonic type of reflex with a characteristically
greater coupling time between eccentric and subsequent concentric actions. The action cannot be called
plyometric, despite the fact that prior stretch had contributed to the subsequent concentric action.
Conversely, phasic reflex activity would more likely be implicated in the explosive movements which
typify classical plyometrics and the type of activity described in Figure 4.

This explanation also distinguish between plyometric action and plyometric training. One cannot
simply separate “plyometric” and “non-plyometric” solely on the basis of coupling times, otherwise
one would even have to classify jogging as classical plyometrics, because the time taken for the ground
reaction force to reach a maximum can be less than 0.15 second. One also has to take the force—time
pattern and the rate of force development (RFD) into account, as is evident from a comparison of
different types of vertical jump (Figure 5). Here it can be seen that the RFD during the different
prestart conditions have a profound effect on the maximum height reached.

The effect of plyometric or stretch-shortening actions has been attributed to one or more of the
following processes, the exact contribution of each still being vigorously debated (van Ingen Schenau et
al. [26]; Zatsiorsky [33]):

e utilisation of stored elastic energy,

e changes in the mechanical characteristics of the muscle complex,
e cliciting of the various stretch reflexes,

e disinhibition of inhibitory nervous processes,

e reduced electromechanical delay (between stimulus and initiation of muscle action).
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Figure 5: The development of force for various vertical jumps: (a) jumping from rest from a low squat;
(b) the usual jump with a controlled dip or amortisation phase; (¢) after a depth-jump from 0.4 metre.
The jump heights reached were 0.67m, 0.74m and 0.80m respectively (Verkhoshansky [27]).

It is believed that the rapid termination of a powerful eccentric action followed as soon as possible by
a rebound under concentric conditions will increase the kinetic energy of the final phase of the propulsive
motion.

The apparently contradictory finding that both slower prestretch and explosive ballistic actions both
enhance subsequent muscle action emphasises that facilitation of muscle action depends on different
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neural and biomechanical processes, each of which is implicated under different conditions, a conclusion
that is profoundly important for all strength conditioning programmes. Bernstein’s comments are highly
relevant in this regard: “The movement of the body is more economical, and consequently, more rational,
the greater degree to which the body utilises the reactive and external forces and the less he relies on
recruiting active muscles” (Zhekov [34]).

It is interesting to note that repeated ballistic prestretches may enhance the subsequent muscle
action even further. In studying the different prestart conditions used by Olympic weightlifters, it was
learned that a dynamic start using a single or double “pumping” action of raising and lowering the hips
produces a greater pulling force than a static start with the knees and hips kept fixed relative to one
another before the pull begins (Glyadkovsky and Rodionov [8]). In both of these “pumping” starts, the
last pumping action is completed approximately 0.4 second before the eventual pull from the platform.

Then, during the dynamic weightlifting pull from the ground, the downward prestretching action of
the knees in the “double knee-bend” phase as the bar passes knee level lasts about 0.08 seconds. It is
also relevant that the time taken for the dip during the Olympic jerk of the weight from the shoulders is
between 0.2 and 0.5 second, depending on the load being thrust overhead and that the power involved
in amortising the downward movement (over a distance of between 8 and 15 cm, depending on the load)
is approximately 500 watts (Vorobyev [28]).

Biomechanical findings in normal sporting movement such as these have profound implications for the
use of currently popular plyometric or stretch-shortening training, since they emphasise that plyometric
actions occur commonly in sport and that plyometric training (a separate system of sports training
based upon the use of many jumping and other impulsive plyometric actions) should not be casually
prescribed without a thorough understanding of their nature and how they interact with other sporting
movements.

4 The force—velocity relationship

One of the best known relationships concerning muscle action is the hyperbolic curve (Figures 6, 7)
which describes the dependence of force on velocity of movement (Hill [12]). Although this relationship
originally was derived for isolated muscle, it has been confirmed for actual sporting movement, though
the interaction between several muscle groups in complex actions changes some aspects of the curve
(Zatsiorsky and Matveev [32]; Komi [15]).
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Figure 6: The relationship between force and velocity, based on the work of Hill (1953). (a) The dark
curve shows the change produced by heavy strength training (b) the dark curve shows the change
produced by low load, high velocity training (after Zatsiorsky, 1995).

This curve implies that velocity of muscle contraction is inversely proportional to the load, that a
large force cannot be exerted in very rapid movements, that the greatest velocities are attained under
conditions of low loading, and that the intermediate values of force and velocity depend on the maximal
isometric force. It is inappropriate to deduce from this that large force can never be produced at higher
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velocities, because, as discussed earlier, ballistic action implicating stretch-shortening and powerful
neural facilitation processes exist primarily to manage such situations.

The influence of maximal isometric strength on dynamic force and velocity is greater in heavily
resisted, slow movements, although there is no correlation between maximal velocity and maximal
strength (Zatsiorsky [33]). The ability to generate maximum strength and the ability to produce high
speeds are different motor abilities, so that it is inappropriate to assume that development of great
strength will necessarily enhance sporting speed.

The effect of heavy strength training has been shown to shift the curve upwards, particularly in
beginners (Perrine and Edgerton [20]; Lamb [17]; Caiozzo et al. [3]) and light, high velocity training to
shift the maximum of the velocity curve to the right (Zatsiorsky [31]). Since, in both cases, power =
force x velocity, the area under the curve represents power, so that this change in curve profile with
strength increase means that power is increased at all points on the curve. The term “strength-speed”
is often used as a synonym for power capability in sport, with some authorities preferring to distinguish
between strength-speed (the quality being enhanced in Figure 6 (a)) and speed-strength (the quality
being enhanced in Figure 6 (b)).

The graph depicting concentric and eccentric muscle action looks like that depicted in Figure 7.
Consequently, muscular power is determined by the product of these changes (P = FV') and reaches
a maximum at approximately one-third of the maximal velocity and one-half of the maximal force
(Zatsiorsky [31]). In other words, maximal dynamic muscular power is displayed when the external
resistance requires 50% of maximal muscle force.

A FORCE

Eccentric contraction Concentric contraction

Isometric contraction

I /' o |
\/ Max Power

Figure 7: Schematic of the idealised force—velocity curves for concentric and eccentric muscle contraction
(not to scale). The change in muscular power with velocity of contraction is also depicted. Note that
power is absorbed at negative velocities, i.e. under eccentric conditions.

VELOCITY

The pattern of power production in sporting activities can differ significantly from that in the
laboratory, just as instantaneous power differs from average power over a given range of movement.
For example, maximum power in the powerlifting squat is produced with a load of about two-thirds
of maximum. Power drops to 52% of maximum for a squat with maximal load and the time taken to
execute the lift increases by 282%. Power output and speed of execution depend on the load; therefore,
selection of the appropriate load is vital for developing the required motor quality (e.g. maximal strength,
speed-strength or strength-endurance).

It is interesting that Hill’s relationship (Figures 6, 7) was modified by more recent research by Perrine
and Edgerton [20], who discovered that, for in vivo muscle action, the force-velocity curve is not simply
hyperbolic (curve 2 in Figure 8). Instead of progressing rapidly towards an asymptote for low velocities,
the force displays a more parabolic shape in this region and reaches a peak for low velocities before
dropping to a lower value for isometric contraction (V = 0). In other words, maximum force or torque
is not displayed under isometric conditions, but at a certain low velocity. For higher velocities (torque
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greater than about 200 degrees per second), Hill’s hyperbolic relation still applies.

MUSCLE
TENSION
or
FORCE

O VELOCITY

—

Figure 8: Force—velocity relationship of isolated muscle (1) and in vivo human muscles (2) as determined
in two separate experiments under similar loading conditions. The hyperbolic curve is based on the
work of Hill, while the other curve is obtained from research by Perrine and Edgerton [20].

In general, therefore, the picture which emerges from the equation of muscle dynamics is that of an
inverse interplay between the magnitude of the load and the speed of movement, except under isometric
and quasi-isometric conditions. Although this interplay is not important for the development of absolute
strength, it is important for the problem of speed—strength.

The above studies of the relationship between strength and speed were performed in single-jointed
exercises or on isolated muscles in vitro under conditions which generally excluded the effects of inertia or
gravity on the limb involved. Moreover, research has shown that the velocity-time and velocity-strength
relations of elementary motor tasks do not correlate with similar relations for complex, multi-jointed
movements. In addition, other studies reveal that there is a poor transfer of speed-strength abilities
developed with single-jointed exercises to multi-jointed activities carried out under natural conditions
involving the forces of gravity and inertia acting on body and apparatus. Consequently, Kuznetsov
and Fiskalov [16] studied athletes running or walking at different speeds on a treadmill and exerting
force against tensiometers. Their results revealed a force—velocity graph which is very different from
the hyperbolic graph obtained by Hill (Figure 9).

FORCE

VELOCITY
Figure 9: Force—velocity relationship for cyclic activity (based on data of Kuznetsov and Fiskalov [16]).

This figure also shows that jumping with a preliminary dip (or, counter movement) causes the
force—velocity curve to shift upward away from the more conventional hyperbola-like force—velocity
curve recorded under isokinetically or with squat jumps. For depth jumps, the resulting graph displays a
completely different trend where the force is no longer inversely proportional to the velocity of movement.
The coordinates describing the more rapid actions of running, high jumping and long jumping also fall
very distant from the traditional force—velocity curve (Figure 10).

The reason for these discrepancies lies in the fact that movement under isokinetic and squat jumping
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Figure 10: Force—velocity curve for different types of jump (Bosco [1]). In the squat jump, the contractile
component of the muscle is primarily responsible for force production, whereas elastic energy, reflexive
processes and other muscle changes play additional roles in dip (counter movement) jumps and depth
jumping. The calculated values of F and V for high jump, long jump and sprints are also shown.

conditions involves mainly the contractile component of the muscles, whereas the ballistic actions of the
other jumps studied apparently are facilitated by the release of elastic energy stored in the SEC and
the potentiation of nervous processes during the rapid eccentric movement immediately preceding the
concentric movement in each case.

Studies of force—velocity curves under non-ballistic and ballistic conditions (Bosco [1]) further rein-
forces the above findings that the traditional force—velocity curves (Figures 6, 7) do not even approxi-
mately describe the force—velocity relationship for ballistic or plyometric action. The non-applicability of
these curves to ballistic motion should be carefully noted, especially if testing or training with isokinetic
apparatus is being contemplated for an athlete.

Other work reveals that the jump height reached and the force produced increases after training
with depth jumps (Bosco [1]). Whether this is the result of positive changes in the various stretch
reflexes, inhibition of the limiting tendon reflex, the structure of the muscle or in all of these factors
is not precisely known yet. What is obvious is that the normal protective decrease in muscle tension
by the Golgi tendon organs does not occur to the expected extent, so it seems as if plyometric action
may raise the threshold at which significant inhibition by the Golgi apparatus takes place. This has
important implications for the concept and practical use of plyometrics.

5 Newton’s second law and force combinations

Although the biomechanical analysis can yield useful insights into the nature of strength and strength
training, it can sometimes be very limited if it is not performed with an understanding of the underlying
physiological processes. For instance, if we apply Newton II to examine human force production, we
find that this approach fails to solve the fundamental issue of choice of optimal load and acceleration
for producing greatest strength or power increase. Since force F' = ma, let us apply it to produce the
same magnitude of force F' in several different ways:

(a) F = Ma, where the mass M is large and the acceleration a is small;
(b) F =mA, where the mass m is small and the acceleration A is large;
(¢) F' = ma, where both mass and acceleration are moderate.

Force production under isometric or isokinetic conditions where acceleration is zero may be added:

(d) F = kR, where k is a factor of proportionality and R is the resistance provided by the apparatus.
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This might immediately suggest, since the production of an adequate level of muscle tension is
necessary for strength training, that all of these methods of “force training” are entirely the same and
that is just a matter of one’s personal choice which method is used. So, the question arises as to whether
or not it makes any real difference which method of strength training is used, as long as adequate muscle
tension is produced. If one attempts to answer this question in purely mechanistic terms, one might
be tempted to reply in the negative and qualify one’s reply with comments about initiating movement
against heavy loads with high inertia, possible detrimental effects of sustained loads on the soft tissues
of the body, and duration of loading.

Interestingly, experience from three different aspects of strength training, namely Olympic weightlift-
ing, powerlifting and bodybuilding, offers preliminary information. Option (a) with very heavy loads
is most commonly encountered in powerlifting, whereas the hypertrophy associated with bodybuilding
generally is a product of option (c) training with moderate loads performed for about 8-12 repeti-
tions. Option (b) is characterised by many actions in track and field events. Olympic weightlifting,
which involves lifting heavy loads rapidly, appears to contradict evidence that velocity decreases with
load, but this is because weightlifting involves ballistic action and relies heavily on quick movement of
the lifter under the bar. Isokinetic option (d) occurs only under laboratory conditions using special
isokinetic dynamometers to control the motion. Correlation of results obtained under these and actual
sporting conditions is low, although it may increase non-specific strength (Rosentzweig and Hinson [22];
Osternig [19]).

Practical evidence shows that the above three ways of generating force do not produce the same
results and research reveals that this is because different neural, muscular and metabolic processes
are involved in each case. Thus, strength and power training are not simply a matter of using some
generalised form of resistance training to produce adequate physical loading and muscle tension; the
principle of specificity of training is central to the entire issue.

Research has shown that, to increase muscular strength in the average person, training load must
exceed a threshold training stimulus of not less than one-third of one’s maximal strength (Hettinger and
Miiller [11]). The development of strength requires that the stimulus intensity be gradually increased,
since it was discovered that every stimulus has a changing strengthening threshold (Hettinger [10]).

Up to this point, strength production has been considered under discrete conditions of inertial,
isokinetic and other forms of loading and this has yielded invaluable results for application to training.
It is now interesting to examine what happens under conditions which combine different forms of
resistance.

6 Combination of free weights and isokinetic resistance

The first combination to be investigated was a combination of auxotonic (free weight, allodynamic or
isoinertial) and isokinetic resistance, with the same group of subjects being analysed under separate
inertial and isokinetic conditions, then finally under a combination of both types of resistance applied
using a cable machine specially designed and constructed for this purpose by one of Siff’s mechanical
engineering students (Fradd [6]).

The most interesting findings appear in Table 1 and following graphs. In interpreting this informa-
tion, it is important to note that the shape of the curves varies with every individual, according to their
motor characteristics, and, in the combined scenario, with the magnitude of the inertial load and the
velocity of isokinetic resistance.

The combined resistance may be made more auxotonic if the added weight is large and more isokinetic
if the added load is relatively small. It would be well to note that there may be significant variation
among graphs produced by different individuals, because their force output characteristics depend to a
large extent on their training history and sporting background.

1. Greatest mean and peak power is produced under auxotonic conditions, reaching a peak approx-
imately midway through the movement (Figure 11).
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Figure 11: Resisted elbow flexion movement under auxotonic (free weight) conditions.

2. Auxotonic force production is greatest during the earliest phases of joint movement (Figure 11).

3. Power production is considerably lower under isokinetic and combined conditions, but remains
near its peak value for a considerable part of the range (Figures 12, 13).

4. Mean and peak force production is greatest during combined conditions, and may peak twice
during the movement, most commonly near the beginning and end of range.

5. Isokinetic force tends to plateau about one-third through the range, but commonly increases near
end of range.

7 Combination of free weights and elastic resistance

The next resistance hybrid to be examined was a combination of free weights and elastic band resistance,
using a box squatting exercise in a power rack with strong elastic bands attached between the ends of
the bar and the base of the rack. The length of the elastic bands was adjusted so that elastic resistance
varied between set limits at the lowest and the highest positions of the movement. Thus, the powerlifters

Resistance | Max velocity Mean power  Peak power  Mean force  Peak force
Isoinertial 1.49 151 306 184 219
Isokinetic 0.42 80 129 247 350
Combined 0.38 102 131 336 380

Table 1: Summary of results obtained from analysis of elbow flexion movement under different resistance
conditions (velocity in ms™!, power in watts and force in newtons).
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Figure 12: Resisted elbow flexion movement under isokinetic conditions.

involved in this study experienced, in addition to the squat weight of 200kg, an added elastic resistance
of 150 kg at the lowest position while sitting down on the box with knees at approximately right angles
and a greatest elastic resistance of 250 kg at the top of the squat with knees fully extended. The results
are expressed in the form of percentages of the squat weight used (Figure 14). This method allowed the
powerlifters to train under special overload conditions intended to strengthen specific weaknesses in the
movement characteristics produced under normal loaded conditions. The main differences between this
combined method and free weight training were:

1. A greater mean and peak force were produced throughout the range of movement.

2

)

2. The descent onto the box tended to be accelerated above the normal gravitational rate of 9.8 ms™
so that greater eccentric force had to be generated to control the downward motion.

3. The stronger eccentric loading and the brief transition period involved while sitting before explod-
ing upwards provided neuromuscular stimulation which approximates that usually encountered in
popular plyometric training.

4. The force generated during the later stages increased, in strong contrast to the situation of normal
squatting in which force production tends to decrease significantly.

As with the other combined method of free weights and isokinetics, it is important to note that
there tend to be large individual variations and that the exact shape of the combined resistance curve
depends on the magnitude of the weights load relative to the top and bottom resistance provided by
the elastic bands.

8 Conclusion

This paper set out to describe how biomechanics may be considered as a type of abstract ergogenic aid
that may be applied in sports training to enhance performance through a better understanding and
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Figure 13: Resisted elbow flexion movement under combined auxotonic and isokinetic conditions. Values
of F and V for high jump, long jump and sprints are also shown.
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Figure 14: Resisted box squatting under combined free weights and elastically resisted conditions.
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optimal application of the mechanical principles that underlie the production of strength. The impor-
tance of the fundamental qualities such as starting-strength, acceleration-strength, explosive strength
and reactive ability was established, as was a deeper analysis of the nature of isometric and eccentric
muscle action. In particular, it was found that isometric action may be initiated explosively and act as
an essential component of stretch-shortening or plyometric actions and that its use need not be confined
to maximum strength production. Biomechanical analysis of weightlifting movements emphasised that
prestretch actions occurring under eccentric conditions may augment strength and power production
both under slow and explosive stretch-shortening conditions. Traditional applications of the classical
hyperbolic force—velocity curve and Newton’s second law were reexamined to show that great force
actually can be produced under explosive conditions and that there are more functionally appropriate
methods of training than those which are often encountered in training schemes that are derived largely
from bodybuilding experience. Finally, movement against combined free weight-isokinetic and free
weight-elastic modes of resistance revealed that such methods can enhance more conventional methods
of strength training.

Besides the impressive role played over the past 40 years by findings such as the above in guiding
the training of many world champions in Russia, all of the findings that emerged from this work have
been successfully applied by a group of elite USA powerlifters in a special scheme devised by well-known
Ohio coach, Louie Simmons, many of whom have produced USA or World records during the past two
years in applying these methods, thereby confirming that biomechanics indeed can serve as an effective
ergogenic aid in sport.
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Abstract

Using the Duckworth and Lewis rain interruption rules for one-day cricket matches, a margin of
victory in runs is created for the team batting second using the par, projected and new projected
scores. The par score is shown to underestimate the margin of victory, whereas, estimates based on
the projected and new scores are essentially equivalent to those obtained by the team batting first.
If remaining resources for the team batting second are low, the results show that any differences in
the margins of victory using either method are marginal. The resulting margin of victory is also
used to model a team’s rating and common home advantage in the Australian domestic one-day
cricket competition. The differences in team ratings generated by both the projected and new
projected scores are shown to be marginal and produce the same ranking order. The application of
the projected and new projected scores showed that teams experience a common home advantage
of nine and eleven runs, respectively, but these were not significant results. This is supported by
application of binary logistic regression techniques. The overall ranking of teams produced by the
model is also compared with the ranking based upon each team’s mean margin of victory and shown
to be in generally strong agreement.

1 Introduction

Duckworth and Lewis [6, 7, 9] have developed innovative rain interruption rules that are extensively
used in one-day cricket matches. Their methods differ from previous approaches in that they take into
account the available run-scoring resources (overs and wickets) the two competing teams have at their
disposal. In summary, the more unutilised run-scoring resources a team has at their disposal at the
point of interruption of a match the more runs they would be expected to make if the match was not
interrupted.

This paper will adapt methods developed by Duckworth and Lewis [6, 9] and proposed by Clarke [2]
and Allsopp and Clarke [1] to estimate a margin of victory (in runs) for the team batting second
(i.e. Team 2), after they have gone on to win a match. The estimate will reflect the relative strength of
Team 2 and provide a fair appraisal of their performance. We will then use adjusted Team 2 scores to
investigate home advantage in the Australian domestic one-day cricket competition (1994-2000).

2 Calculating a margin of victory

2.1 The par score

Clarke [2] suggested that the methods developed by Duckworth and Lewis (D/L) to revise targets in
matches interrupted by rain could be used to provide a margin of victory in runs. Using statistical data
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collected over a long period of time Duckworth and Lewis have developed a method that sets a revised
target for Team 2 when overs in either innings have been lost due to a break in play. The target is
revised in accordance with the available run-scoring resources the two teams have at their disposal. The
adjusted targets ultimately reflect the relative difference in the resource availability of both teams.

In adapting the D/L method to reflect the relative strength of Team 2, when they have gone on to
win a match, we treat the completion of Team 2’s innings as a break in play. Team 2, in winning the
match, has subsequently used up less of their available run-scoring resources in surpassing the target
set (unless they win on the last ball). If we denote the revised target for Team 2 by T', Team 1’s total
score by S, the run-scoring resource percentage remaining by R and the run-scoring resource percentage
available to Team 2 by R2, then T' can be calculated by:

e Scaling Team 1’s score downwards in the ratio R2 to 100. This is the score to tie.

e Adding one to give the target.

Knowing the number of overs left and the number of wickets Team 2 has lost, Duckworth and
Lewis [6, 7] have prepared detailed tables from which the appropriate R2 values can be determined.
Reading the tables directly provides the resource percentage remaining for Team 2, denoted by R. It
follows, R2 = 100 — R . As defined by Duckworth and Lewis [6, 7, 9], it follows:

LUt

=570 100 )

If a match is abandoned during the second innings, (T'—1) is defined by Duckworth and Lewis as the
par score, or the score that Team 2 will need to have achieved in order to tie the match at this point. If
Team 2 is ahead of its target, Duckworth and Lewis [6] quantify the difference between the current and
par scores as Team 2’s margin of victory. However, if Team 2 is behind the target set at this point the
par score is denoted by Team 1’s score and the difference between the two scores will be Team 1’s margin
of victory. At the completion of a match, the par score represents the score that Team 2 will need to
have compiled in order to achieve a tied result at the point their innings is completed. If Team 2 wins
the match they are obviously ahead of their target and the subsequent difference between the actual
and par scores is defined as Team 2’s margin of victory. However, if Team 2 is behind the set target at
this point, the par score is defined as Team 1’s total score and the difference between the two scores in
this case will be Team 1’s margin of victory.

2.2 The projected and new projected scores

Using the par score to determine the margin of victory gives some indication of how well Team 2 has
performed but it does not tell the whole story since we don’t know how many more runs Team 2 could
go on to make if they batted out their 50 overs. If, for example, Team 2 wins we can only be certain
of how far Team 2 is ahead of its target at the completion of their innings irrespective of how many
run-scoring resources Team 2 has at its disposal. We will demonstrate that the par score is not a fair
indication of how well Team 2 has performed because the margins of victory that are generated will
not be equivalent to those obtained by Team 1. We propose that an estimate of Team 2’s projected
50-over score will form the basis of a more accurate measure of the margin of victory. This estimate
will be based on two methods, namely the projected score and the new projected score. The projected
score is the sum of Team 2’s current score at the completion of their innings and an estimate of the
number of runs they will make in the remaining overs. This estimate is a percentage of 225 runs, which
Duckworth and Lewis define as the average score compiled by teams in a 50-over innings. Alternatively,
the new projected score assumes Team 2’s final score is the par score. This score can then be used to
determine the equivalent score Team 1 needed to have achieved in order to tie the match at this point.
This in effect provides a measure of how well Team 2 has performed. In both cases the resultant margin
of victory is the difference between Team 1’s score and Team 2’s adjusted score.
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If X represents Team 2’s current score, to estimate Team 2’s projected 50-over score P, we have:

100 — R2
P=X+ 225T =X +2.25(100 — R2) = X + 2.25R. (2)
If we define Team 2’s new projected score as N, then
100X 100X
N = = (3)

R2 ~ 100—R’

3 Analysis of the Australian domestic one-day cricket
competition (1994—-2000)

Tables 1 and 2 provide a summary of results from the Australian domestic one-day cricket competition
(1994-2000) which includes results from 117 completed matches. The results are for winning teams
only. Figure 1 provides a series of boxplots showing the distribution of the winning scores. The boxplots
suggest that, on average, Team 1 posted higher winning scores than Team 2. This is expected, since
Team 2, in winning a match, has its innings truncated as soon as they pass Team 1’s score. Notably,
the winning scores of Team 2 are more variable than those generated by Team 1. The par score also
represents a truncated score and is, on average, lower than all listed scores, however, because the par
score can result from a relatively wide range of overs, it is more variable. The projected score, on
average, is higher than the new projected score, but due to the presence of outliers the new projected
score is the more variable. The outliers for the new projected score result from matches in which Team 2
quickly passed Team 1’s score with many unutilised run-scoring resources at their disposal.

In comparing the distribution of winning scores the normality assumption (Anderson-Darling test)
holds for Team 1 and Team 2’s actual winning scores and for both the par and projected scores, but is
violated for the new projected score. Using a two-sample t-test the analysis clearly suggests that, on
average, Team 1’s score is significantly higher than both Team 2’s actual score (p = 0.000) and the par
score (p = 0.000). This results from the fact that Team 1, in winning their matches, exhaust available
run-scoring resources and so maximise their return. However, Team 2, in winning always has unutilised
run-scoring resources at their disposal (unless they win off the last ball) and so is not able to maximise
their run scoring potential. Using the non-parametric Mann—Whitney test to compare distribution of
scores, both the projected and new projected scores are not significantly different from Team 1’s winning
score (p = 0.390 and p = 0.535, respectively). The new projected score is also not significantly different
from the projected score (p = 0.663).

Team 1 | Team 2 | Par score | Projected score | New projected score
Mean 248.4 205.2 170.4 243.1 249.9
Median 242.0 208.0 178.3 237.0 238.4
Standard deviation 32.8 38.0 48.9 33.5 47.2

Table 1: Summary of results from the Australian domestic one-day cricket competition (1994-2000).

Tables 3 and 4 provide a respective summary and analysis of the winning margins of victory generated
by Teams 1 and 2. Figure 2 provides a series of boxplots showing the distribution of the margins of
victory. With reference to the boxplots, the margins of victory (in runs) generated by Team 2’s actual
score are inconsequential since Team 2’s innings is truncated once Team 1’s score is surpassed. Notably,
Team 1, on average, generated the higher margins of victory, which were also the most variable. The
margins of victory generated by the par, projected and new projected scores, on average, were similar,
with the new projected score clearly the more variable. Notably, application of the new projected
score to generate a margin of victory has produced a relatively high number of outliers. This arises
because the method predicts relatively high scores for Team 2 when they have won a match with a high
proportion of unutilised run-scoring resources still at their disposal.
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Comparison of scores Test p-value
H; | Team 1 > Team 2 (actual) | Two-sample t-test | 0.000
H, | Team 1 > Par Two-sample t-test | 0.000
Hy | Team 1 = Projected Two-sample t-test | 0.390
Hy | Team 1 = New projected Mann-Whitney 0.535
Hy | Projected = New projected | Mann—Whitney 0.663

Table 2: Competition analysis.
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Figure 1: Distribution of winning scores.

Since the normality assumption is violated for all distributions of the margins of victory (Anderson—
Darling test), the Mann—Whitney test is used to compare the distributions. The analysis suggests that
the margins of victory generated by both the projected score (p = 0.072) and the new projected score
(p = 0.190) are not significantly different from the margins of victory obtained by Team 1. However,
the par score generated margins of victory that were significantly less than those generated by Team 1
(p = 0.005) and so underestimated the margins estimated by the projected and new projected scores.
Both the projected and new projected scores generated margins of victory that were not significantly
different from those resulting from adopting the par score (p = 0.600 and p = 0.245 respectively).
Notably, there is no significant difference between the margins of victory generated by the projected
and new projected scores (p = 0.566).

In relatively few instances the margin of victory generated by the par score exceeds the margin of
victory generated by the projected score. This anomaly arises whenever R(S — 225) > 0. Since in all
cases R > 0 (i.e. after at least one ball has been bowled), this situation only arises when Team 2 has
gone on to win a match after Team 1 has posted a score in excess of 225. This suggests that Team 1,
in losing a match, has performed better than average.

Team 1 | Team 2 | Par score | Projected score | New projected score
Mean 53.4 2.1 34.8 40.0 46.9
Median 41.0 2.0 30.3 31.7 33.0
Standard deviation 43.2 1.2 21.5 29.1 43.1

Table 3: Margins of victory results.

Figures 3, 4 and 5 represent plots of the differences between the margins of victory generated by
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Comparison of margins of victory Test p-value
H; | Team 1 > Par Mann—Whitney | 0.005
Hy | Team 1 = Projected Mann—Whitney | 0.072
Hy | Team 1 = New projected Mann—Whitney | 0.190
H, | Par = Projected Mann-Whitney | 0.600
Hy | Par = New projected Mann-Whitney | 0.245
Hy | Projected = New projected | Mann—Whitney | 0.566
Table 4: Analysis of margins of victory.
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Figure 2: Distributions of the winning margins of victory.

the par, projected and new projected scores against the number of overs remaining. The plots suggest
that when the number of overs remaining is relatively small the resulting differences in the margins of
victory generated by each representation of Team 2’s winning score are also relatively small. However,

this difference incre
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Figure 3: Plot of the differences in margins between the par and projected scores.

Table 5 provides a summary of the correlation coefficients between the margins of victory generated
by each representation of Team 2’s score. The results suggest that for all winning scores there is a
strong positive correlation of 0.949 (p = 0.000) between the margins generated by the projected and
new projected scores. However there is evidence of only a moderate positive correlation between the
margins generated by the par and projected scores and the par and new projected scores (coefficients
are 0.636 (p = 0.000) and 0.465 (p = 0.000), respectively). These observations are deceptive since as is
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Figure 5: Plot of the differences in margins between the projected and new projected scores.
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clear from Figures 3, 4 and 5, in all instances the differences between the margins inflate as the number
of overs remaining increases beyond approximately eight. This is confirmed by Table 5, which suggests
that the strength of the correlations, in general, diminish as the number of remaining overs increases.
This is most apparent when considering the par and projected scores. Notably, when comparing the par

and projected, par and new projected and projected and new projected scores the mean difference in the
margins of victory in matches with eight or less overs remaining were 26, 28 and 29 runs, respectively.

The mean differences increased to 70, 92 and 120 runs, respectively, when the number of overs remaining

was nine or more.

Correlation coefficient

Comparisons All winming | Less than nine | More than nine
scores 0VEers Temaining | overs remaining
Par score Projected score 0.310 0.926 0.730
Par score New projected score 0.105 0.995 0.960
New projected score Projected score 0.959 0.946 0.882

Table 5: Summary of correlation coefficients.
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4 Analysing home advantage in the Australian domestic one-
day competition (1994-1999)

The Australian domestic one-day cricket competition is currently referred to as the Mercantile Mutual
Cup and is played between teams representing the six States of Australia and the Australian Capital
Territory. The competition is a round-robin tournament with teams gaining two points for a win or one
point each for a tie or a “no result”. The top four teams at the end of the round robin play off in two
semi-finals, with the winners playing each other in the final.

Home advantage is formally defined as the expected difference in score in a game played between two
teams (on the home ground of one of the teams) minus the expected difference in score in a game played
between the same two teams on a neutral ground. In the context of one-day cricket, home advantage
represents the margin of victory in a game played between team ¢ and team j (on the home ground of
team i) minus the margin of victory in a game played between team ¢ and team j (on the home ground
of team j).

Using techniques adopted by Stefani and Clarke [10], Harville and Smith [8] and Clarke and Nor-
man [4] the winning margin w;; in a match between team ¢ and team j played at the home ground of
team ¢ is modelled as:

wij:(ui-i—h)—uj-i—eij:ui—uj+h+€ij (4)

where u; is a measure of the relative ability of team ¢, h is a measure of the common home advantage
and €;; is a zero-mean random error.

A least squares regression model has been fitted to the margins of victory (generated by both
the projected and new projected scores) to quantify (a) a team’s rating, and (b) any common home
advantage. It is assumed that a team’s average rating is 100. Table 5 provides a summary of the ratings
for each team together with the mean margin of victory over the period 1994 to 2000. Notably, the
choice of whether to choose the projected or new projected score to calculate the margin of victory
has (a) produced similar ratings and (b) preserved the same ranking order for each team. It is also
notable that the teams, on average, did not experience a significant common home advantage under
either method, with the advantages generated by the projected and new projected scores being only
nine runs (p = 0.088) and ten runs (p = 0.057), respectively.

In considering the outcome only of each match (i.e. home win/home loss and away win/away loss),
we have the home and away teams winning 54% and 46% of matches, respectively. In applying a
binary logistic regression model, there is some evidence that the home team experiences an advantage.
However, any advantage is not statistically significant (z = 1.18, p = 0.238), with the odds of winning
away being about 1.4 times the odds of winning at home.

Using the mean margin of victory (generated by both the projected and new projected scores) to
rank each team shows generally strong agreement with the ranking produced by the model estimates.
Home advantage based on estimates generated by the mean margin of victory for each team (i.e. four
and six runs for the respective projected and new projected scores) showed some agreement with the
model estimates.

5 Conclusions

The use of the D/L method to deal with one-day cricket matches interrupted by rain is well documented
and has been used in a number of competitions. The method can also be effectively adapted to provide
a relative measure of how well the team batting second has performed by generating a margin of victory
in runs equivalent to the team batting first. The margin of victory is a more sensitive measure of the
strength of a win or loss.

The par score provides some measure of Team 2’s relative performance. However, it does not generate
a 50-over based margin of victory. Consequently, use of the par score tends to underestimate Team 2’s
margin of victory. Using both the projected and new projected scores provides a fairer appraisal of
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Projected score New projected score
Team Rating | Mean margin | Rating | Mean margin

of victory of victory
Western Australia 128 30 132 41
Queensland 124 24 124 25
New South Wales 116 14 118 15
Tasmania 93 -10 97 —6
South Australia 92 -2 89 -7
Victoria 83 0 79 0
ACT 65 —27 61 —26
Common home advantage 9 4 11 6

Table 6: Rating of teams in the 1994-1999 domestic one-day competition.

Team 2’s relative performance. In each case the scores generate a margin of victory essentially equivalent
to that obtained by Team 1. This suggests that the margins of victory generated by the projected and
new projected scores provide a more accurate measure of a team’s performance.

In matches won by Team 2, when the number of remaining overs was relatively small, any difference
in the margins of victory generated by the par, projected and new projected scores was marginal. This
suggests that when the number of overs is low (less than eight) the margin of victory generated by
either method will in effect be equivalent to the margin of victory obtained by Team 1. However, as the
number of remaining overs increases these differences become statistically significant and so it is more
appropriate to use either the projected or new projected scores to generate a margin of victory in these
cases.

Using the margin of victory generated by the projected and new projected scores to model team
performance in the Australian domestic one-day competition (1994-2000) showed that the team-rating
estimates were similar for both methods and the teams were ranked in the same order. Using each
team’s mean margin of victory to rank the teams showed general agreement with the rankings obtained
by the model.

Based on scores estimated by the projected and new projected methods the teams, on average,
experienced a common home advantage of eight and nine runs respectively. These results were not
statistically significant. Home advantage based on estimates generated by the mean margin of victory
showed some agreement with the model estimates. The application of binary logistic regression tech-
niques also support the notion that teams on average did not experience a significant home advantage,
with the odds of winning away estimated to be about 1.4 times the odds of winning at home.
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Abstract

Through the use of multiple regression on historical data, it is possible to identify numerically
quantifiable factors that can be used to predict the outcomes of AFL games. These predictions
can then be compared with the fixed prices offered on the betting market and possible arbitrage
opportunities identified. Using complete match results from the 1997 and 1998 AFL seasons a
prediction model was developed that, when used on the 1999 season offered positive returns on
investment.

1 Introduction

Applying mathematical models to sport is not a new concept. In the past, attempts to model sporting
outcomes were always hampered not only by the lack of quality data, but also by the time taken to
accurately enter the data for computer modelling. Today, with the growth of the Internet has come a
rapid increase in the amount of readily accessible data from which to explore sporting outcomes.

In the early nineties, authors such as Clarke [1] and Stefani and Clarke [6] clearly showed that a
certain degree of success in predicting AFL outcomes can be achieved through the use of computer
modelling. Similarly, Dixon and Cole [2] have shown that regression techniques can successfully be
applied to English football matches in order to identify market inefficiencies. Using a least squares
approach, this paper attempts to identify arbitrage opportunities and therefore facilitate a positive
return on investment.

By subtracting the away team score from that of the home team, it is possible to model the outcome
of AFL football games as a continuous variable. Because the margin of games can be seen to follow
an approximately normal distribution (Figure 1), the underlying assumptions needed for least squares
regression seem to hold.

Collection and organisation of past match data enables the development and testing of factors that
can be used to effectively predict variation in the margin of victory. By testing combinations of predictors
using multiple regression, consistent factors that explain variation in the outcome of matches can be
identified. The corresponding prediction equation is then applied to future match statistics to produce
a predicted margin of victory. By dividing the predicted margin of victory by the calculated standard
error and comparing with the standard normal probability distribution it is then possibly to estimate
each sides probability of winning. Further comparison with market probability (1/market price) enables
detection of market imbalances.

37
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Figure 1: Margin of all AFL home/away games 1997-1999 (home score — away score).

2 Model development

At a univariate level, there are a large number of predictors that can explain variation in the margin
of victory. Team differences in age, weight, experience, kicks, marks, disposals, turnovers, times inside
50 and previous winning margins can all explain small but statistically significant portions of variation.
The strongest individual predictor of outcome is market price. In the seasons 1997-99 the favourite
(shortest price on offer) won 61% of matches. As a continuous predictor, market prices can explain
approximately 12% of the variation in the outcome. (see Figure 2.)
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Figure 2: Linear regression of outcome vs market probability (1/price). R?> = 12% (p = .0001), 1997
1999.

After adjusting for the effects of market price, most of the variables that were significant at a univari-
ate level no longer remained significant. This comes as no surprise, because the market price effectively
acts as combination of many variables that seem to effect the outcome of the match. Intuitively, any
significant increase in model R? over that of the market price represents an increased ”knowledge” of
the true odds in comparison to the market. Using a combination of factors collected solely at a team
level (see Table 1), it was possible to explain an additional 4% of variation giving an overall R? of 16%.
Note that as outcome is modelled as home score — away score, the home ground advantage (62% of
home sides won in 1997-99) is automatically included into the equation in the form of the intercept.

Team data can be collected in two ways. Firstly, the average of the team as a whole, and secondly the
team as a sum of the individuals involved. Significant improvement in the amount of variation explained
can be achieved by modelling at an individual level. This process also allows a surrogate measurement
for injury—a key factor thought by many to influence the outcome of the matches. By modelling
individual players on factors known to be predictive at a team level (goals, inside 50, turnovers etc.)
and then aggregating the values up to a team score, it is possible to compare sides for who they have
playing in each specific game rather than comparing team form. Interestingly, the difference between
the team average and the sum of the individuals is a significant predictor. This makes intuitive sense,
because, if a team fields a weaker side through injury, it could be expected to perform worse. Table 2
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Variable Partial R? | Model R?> | F-test!
Intercept (home ground adv.) 0.0001
Market price 12% 12% 0.0001
Past margins 2% 14% 0.01
Turnovers 1% 15% 0.01
Inside 50 1% 16% 0.01

Table 1: Variation explained in multiple regression (1997-1998).
! Test for significance of partial R2.

gives an example from a recent pre-season match in which Brisbane was a participant. It shows statistics
that can be gathered for each match at an individual player level.

Name TK | TH | DI | RE | IN50 | MA | HO | CL | TO | FF | FA | TK | G
Akermanis, J. 9 10 | 19 1 0 5 1 2 1 1 0 0 1
Ashcroft, M. 10 8 | 18 1 2 2 0 9 0 1 1 0 0
Bolton, C. 7 2 9 3 2 1 0 1 1 0 0 0 0
Bradshaw, D. 4 1 5 1 0 0 0 0 1 1 3 0 3
Champion, R. 5 2 7 3 0 3 0 0 3 1 2 3 1
Cupido, D. 2 2 4 2 0 0 0 0 2 0 2 2 1
Hart, S. 6 5 | 11 3 1 0 0 1 0 0 0 1 0
Headland, D. 0 0 0 0 0 0 0 0 1 0 0 0 0
Heuskes, A. 6 9 | 15 5 3 0 1 1 2 1 2 1 0
Johnson, C. 4 4 8 3 1 2 0 0 2 0 1 1 2
Kenna, S. 6 3 9 1 0 3 0 1 1 1 1 0 1
Kennedy, M. 5 1 6 2 0 2 0 0 0 0 0 0 0
Key:

TK = total kicks, TH = total handballs, DI = disposals, RE = rebounds, IN50 = times inside 50
zone, MA = marks, HO = hit outs, CL = clearances, TO = turnovers, FF = frees for, FA = frees
against, TK = tackles, G = goals.

Table 2: Example of individual match statistics.

The most difficult part of establishing a model to identify arbitrage opportunities is to ensure that
estimates remain free from bias. When fitting data, care must be taken to ensure that predictions are
established for the right time frame. For example, Collingwood’s average after 22 rounds cannot be
reapplied to Round 4. Clearly, if an unbiased estimate was to be established for Round 4, then only
data prior to Round 4 can be used. Similarly, due to the nature of the modelling process, it is difficult
to avoid “overfitting” past data. It is for this reason that hold-out samples should be used determining
the true predictive quality of the models.

Using the model developed on seasons 1997 and 1998 that include past margins, turnovers and inside
50 collected at a team level (Table 1), it was possible to test the validity of the model by applying it to
1999 data. As a predictor this model performed reasonably well, explaining as much variation in 1999
(R? = 16%) as it did in 1997/98 (R? = 16%). By using the predicted margin as a guide to the actual
match winner, this model produced the winning side in 64% of matches.
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3 Wagering strategy

In a fixed price market with only two outcomes, the market price becomes a reflection of supply and
demand. By multiplying the predicted probability by the market price and subtracting the original unit
bet, it is possible to gauge the size of any market imbalance and thus the perceived advantage.

A=(PxM)-1 (1)

where A = advantage, P = predicted probability, and M = market price.

For example, Hawthorn starts favourite (M = $1.50) against Fremantle ($2.40). Using a prediction
model (Table 1), Hawthorn is given a 75% chance of success (P = 0.75), thus A = (0.75x1.5)—1 = 0.125
or a 12.5% advantage. When an interstate side plays in Melbourne, local betting markets sometimes
reflect increasing support for the home side—i.e. Hawthorn shortening from $1.50 (r) $1.30. This would
effectively reduce any betting advantage on Hawthorn: A = (0.75 x 1.3) — 1 = —0.025. With few local
betters willing to back the interstate side the price accordingly drifts. If the price drifts too far, an
arbitrage opportunity will then exist on the least favoured side. Given Hawthorn’s probability of winning
at 75%, Fremantle has a 25% chance of winning (excluding a draw). If the price on Fremantle rises to
$4.20, a positive arbitrage opportunity will exist: A = (0.25x4.2)—1 = 0.05, or a 5% advantage. In order
to maximise growth of wealth, a betting strategy must incorporate three specific features in determining
the size of the wager, namely existing bank size, size of advantage and probability of winning. Kelly [3]
developed a betting strategy designed to maximise the growth of wealth by maximising the expected
log of wealth. This formula can be effectively simplified to

A
B=+r— (2)
where B = % of total wealth, A = advantage, and M = market price.

Returning to our example above in which Hawthorn was estimated to have a 75% chance of winning,
at a price of §1.50 there would be an advantage of 12.5%, thus the betting fraction B = 0.125/(1.5—1) =
0.25, represents 25% of total wealth. If Fremantle was paying $4.20 against a predicted probability of
25%, the advantage and probability of success are both much smaller: hence a bet size equivalent to
only 1.5% of total wealth.

Further research into the Kelly wagering strategy by MacLean, Ziemba and Blazenko [4] suggests
that the Kelly model in its present form can often be too volatile in nature and a fractional Kelly
criterion in which a fraction (e.g. %) of the recommended bet is placed, offers a greater security. As
AFL football matches are often played simultaneously, a full Kelly criterion would not be appropriate,
as the investor would not have a complete bank available for each match.

Due to high volatility and the lack of reliable data at the start of each season, it makes sense to
restrict betting until sufficient data is available. The predictive power of the model examined was found
to significantly increase with the number of rounds played. For the purposes of this paper, the first
three rounds of each season were excluded from the analysis.

For each given match it is possible to determine whether either side is undervalued or overvalued
by the market. By restricting betting opportunities to those in which the perceived advantage is at
least equivalent to a certain amount, it is possible to “insure” against falsely predicting the true match
probability. For this paper, a figure of 5% was arbitrarily chosen.

4 Results

By using the model shown in Table 1 that consists of only past margins, turnovers and inside 50 (all
measured at a team level), and by restricting betting opportunities to those in which the perceived
advantage is at least 5%, 96 arbitrage opportunities were identified after Round 3 of the 1999 season
(162 matches). To evaluate the most feasible wagering strategy, two fractional Kelly regimes were
considered (half and third) along with a fixed bank strategy in which a fixed bank size of $100 was used.
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In each situation, the starting bank size for each was $100. From Figure 3, it is possible to see that
all three methods had positive returns for the season, with the fixed strategy being the most successful
ahead of the Half Kelly and Third Kelly models.

Interestingly, similar results could be achieved by considering only matches in which the perceived
advantage was greater than 10%. In this case there was only 76 potential arbitrage opportunities
available for the season but the final season figures ($380-fixed, $270-half and $210-third) were virtually
identical to those seen in Figure 3.
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Figure 3: Growth of wealth, season 1999. Initial Bank = $100.

5 Discussion

Further model improvements can be gained by constraining betting opportunities at either end of the
market. As prices increase, so too does the variation in return. Inversely, as prices shorten the trade
off between return and risk can often be exceeded, especially considering over 80% of variation in the
outcome still remains unexplained.

One further cause for bias in the prediction model is the over-inflated importance of large past wins.
It could be argued that a team that is ten goals behind won’t be trying as hard as a team that is a goal
behind, and as such should be taken into consideration.

For the purposes of this paper, market price was taken as the price available through Centrebet
on the Friday prior to the weekend round. By comparing the online prices offered by Centrebet, with
prices offered in a more local Melbourne market (Sportsbet) it is clear that interstate biases occur, with
the differences between bookmakers often being as large as 20%. With the growth of sports betting in
general, a rapid increase in the number of bookmakers has led to further gains in wealth by shopping
around for the best price.

6 Conclusion

Australian Rules football has evolved dramatically over the past ten years. The introduction of new
rules, clubs and venues, have all had major impacts on the predicability of matches. For the purposes
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of this paper, data has been collected on the years 1997-1999. It could be questioned as to whether
this is enough data to accurately construct models with long term predictive powers. For this reason,
the author is happy to look upon the results of this study in the same light as that of a pilot study—Is
it possible to statistically derive a handicapping model for AFL football that produces positive returns
on investment? The answer is surely yes—as to the long-term feasibility of such a process, only more
comprehensive longitudinal analysis will answer that question.
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Abstract

A simple method of rating tennis players is investigated. An exponential smoothing method based
on margin of victory in terms of sets and games won is used for rating players. The method is
optimised over a year’s data and compared with the ATP rating for predicting the winner of each
match in major tournaments. Results suggest the exponential method performs as well as the more
complicated ATP rating method for both match prediction and tournament seeding.

1 Introduction

Methods of rating teams and players across many fields of sport have been the topic of much discussion.
The ATP has established two methods of rating tennis players. Now only used for tournament seeding
is a moving twelve-month rating method that is based on both tournament and bonus points. In 2000
it was joined by a twelve-month race of point accumulation, called the Champion Race. For both
the moving and race systems, point allocation depends upon progression within the tournament and
class of tournament. Points are totalled from a maximum of fourteen tournaments in the prior year.
Consequently ranking serves as a guide for seeding players within competitions, and is used also in
allocation of prize money at the end of the year. As well as wishing to triumph in major opens, being
highly ranked is the aim for all players.

Calculating a player’s moving ATP rating is a complicated process. Tournament points and bonus
points are allocated, with tournament points being those used as a player advances from round to round
in a tournament, and bonus points are those a player gains for defeating an opponent based on their
ranking. If a player advances to the next round by walkover (match never commenced) then no bonus
points are allocated.

Stefani [6] describes how to compute the ATP ratings for players using matrix and vector methods.
This provides an alternative way to calculate ratings in a more flexible manner than that described
earlier. He extends this procedure further in Stefani [7].

The ATP web site www.atptour.com has a points breakdown for all the players, summarising the
best fourteen results in the calendar year. This is very helpful as to calculate from scratch you require
the points from all tournaments, including bonus points determined by the ratings at that time of
opponents the player has defeated.

Further idiosyncrasies of the ATP ratings include:

43
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e Any challenger tournament player providing hospitality will receive points of the next highest
prize money level.

e Regular bonus points are awarded for defeating ranked players but double bonus points are
awarded in the case of grand slam and best of five set finals in Super 9 ATP tournaments.

e Player gaining entry to an event through qualifying competition shall receive one half the points
awarded to a second round loser in the main draw (in addition to points earned).

e In grand slam qualifying players receive one point for losing in rd1 (Round 1), three rd2 and five
in rd3, whereas in ATP Championship Series events, players in qualifying receive one point for
losing in rd1l and one quarter of the points a main draw second round loser receives (plus bonus
points) for losing in rd2.

e If a player withdraws after 12 noon eastern time USA on the Friday before the start of an event,
he will be penalised in the ratings by one event per 12 month period (i.e. best 13 instead of best
14 etc., per violation).

Further explanation of how the ratings work is available on the Web, with prize money and points al-
location detailed at www.fortunecity.com/olympia/zola/206 /faqp2.html, and at www.stevegtennis.com/
tourpts99.txt. This method continued in 2000 for use of seeding, but was not used as the main guide
to player ratings.

At the beginning of the 2000 tournaments, the ATP introduced another rating method called the
Champion Race ranking, whereby all players start at zero and accumulate points in an annual race from
season start to end. The idea is that by season’s end the player with most points is the world number
one. Every player, regardless of performances in the previous year, counts eighteen performances in their
ATP race total. Grand slams and masters must be included in the best, as well as their best five from
other international series events. The ATP states the Race gives an idea of the “hottest player at the
moment”. Further explanation of the Champion Race is available at http://cgi.atptour.com/players.

So there are now two contrasting rating methods, one a cumulative for the calendar year, the other
on a cryptic fifty-two rolling week method. Other methods have been discussed in the literature. A
method of rating racquetball players in Strauss and Arnold [8] uses maximum likelihood and moment
estimation methods to obtain ratings, dependent upon the server probability of victory. Blackman and
Casey [1] use game probabilities due to their availability and high probability of picking winners.

Clarke [3] suggested the use of a simple exponential smoothing system similar to the Elo [5] chess
rating system. This is aimed to be simplistic in calculation as well as representative of the current form
of a player. The method involves smoothing a margin of victory, which can be applied to all standards of
players. The beauty of most forms of smoothers is the ability to retain overall trend whilst still updating
with most recent occurrences. As tennis ratings should reflect a time related estimation of form and
achievement, the use of a smoother seems the obvious choice over the more rigid and specialised ATP
rating currently in use.

2 Calculating margin of victory

Clarke [3] suggested a derived margin of victory method based from the points, games, and sets won or
combination of the three. The method adopted here is the SPARKS method, discussed in Clarke [3],
where the name is derived from Set Point mARKS. The value is dependent upon the games won and
sets won in determining a final score. While using points may lead to a more accurate measure, they are
not readily available. The SPARKS rating of a player is not only dependent upon the outcome of the
match and the quality of the opponent, but the score in sets and games. The formula used to evaluate
a specific value for an individual player is given by

SPARKS = (sets won) x 6 + games won. (1)
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In a game with final score 7-6, 6-4, 4-6, 46, 7-5, the SPARKS for the winner is given by (3 sets) x
6 + (28 games won) = 3 x 6 + 28 = 46. The loser gets 2 sets x 6 + 27 = 12 + 27 = 39. So in this close
game, the winner has a SPARKS victory of 7. This gives a little more weight than just a games score
(28 to 27) which does not account for the fact that a player has won the extra set.

The SPARKS method is also applicable when a game sees the withdrawal of one player through
injury, or if the match is not completed. A set is not considered awarded if not completed. At Wimbledon
1999, a semi-final match between Pete Sampras and Mark Philippoussis ended when Philippoussis retired
injured. He was leading the match 64, 1-2. The associated SPARKS was 13 to 6 in favour of the retiree,
leading to the advancing Sampras dropping 10 in rating. It may be argued that the retirement of a
player through injury represents a match where form is not of the normal type as one player is not
competing up to their best. We have chosen to leave this in, as we wish to be as objective as possible.

Here are some possible test cases and associated SPARKS points:

A. “Triple Bagels” or 18 Love (6-0, 6-0, 6-0). Win: 36, Loser: 0, Margin: 36. This has occurred
only once in the 90’s: at the French Open, second round in 1993.

B. “Longest Match” 6-3, 6-4, 5-7, 6-7, 15-13. Win: 56, Loser: 46, Margin: 10. Wimbledon semi-
final encounter in 1998.

C. “Loser is winner” 0-6, 7-6, 7-6, 0—6, 7-5. Win: 39, Loser: 41, Margin: —2.

There is no set limit to the upper boundary of the scores, but there is on the margin of victory,
which ranges from 0 to 36. Case C is somewhat controversial since the margin of victory is in the loser’s
favour. This could be avoided by altering the multiplier in (1) to 8 for sets won. However, clearly this is
a very close match, and the loser can probably be declared very unlucky. Note the ATP method would
give this loser no reward, the same as the loser in Case A. This cannot arise in a 3 set match with a set
multiplier value of 6. However, lowering this value to 4 gives the possibility of a zero margin, and to 3
an unlucky loser scenario.

3 Using margin of victory for player ratings
The general form for updating the rating of a player as given by Clarke [3] is
New Rating = Old Rating + a(actual margin — predicted margin) (2)

for some a.

This method was applied to Australian Rules football prediction by Clarke [2, 4], and the outcome
was shown to be as accurate as expert tipsters.

Another advantage of this rating system is that the match results are not required to be kept after
a game is completed and the rating is calculated, whereas ATP requires the record of the past twelve
months results.

Since we require a large spread of player ratings, but the margin ranges from 0 to 36, we divide the
player ratings by 100 to predict the margin in SPARKS. This results in (2) becoming

player _ popponent
RP®er _ R

Ry = Ry—1 + 100c (SPARKSplayer — SPARKSpponent — ) oH ) , t>0,  (3)

where a = player’s rating at period ¢. (R is the starting point. To use this SPARKS margin through
a tournament, and indeed throughout the year, we require a starting rating, and in this case the ATP
rating at the start of the year is the obvious choice.)

Repeated application of (3) shows the current rating is a weighted average of the difference in
SPARKS margin of victory for all matches played previously with the weights decreasing geometrically.
However, there is no requirement of storage of any value other than the player rating prior to the
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commencement, which is vastly simpler than the ATP method. Furthermore, as we are comparing
expected with actual margins, it can occur that a victor of a match does not win by a large enough
margin to increase their rating. In this way, it encourages players not to “lie down” in defeat or “take
it easy” to victory.

To illustrate the procedure, consider the match between Wayne Black and Pete Sampras in the
third round of the Australian Open 2000. The score of the match is given, with the pre-match rating
bracketed. Here we will choose @ = 0.06. Sampras (SPARKS = 3038) d. Black (SPARKS = 748) 6-7,
3-6, 6-3, 7-5, 6-3. Whilst the victory to Sampras is as expected, the margin is not. The expected
result is Sampras d. Black: 30.38 — 7.48 = 22.9. That translates to a SPARKS victory of at least 23
for Sampras to have performed well enough to increase his rating. Sampras wins by 46 SPARKS to 36,
translating to a margin of only 10, so his rating changes to 3038 + 100 x 0.06 x (10 —22.9) = 2961 whilst
Black’s rating increases to 830, even though he is eliminated from the tournament. Black is rewarded
for taking Sampras to five sets in a tight contest. The ATP rating would give him zero.

Calculating the SPARKS and ATP ratings for the calender year is a difficult task to undertake
retrospectively, as matching players, matches, scores and current ratings is needed. Obtaining the data
required the use of the Internet. A few sites had extensive data stored in text files, which needed some
editing before analysis. The best site for obtaining data was Steve G’s site at www.stevegtennis.com.
These files contained ATP ratings on a week by week basis, and all tournaments played in the calendar
year. The ATP site www.atptour.com did not have such information, only the current ratings. The
task here involved several packages, including conversion into a library file using SAS then analysis in
Excel. Data for 1999 was collated into one large Excel file and manipulated in order to calculate the
moving SPARKS ratings. All players that were not in the ATP at the start of the year were given
a score of zero. As well as including all ATP tour events, Davis Cup and non-ATP events were also
included, increasing the sample size.
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Figure 1: Distribution of SPARKS residuals in 1997.

To identify exactly what values to use in calculating players rating, the Solver function in Excel was
used. It allows the optimisation of values subject to constraints. Here we wish to minimise the error by
altering .. Furthermore, Solver can be used to adjust both the initial starting value (if the ATP is not
used) and the set multiplier which was chosen initially as six. As data were already available for 1997,
this was used as a guide for prediction in 1999 and 2000.

The 1997 set of data consisted of 3,306 matches whereby an opponent was ranked in the ATP list.
Firstly, the choice was to minimise error by changing the smoother «. The prediction was adjusted
where no definitive outcome could be made as both players began the match with equivalent SPARKS
ratings. This number decreased as matches with lower rank players were removed, and subsequently
the SPARKS method improves. Excel was used to investigate the predictive power for different values
of the set multiplier and a. Unfortunately, Solver could not cope with both these parameters changing
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independently. Consequently, the set multiplier was fixed at 6 first, and Solver was used to minimise
absolute errors in SPARKS. Solver converged to an exact solution of a = 0.063.

The distribution of the SPARKS residuals is given in Figure 1, illustrating the bimodal distribution.
The bimodal distribution is due to the shift caused by the set multiplier at 6.

With the set multiplier set to zero, the residuals are more symmetric, as shown in Figure 2. Whilst
a set multiplier of zero may seem to be the best, it may not be acceptable to players, with far more
matches having the winner is loser scenario.
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Figure 2: Distribution of SPARKS residuals in 1997 with set multiplier at 0.

After optimising «, different values of the set multiplier were checked against our initial estimate of
six. Table 1 illustrates that the set multiplier is indeed best when set at six, returning the highest correct
proportion for the 1997 data set. There is some small variation in percentage correct for multipliers 4
through 7. The ATP returns 63.7% correct, which represented 46 less matches correctly predicted than
that by SPARKS.

Set multiplier | % correct
10 64.0
63.9
64.0
64.2
64.6
64.5
64.4
64.0
63.5
63.5
63.2

©

O N W Lo 3

Table 1: The percentage of all matches correct using SPARKS in 1997 with « fixed at 0.063 and varying
set multipliers.

The success rate of both ATP and SPARKS prediction increased when lower ranked players were
discarded from the 1997 sample, as can be seen in Figure 3.

This shows the percentage correct in matches where both players are above the cutoff rating. As
the cut off increases, the sample size decreases, leading to estimates of a smaller proportion of the total
number of matches in the year. For example, in 1997, there were 172 matches where both players’ ATP
rating exceeded 3,250, and 77% of those players rated higher by the ATP in a match were victorious.
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ATP vs SPARKS*
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Figure 3: Percentage correct for 1997 for SPARKS and ATP, where matches in which both the players
are at or above the cut off are included in the sample.

Now that these values were established, more current data was used for tournament prediction. The
1999 data set resourced from the web contained 3,982 matches, and using this fixed value of « at 0.063
and set multiplier six returned a 62.5% correct prediction using the SPARKS method. This is poorer
than the 1997 result, but expected since « is optimised on 1997 data. There are far more lowly ranked
players included in the sample. This is highlighted by the fact that 96 matches were not predictable
due to equal ratings (3.5% of sample) with no cut off in place. The average absolute error for 1999
data is 14.4. (For interest, Solver was again used to minimise errors for a and arrived at (after 1 hour
51 minutes) 0.102 for a 62.5% success rate. So the errors were decreased minimally with no significant
improvement in prediction, further justifying the decisions based on the 1997 data.)

4 Major tournament prediction

Using the data sets available for 1997, 1999 and 2000, the four major tournaments were analysed for
each year. A comparison between the seeding and prediction for the pre-existing ATP and SPARKS
methods were compared, in the hope that SPARKS was comparable, even superior, to the ATP ratings
and rankings. The percentage of matches predicted correctly is given in Table 2. In 1997 SPARKS
performs better than the ATP, but this is expected as we optimised on this data set. Two out of four
tournaments in 1999 were predicted better by the SPARKS method than using ATP ratings.

There is evidence of surface differences and home advantage influencing prediction when observing
the differences in tournaments. The French Open success prediction is well below the other major
tournaments, with the surface (clay) the most likely factor in the low results.

An alternative way to assess the merits of the system is to compare player seedings prior to the
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Year | Tournament SPARKS | ATP
1997 | Australian Open 69.5 69.5
French Open 60.2 60.9
Wimbledon 66.4 62.5
US Open 74.2 64.1
Average 67.6 64.3
1999 | Australian Open 64.1 65.6
French Open 60.2 60.9
Wimbledon 68.8 67.2
US Open 64.1 63.3
Average 64.3 64.3
2000 | Australian Open 68.8 68.8

Table 2: The percentage of all matches correct using SPARKS against ATP by tournament.

tournament. As sixteen players are seeded by the ATP, we will use our best sixteen prior to the
commencement of the tournament for comparison. All quantities are the number of players making the
stage from the sixteen. Rounds refer to number of players.

Year Tournament Round of 16 Round of 8 Round of / Round of 2
SPARKS ATP | SPARKS ATP | SPARKS ATP | SPARKS ATP
1997  Australian Open 9 9 7 7 3 3 1 1
French Open 7 6 2 2 1 1 1 1
Wimbledon 8 8 3 3 1 1 1 1
US Open 11 7 7 4 4 2 2 1
Total 35 30 19 16 9 7 5 4
1999  Australian Open 6 5 4 3 2 1 2 1
French Open 6 7 4 4 1 1 1 1
Wimbledon 8 10 7 7 4 4 2 2
US Open 9 8 5 5 4 3 2 2
Total 29 30 20 19 11 9 7 6
2000 Australian Open 7 7 4 5 3 4 1 2
Overall 71 67 43 40 23 20 13 12

Table 3: Number of players from pre-tournament seeding by SPARKS and ATP methods to reach final
rounds of major tournaments.

Clearly, the SPARKS method is an excellent guide to tournament outcomes, with equal or better
results in most stages of these tournaments. In particular, for the US Open SPARKS prediction is
superior to the ATP. This may be due to the event commencing later in the calendar year, giving
the SPARKS ratings a longer period of assessment, as they were initialised in 1997 and 1999 at the
beginning of those years using the ATP rating. The good results here are also despite the ATP rankings
being used for tournament draws where it often occurs that some of the top sixteen by the SPARKS
rankings may meet in the early final rounds. Hence SPARKS performs extremely well considering the
draw bias toward the ATP.

SPARKS also has the advantage over the ATP in that recent form is weighted into ratings. After the
completion of Wimbledon 1999, the ATP rankings had the victor, Pete Sampras, fall from number one
to number three, and his opponent in the final, Andre Agassi, rise from three to one. This highlights the
drawback of the ATP system as an indicator of a player’s form at the present moment. The SPARKS
rating had Andre Agassi at number one prior to the tournament, and he held his ranking but gave
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significant ground to Pete Sampras who was number three and rose to number two.

At Wimbledon 1999, of the 127 matches, eight times a winning player dropped in rating. These
players were all rated above 1400 SPARKS at the time, showing that it is necessary to more than just
win a match if you are highly rated. For the Australian Open 2000, this only occurred twice.

The draw in the Australian Open 2000 was the subject of a lot of controversy, with what many
considered the two best players, Pete Sampras and Andre Agassi, together in the same half on the
draw. Indeed, they went on to clash in the semi-final in what was considered by many to be the best
match of the tournament. The implementation of the SPARKS method for the purpose of seeding and
subsequent draw would have seen the two in separate halves of the draw, destined to meet in the final.
Analysis of the draws using SPARKS ratings reiterated public and media opinion that the lower half of
the draw was the easier half. This is highlighted by the fact that the top half of the draw had a sum
of 66,220 SPARKS as opposed to 59,182 SPARKS for the bottom half, accounting for the draw bias.
Indeed, for each stage of the tournament, the top half clearly exceeded the bottom half in SPARKS
ratings. On the other hand, the ATP had a more balanced draw with the top half summing to 45,979
and lower half 46,495 using ATP ratings. The finalist from the lower half, Yevgeny Kafelnikov, was
poorly seeded using SPARKS (20th), but his easy draw saw him make the final. Whilst his rating rose
from 1,513 prior to the tournament to 2,345 prior to the final, his opponent, Agassi, rose from 2,926
to 3,290, and Agassi defeated Kafelnikov three sets to one in the final with relative ease, reflecting the
relative chances from the SPARKS ratings. The semi-final two days earlier between Sampras (3,112)
and Agassi (3,234) went to five sets, and left both fans and media believing the final had already been
played.

After the Open, in ATP ranking, Kafelnikov dropped from two to three, and Sampras rose from
three to two, even though Sampras failed in the semi-final and Kafelnikov made the final! SPARKS had
Agassi and Sampras one and two pre-tournament and post-tournament. The Champion Race for the
ATP post tournament had Agassi one, Kafelnikov two and Sampras five.

5 Further discussion

Another dilemma is the inclusion of a decay factor for players that do not play for an extended period
of time. Two factors can be added to equation (3), a smoothing value for decrease in rating, and an
indicator variable dependent upon the number of weeks to begin implementing the smoothing value.
Again this could be achieved using Solver. The problem is that there have been instances when returning
players of high calibre are poorly rated (e.g. Andre Agassiin 1997), and on other occasions players return
ranked too highly (e.g. Mark Philippoussis in 1999). This issue can be extended to include those matches
where one player withdraws through injury. A player may be hampered for the entire match or injured
only at the point of withdrawal. It may be worth investigating the removal of such matches from the
sample.

Unfortunately, the sparse availability of data for the WTA still sees no inclusion of ratings for women.
At the time of publishing, 1999 results data for WTA had been archived at

http://neptune/spaceports.com/ lovegame/1999

without WTA player ratings, so restricted analysis could be undertaken. Indeed, the women’s draw is
considered to be far more consistent, with media speculation that there are far fewer upsets than in the
men’s draw.

Furthermore, there are no five set tournaments in the WTA, whereas the ATP tour has a mixture
of both. This should lead to a difference in the smoothing constant and set multiplier, as for SPARKS
analysis of 1997 we chose to include both three and five set encounters. There may be a case for
separate constant/multiplier combinations for the type of match (three or five sets), surface, and tour
type (women’s or men’s).

As has been well established, court surface is another factor to be considered. The ground is
clearly the most significant external factor, with some players clearly performing poorly on different
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surfaces. This is explored in detail in a model proposed in Blackman and Casey [1] where their model
factors court surface speed and correction factors for the given surface. They use extended Kalman
filter measurements. Although this is not factored into SPARKS, it may be possible using a similar
technique as another possible rating to be used in conjunction with SPARKS. Indeed, if these ratings
are established for all competitors in a tournament, then it is possible to adjust all SPARKS for a
particular tournament with respect to the surface.

6 Conclusion

SPARKS has proved to be a valuable predictor of results for both tournament and yearly results. It is
comparable to the ATP as a predictor for yearly and tournament results, often surpassing the ATP in
successful prediction. It is also easy to update and simple to understand, especially when considering
the existing ATP methods, which are both non-systematic and specialist.

SPARKS ratings are also a valuable tool in setting of tournament seeding. SPARKS ratings and
seeding reflect the current form of players in a manner easily understood by followers of the game. The
outcome of tournament results on a player’s ranking are far more reflective of recent form than the ATP
method, which has resulted in numerous lead changes inconsistent with immediate results.

The SPARKS method can be easily applied to any tennis tournament, and is a method that is simple
to implement by any association. It is an effective way for association officials at all levels to implement
seeding for upcoming tournaments, and guide players to their standing within a competition. The
current study has shown it to be an effective method of rating players in the top grade of professional
tennis. Further investigation of its use for player comparison throughout the full range of tennis levels
is warranted.
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Abstract
The main dynamical aspects of the long jump are discussed. In particular, it is shown how the
length of a jump can be calculated from a knowledge of the approach velocity of an athlete and the
forces exerted by the ground on the take-off foot. For this purpose, use is made of measurements
taken from a film of an Olympic champion athlete in action.

1 Introduction

The principles involved in the execution of a high standard long jump are well known. A good result
depends on optimisation of several aspects of the jump, such as approach, take-off, flight and landing.
In this paper, attention will be mainly confined to the take-off and flight, with air resistance ignored.

Use will be made of the magnitude of the forces exerted on the foot of an athlete during contact
with the take-off board. This information was obtained from a video [3] showing an Olympic champion
athlete in action.

For simplicity the paper will be written in terms of a male athlete, it being understood that a word
such as “he” is intended to be read as “he or she”.

2 Contributions to the length of a jump

Figure 1 depicts an athlete at the instants of take-off and landing of a long jump.

s

=IL, R =] L,

Figure 1: Contributions to the length of a long jump.
The lengths L;, Ly and R shown in Figure 1 refer to positions of the centre of mass G of the athlete

at the instants of leaving the take-off board and first contacting the landing pit. They will be considered
in turn.

92
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(i) The take-off distance Ly

L, denotes the distance by which G is ahead of the front edge of the take-off board at the instant of
take-off. Since the length of the jump is measured from the front of the board it is desirable for the
athlete’s foot to be as close as possible to this edge. The penalty for overstepping is severe, the jump
being ruled invalid if this occurs. The mean value of L; for a large sample of male athletes is quoted
by Hay [4] as 0.24 metres.

(ii) The landing distance Lo

Ly denotes the distance by which the athlete’s feet are ahead of G at the instant when they touch the
surface of the sand in the landing pit. The forward momentum of the athlete should be great enough
to carry him over the point of contact; if it is not, and he sits down behind this point, the measured
length of the jump is reduced accordingly. The mean value of L, for a large sample of male athletes is
quoted by Hay [4] as 0.53 metres.

(iii) The flight distance R

To be in the desirable landing attitude shown in Figure 1 the athlete’s body needs to be leaning
backwards to a greater degree than it was at the instant of take-off. This can be achieved during
passage over the flight distance R by suitable movements of the athlete’s body. Moving his feet as if
“running in the air” (an action called a “hitch-kick”) engenders forward angular momentum in his legs
because the bending of each leg during its forward motion greatly reduces its moment of inertia about G.
Since there is zero moment of external forces about G during flight, the total angular momentum of
his body must remain unchanged, which means his upper body must acquire backward momentum,
and it is this which gives his body the extra backward tilt needed for a good landing attitude. If
properly executed, a hitch-kick of 1% or 2% in-the-air strides will result in the correct landing attitude.
Just before landing, the athlete swings both feet forward to maximise his jump length; conservation
of angular momentum causes his torso to lean forward, resulting in the “jack-knife” landing position
shown in Figure 1.
Calculation of the flight distance R depicted in Figure 1 will be considered in the next section.

3 Calculation of the flight distance

The path followed during flight by the centre of mass G of the athlete is determined by the velocity
of G at take-off, and cannot be altered by any in-flight movements of the athlete. The effect of air
resistance during flight is very small; it has been shown by Brearley [1] that for a jump of 8.90m the
length reduction caused by air resistance during flight is less than 9 cm at sea-level.

The flight distance R shown in Figure 1 may be determined by means of the well known theory of
projectiles (e.g. Bullen [2]). The standard notation is as shown in Figure 2.

yi \4
— =3
h
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Figure 2: The standard notation in theory of projectiles.
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In the case of the long jump, R is the flight distance and h is the difference between the heights of G
at the instants of take-off and landing depicted in Figure 1. The theory of projectiles shows that, when
h is small compared with R, a close approximation to the value of the flight distance is

V2 sin 2
R:$+hcota, (1)

where «a is the angle of projection shown in Figure 2.
In the following section it will be shown how an athlete’s flight distance can be found from a
knowledge of his approach speed and the force acting on his foot during take-off.

4 Flight distance from approach speed and take-off force

Let ug, vp denote the horizontal and vertical components of the velocity V' shown in Figure 2. Then

V =/ ud + v, (2)

—_1 Yo
=tan"' =. 3
« n ” (3)

To determine the values of ug and vy it is necessary to investigate the take-off in some detail. Figure 3
shows the athlete in the positions that correspond to the instants when his foot first makes contact with
and finally leaves the take-off board.

S
Ff S
Figure 3: Positions at start and end of take-off.

Figure 3, in addition to the velocity components ug, vy already introduced, shows

U = the velocity of G at the instant of foot plant,
F, S = vertical and horizontal components of the force exerted by the ground

on the athlete during take-off.

The direction of U may be taken as horizontal. The values of F' and S vary greatly during the
brief period for which the athlete’s foot is in contact with the take-off board. Experiments have been
performed on a number of top-ranked athletes in which their movements have been recorded on video
tape, enabling accurate estimates to be made of the approach velocity U. At the same time, by means
of an electronic force plate mounted in the take-off board, the values of ' and S throughout the take-off
have been recorded, as well as the duration 7 of the contact with the board. From these data the flight
distance R can be calculated in the following way.
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The vertical equation of motion of the athlete during the take-off depicted in Figure 3 is

 —F— 4
mS = F —mg, )

where

v = the upward vertical velocity of G at time ¢,
m = the mass of the athlete,

g = the acceleration due to gravity.

Integrating (4) with respect to time over the interval 7 of the take-off yields the principle of momen-
tum

-
mvoz/ Fdt — mgr,
0

the initial vertical velocity of G being taken as zero. Hence

1 T
UO:_/ Fdt — gr. (5)
m Jo

The horizontal motion of the athlete during take-off may be treated similarly. In place of (4) we have

du

where
u = the forward velocity of G at time t.

The corresponding principle of momentum is

m(ug — U) :/ Sdt,
0

since the initial forward velocity of G is U. Hence
1 T
u0:U+—/ S dt. (7)
m Jo

In the next section the use of (5), (7), (2), (3) and (1) in calculating flight distance will be illustrated
by a particular example.

5 A particular example of a long jump

At the 1980 Olympic Games in Moscow the long jump was dominated by the German athlete Lutz
Dombrowski. He won the event with a leap of 8.54m (28ft Oi in); this was the first time that anyone
had jumped over 28 feet since Bob Beamon had leaped 8.90m (29ft 21 in) in the 1968 Mexico City
Olympics.

A video film [3] of Dombrowski, made for the purpose of training athletes, shows that his approach
speed on reaching the take-off board was U = 9.0 ms~!. He would have been running faster than this
earlier in his approach, but some speed reduction occurs during the last stride.

The take-off board used for the training film was fitted with a force plate that measured during the
take-off the force components F' and S shown in Figure 3. In the film the graphs of F' and S as functions
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Figure 4: Force components F' and S during take-off.

of time were displayed, and these are shown in Figure 4. The horizontal axes for F' and S have been
separated to avoid overlapping of the graphs.

As expected, the forward component S is negative during the early part of the take-off, and changes
to positive about half way through the take-off. The duration of the athlete’s contact with the take-off
board is 0.12 seconds. Both F' and S peak immediately after contact is made with the board because
of the nearly impulsive nature of the contact. The maximum value of F' is about 12,000 newtons.

The value of the vertical impulse in the right hand side of equation (5) was found by numerical
integration, using Simpson’s One-Third Rule. It is calculated that

0.12
/ F dt = 399 Ns.
0

Taking Dombrowski’s mass to be m = 80kg, equation (5) yields

399 _
Vo= g5 —98x%x0.12=38ms".

In the same way it is calculated that

0.12
/ Sdt = —37Ns.
0

Equation (7) then gives

37
ug = 9.0 — 20 =85ms '.

Equations (2) and (3) then show that

V =9.3ms !, a = 24°.
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A reasonable estimate for the difference in the heights of the two positions of G shown in Figure 1
is h = 0.5m. Equation (1) then shows the range for the jump to be

(9.3)2

=733

sin 48° + 0.5 cot 24° = 7.7 m.

To this can be added the values mentioned in (i) and (ii) of Section 2 of the take-off distance Ly and
the landing distance Lo shown in Figure 1, giving the length of the jump by Dombrowski as

R+ Ly + Ly =77+024+0.53=85m (27ft 104 in).

This calculated value is very close to the actual value of the jump length.

6 Summary and conclusions

The main features and dynamical principles of the long jump have been described. Using data from a
film of an Olympic champion athlete, it has been shown that the length of a jump can be calculated
from a knowledge of the athlete’s speed of approach and the force acting on his take-off foot throughout
its contact with the take-off board.
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Abstract

Sport is a marvellous tool for teaching statistical techniques and can turn an otherwise uninteresting
subject for some into an exciting and challenging experience. This paper demonstrates how math-
ematical models and statistical analysis involving Olympic sporting events can be used to make
predictions for the Sydney 2000 games. A simple mathematical model is derived based on previous
Olympic data, enabling the prediction of the likely outcome for the upcoming Olympic high jump
competitions for both men and women. Also included is a discussion of the asymptotic limits that
can be reached in this event provided that the current techniques and rules still apply in the future.

1 Introduction

The use of scientific analysis in sport has enjoyed great momentum, both locally and overseas, with the
Sydney 2000 Olympic Games just around the corner. Of great interest to public, athletes and their
coaches, are the times, heights and distances that athletes and swimmers have to achieve in order to win
a gold medal. This paper uses a simple mathematical model and statistical analysis to determine these
values and to predict the winning heights for both the men’s and women’s high jump at the Sydney
2000 Olympics.

The model developed in this paper also considers the question of whether Olympic performances are
likely to improve significantly. Certainly there has been a steady improvement in the past. For example,
in the men’s high jump, Ellery Clark won the event at the 1896 Olympic Games in Athens (the first
modern Olympics) with a jump of 181 cm. Thirty-two years later in Amsterdam in 1928, Robert King
jumped 194 cm, and after another 36 years at Tokyo in 1964, Valery Brumel cleared 218 cm. By the
time of the Atlanta games in 1996, the winning jump had increased to 239 cm, a 32% improvement over
a 100-year period. The Olympic winning heights from 1896 to 1996 are shown in Table 1.

The graph in Figure 1 shows the winning height at each Olympic Games from 1896 to 1996. Note
that there are no points for 1916 (World War I), 1940 and 1944 (World War II) since there were no
Olympics held in those years.

2 Developing a relationship model

During the past 100 years, the elite athlete has become faster and stronger due to improved diet and
training techniques. However, it is reasonable to assume that athletic performances cannot continue to
improve forever, since, for example, it is difficult to see a human running 100 metres in three seconds.
Under current conditions, it follows that there will be an asymptote for athletic events that will not
be surpassed unless there is some significant change in the human body, although this is unlikely to
happen during the short term of our forecasts. We will consider a technique available for finding such
an asymptote.

o8
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Figure 1: Winning heights for the men’s Olympic high jump.

Year | Height (m) || Year | Height (m)
1896 1.81 1948 1.98
1900 1.90 1952 2.04
1904 1.80 1956 2.12
1908 1.905 1960 2.16
1912 1.93 1964 2.18
1916 N/A 1968 2.24
1920 1.935 1972 2.23
1924 1.98 1976 2.25
1928 1.94 1980 2.36
1932 1.97 1984 2.35
1936 2.03 1988 2.38
1940 N/A 1992 2.34
1944 N/A 1996 2.39

Table 1: Winning heights for men’s Olympic high jump.

With this in mind, in the medium term of the next twenty years or so at least, it is difficult to imagine
an increase of more than, say, 10cm in the winning Olympic high jump since it has only increased by
a total of 5cm during the previous twenty years. This would place the winning jump in the year 2020
at roughly no more than 2.49m. But how accurate is this likely to be? This was one of the questions
that was open for student discussion.

Information provided to the students included the fact that a Cuban high jumper, Javier Sotomayor,
jumped 2.45m on 27 July 1993 in Salamanca, Spain and set the current world record for the men’s
high jump. This is already six centimetres higher than the current Olympic record set in 1996. The
students were asked to investigate just how likely it is for the Olympic winning height to increase very
far beyond this point and to try and estimate a reasonable limiting height that may not be reached, at
least for a very long time. In addition, they were asked to make a prediction of both the men’s and
women’s gold medal jump at the Sydney 2000 Olympics.

Bearing in mind that these students were only in their first years of statistical study, one approach
they could have taken was the following technique using the Olympic data from 1896 to 1996 (see Searle
and Vaile [1], and also [2]).

Although there are many models that could be used in making such a forecast, a least squares
technique was used as a demonstration of the sort of analysis that might be undertaken. In this case,
both the independent and dependent variables are subject to error. There may well be more efficient
methods, and strictly speaking the independent variable should not be subject to random variation, but
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Figure 2: Scatter plot of men’s Olympic high jump results of year ¢t + 1 vs year ¢ since World War II
(1948-1996).

according to Weisberg [3] alternative assumptions that allow for errors in the independent variables are
much more complicated and there is no agreed correct way to proceed.

In this particular forecasting model, suppose that y; is the winning performance achieved in the tth
Olympics, and that

Yt+1 :a+byt+2’t, t= 172737 (1)

where a and b are constants and z; is a random error term. This means that the expected performance
(that is, the performance ignoring unpredictable random error) at a given Olympics is linearly related
to the performance at the previous Olympics. This relationship can be seen in Figure 2.

In the special case when b is 0, this model just says that the expected performance is equal to some
constant a, and does not depend at all on the previous performance.

To estimate the values of the constants a and b, we can make a graph of y;11 versus y; and fit a
straight line to the points in this scatter plot. The fitted line has the equation y.11 = a + by, so that b
is the slope of the fitted line and a is its intercept.

However, as can be seen from Figure 1, since it took some time for performances to recover after
World War II, it seems reasonable to ignore all the data before this period. Consequently, only the data
after World War II are plotted in Figure 2. This figure shows the scatter plot with the fitted line for
the Olympic men’s high jump winning heights of (¢ + 1)th Olympics vs tth Olympics from 1948 to 1996
where 1948 Olympics is the first point.

The fitted line in Figure 2 has the equation y;+1 = 0.406 + 0.833y;, and this model seems to fit the
data quite well with R? = 0.8996. This means that nearly 90% of the variation in the winning height
jumped is due to the winning height jumped at the previous Olympics.

3 Developing a mathematical model for prediction

Using the model, we can derive a formula for the expected value of y; using repeated substitution of
earlier data, as follows:

Yyt =a+by 1
=a+bla+byi_2)
=a+ bla+ bla+ by:—3))

=a+ba+ba+bia+... b0 ta+ by
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=a(l+b+b>+0%+...6"71) +dlyo
1-0o
1-b
Consider what happens when ¢ is large, that is, a long time in the future. If b is between 0 and 1, b?
approaches 0 as t gets large, so the mean value of y; approaches a/(1 —b). This is the limiting expected
performance (i.e. the asymptote) that cannot be surpassed.
For the men’s high jump, we obtained estimates of a = 0.406 and b = 0.833, so our estimate of the
limiting value is a/(1 — b) = 2.43.
The model for the expected performance at the tth Olympics can be written in the slightly different
form

=a + blyo.

ytzlib_<1i_b_y0>bt’ (2)
so that the constant term representing the asymptotic limit has been separated.

Since the formula in equation (2) contains yo for which we don’t have data, its value must be
estimated. It may therefore be treated as an unknown constant and estimation made from the data.
Given that the expected performances are generally increasing, one method of estimation is to take the
minimum value of y; as an estimate of yy. For the men’s high jump, the minimum value over the period
1948-1996 is 1.98 metres, which occurred in 1948.

Substituting the values of a, b and yo into equation (2), the expected winning high jump, in metres,
for men in the tth Olympics (starting with 1948 as the first) is

yr = 2.43 — 0.451 x 0.833". (3)

Figure 3 shows the expected winning heights, using equation (3), from 1948 to 2020 together with the
actual winning heights from 1948 to 1996. The predicted value for the Sydney 2000 Olypics (¢t = 14 for
this model) is 2.39 metres.
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Figure 3: Prediction using equation (3) of men’s Olympic high jump (yo = 1.98 m).

Note that most of the observed heights are below the curve of the expected heights, indicating that
the estimated value of yg = 1.98 m is too high. To remedy the situation, lower values of yo between 1.80
and 1.97 were tried and it was found by observation that the one that provided the best fit was 1.90 m.
This resulted in a new predictive equation of

yr = 2.43 — 0.531 x 0.8337". (4)
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t | Year | Predicted Actual Country || t | Year | Predicted
height (m) | height (m) height (m)

1 | 1948 1.99 1.98 AUS 14 | 2000 2.39

2 | 1952 2.06 2.04 USA 15 | 2004 2.40

3 | 1956 2.12 2.12 USA 16 | 2008 2.40

4 | 1960 2.18 2.16 URS 17 | 2012 241

5 | 1964 2.22 2.18 URS 18 | 2016 2.41

6 | 1968 2.25 2.24 USA 19 | 2020 2.41

7 | 1972 2.28 2.23 URS 20 | 2024 2.42

8 | 1976 2.31 2.25 POL

9 | 1980 2.33 2.36 GDR

10 | 1984 2.35 2.35 FRG

11 | 1988 2.36 2.38 URS

12 | 1992 2.37 2.34 CUB

13 | 1996 2.38 2.39 USA

Table 2: Winning heights for men’s Olympic high jumps.

Figure 4 uses the model in equation (4) and predicts that the winning height for the Sydney 2000
Olympics is 2.38 metres. Note how much better the curve follows the actual data in this new model.
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Figure 4: Prediction using equation (4) of men’s Olympic high jump (yo = 1.90m).

Table 2 shows the predicted winning heights from 1948 to 2032, together with the actual winning
heights from 1948 to 1996. The mathematical model in equation (4) was used.

From Table 2 it can be seen that there is a prediction of only a small increase of 4 cm during the 36
years from the year 2000 to 2032.

Even though we now have a reasonable model for computing the expected performances, it only
provides a point estimate of future (and past) winning heights. It does not give any measure of a likely
range within which these values might lie. To do this we require a forecast interval for each prediction.
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4 Forecast intervals

A forecast interval is obtained from the standard deviation of the errors from the prediction. Plots
revealed that the residuals of the model in equation (4) had a mean of zero and had an approximate
normal distribution. These errors may be estimated from past data, by subtracting the fitted (predicted)
winning heights from the observed winning heights to get the residuals, and then computing the standard
deviation of these residuals. Using the normal distribution as a model for the errors, we can then get
a 68% forecast interval using the fact that 68% of the data under the normal curve lies within one
standard deviation of the expected value.

Using the results plotted in Figure 4, the standard deviation of the residuals is 0.027. Figure 5 shows
the preceding graph with the corresponding error bars superimposed.
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Figure 5: Error bars for the prediction using equation (4) of men’s Olympic high jump (yo = 1.90m).

The model derived based on the data from 1948 to 1996 is shown to give the Olympic men’s high
jump height limit as 2.43 m and year 2000 prediction as 2.39 m. With the forecast interval however, we
can give a likely range of values for those predictions. Hence we can be 68% certain that the ultimate
Olympic men’s height limit would be somewhere between 2.40m and 2.46 m, while for the year 2000
performance, the gold medal jump should lie between 2.36 m and 2.42m.

5 Women’s Olympic high jump

The same approach can be applied to the women’s Olympic high jump data as was applied to that for
men. Table 3 shows the winning height for women for the Olympics between 1928 and 1996.

For women there was an increase of 29% in the winning height jumped between 1928 and 1996.
The fitted line to the scatter plot of year (¢ + 1)th Olympics to year ¢th Olympics has the equation
yer1 = 0.308 + 0.853y;, and this model fits the data quite well (R?> = 0.8362). The limit then for the
women’s high jump is shown to be 2.10m. This is 1cm higher than the current women’s high jump
world record held by a Bulgarian high jumper, Stefka Konstantinova (30 August 1987) which has not
been broken over a decade. The 68% forecast interval for this limit is (2.06 m, 2.14m).

Substituting these values into the formula derived earlier, the expected winning high jump, in metres,
for women in the tth Olympics (starting with 1948 as the first) is

yr = 2.10 — (2.10 — 10)0.853".
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Year | Height (m) || Year | Height (m)
1928 1.59 1964 1.90
1932 1.65 1968 1.82
1936 1.60 1972 1.92
1940 N/A 1976 1.93
1944 N/A 1980 1.97
1948 1.68 1984 2.02
1952 1.67 1988 2.03
1956 1.76 1992 2.02
1960 1.85 1996 2.05

Table 3: Winning heights for women’s Olympic high jumps.

Men | Forecast interval | Women | Forecast interval
for men for women
Current world record 2.45m 2.09m
Limit to be reached 2.43m | (2.40m, 2.46m) | 2.10m | (2.06m, 2.14m)
Year 2000 Olympics gold
medal winning height 2.39m | (2.36m, 2.42m) | 2.05m | (2.01m, 2.09m)

Table 4: Summary of the predictions for the Olympic high jump.

The prediction for the year 2000 women’s high jump gold medal winning height is 2.05 m using y, as
1.65m. The 68% forecast interval for this prediction is (2.0l m, 2.09m).

6 Remarks

The summary of the predictions for both men and women is shown in Table 4.

It therefore seems that the limit from our model has been reached alreasy as the Cuban high jumper
Javier Sotomayor holds the world recored at 2.45 m, although that performance was not at an Olympics.
This was also the case with the women’s current world record high jump.

Note that Sotomayor will not be competing at the year 2000 Olympics since he has been suspended
from international competition as a result of testing positive for cocaine at the 1999 Pan Am Champi-
onships.

It is also interesting to note that the difference in performance between the men’s and women’s
winning heights seems to be fairly constant since 1948. One exception was in 1968 when the women’s
height was 8 cm lower than the previous Olympics and the difference between men’s and women’s
gold medal jump was 0.42m, the highest difference for any Olympics. For the last five Olympics the
differences were 0.34m (1996), 0.32m, 0.35m, 0.39m. This relationship is shown in Figure 6.

There is a relatively huge gap between 1976 men’s winning height (2.25m) and 1980 men’s winning
height (2.36 m), despite the fact that the 1980 Olympics at Moscow were subject to the biggest boycott
(initiated by USA) in the history of Olympic movement. Perhaps it has something to do with the fact
that in the 1980 Olympics, 13 of the 16 finalists of high jump used the Fosbury flop as opposed to the
western roll method used in previous Olympics.

This new revolutionary jumping technique of jumping headfirst, crossing the bar on the back, and
landing on the neck and shoulders was named after the 1968 Olympic champion Richard Fosbury who
introduced it. On the other hand, the western roll or straddle method is where the jumper clears the
bar face down, virtually rotating the body length-ways around it.

This model is one of many models that seem to fit the Olympic data and naturally there are
limitations. It is subject to the value of yg, the initial height chosen and also the data range the model
is based on.
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Figure 6: The winning Olympic high jumps for men, women and the difference between heights.
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Abstract

In previous work we considered two finals systems where the teams are randomly paired to play each
other in each round. One option considered was to pair top-half teams with a bottom-half team,
and in the other system, the teams are randomly paired to play each other from any ladder position.
In this paper we address the question of whether rematches, between the same teams in subsequent
rounds, can be avoided in the general random pairing system. We also extend our calculations
of “premiership probabilities” for the general random pairing system with no rematches. We also
consider the general random pairing system with the added restriction that the top two teams in
the final-8 are not allowed to play each other in the first two rounds, so as to allow these teams a
separate passage to latter rounds.

1 Introduction

In 1995 the AFL (Australian Football League) adopted the Mclntyre final-eight system, which after
much public criticism, has since been replaced by a new system which will be used for the first time
in the year 2000. One of the main problems (Christos [1, 2]) with the previous Mclntyre system was
that there was an unfair arrangement of matches in round 2 of the finals. The problem was that a
lower ranked team was given an easier assignment than a team ranked above it. Unfortunately the new
system (Christos [4]) also suffers from the same problem, which can now occur in both rounds 2 and 3.
In previous work (Christos [1, 2, 3]), we have analysed various other systems that are fair (meaning
that there are no unfair arrangements of matches in any of the rounds). There are only a handful of
possible deterministic systems that are allowed which satisfy this criterion. Another way to get around
this problem is to introduce an element of chance, and randomly pair the teams to play each other.

In this paper we investigate some variations on stochastic systems considered previously (Christos [1,
2, 3]). Although these random pairing systems may have “unfair” arrangement of matches this cannot
be blamed on the system per se, since the higher the ranking of a team the higher is its probability
that it will get an easier match, and a home-final. Higher ranked teams also have a higher probability
to proceed to the next round, since only the two lowest ranked losers are eliminated from one round
to the next. In previous work we considered two such systems, the so-called “random pairing system”,
where teams from the top-half are randomly paired to play teams from the bottom-half in each round,
and the “general random pairing system”, where teams are paired to play each other from any ladder
position. In these systems, and in what follows below, we will assume that there are no byes, that is, no
teams have a week off during the finals. In both of the final-8 systems that have been used by the AFL,
the two highest ranked teams after round one (rl) do not have to play in round two (r2). We believe
that byes diminish public interest in the finals, since the public would surely prefer to see the two best
teams also play in r2. Incorporating byes also increases the likelihood of a rematch in later rounds.
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2 Top half to bottom half system (alias ‘random pairing
system’)

In rl of this system, each of the top four teams is randomly paired to play a team from the bottom
four, such as shown in Figure 1. In what follows, we will label the teams in rl in order of ranking by

A1, A2, ..., A8, the six teams in r2 by B1, B2, ... , B6, and the four teams in r3 by C1, ..., C4.
Al ———— Bl ——— C1
A2 ——— B2 C2
A3 B3 — _65_:|
A4 — B4 - 4
A5 - B5
A6 B6 —
A7
A8 —
Round 1 Round 2 Round 3

Figure 1: A possible set of matches in the top half to bottom half random pairing system.

In proceeding to the next round the two lowest ranked losing teams are eliminated, which leaves six
teams. These teams are reordered with the four winners, preserving their previous relative order in the
final-8, followed by the two highest ranked losers, also preserving their previous relative order in the
final-8. The six remaining teams are then randomly paired so that each top-3 team plays a bottom-3
team. In proceeding to round 3 (r3) the two lowest ranked losers are eliminated again, which means
that the three winners and the highest ranked loser go through. The three winners are ordered with
respect to their previous order in r2. In r3 the top two teams play the bottom two teams, in two possible
arrangements. We have denoted this system by the notation R; R»R3, which symbolises that random
pairing is used in each of the three rounds. Each of the finals is played at the home ground of the higher
ranked team in each pairing. This means that the top half teams get to play at their home ground in
each of the finals. Note also that the top two teams in the final-8 (A1l and A2) cannot be eliminated in
rl, because if they lose they will be one of the two highest ranked losers that proceed to r2. The team
on top of the ladder, at the start of r2 (that is, the highest ranked winner from rl), namely B1, also
cannot be eliminated in r2, whereas the second ranked team B2 can be eliminated, if it loses and B1
also loses. This difference between the top two teams in r2 also effectively separates the premiership
probabilities for the two highest ranked teams in the final-8 (A1l and A2), which is a feature which is
absent from the systems used by the AFL. Also note that in the R;RR3 system, and in the other
systems to be discussed below, the two lowest ranked teams in rl (that is, A7 and A8) and in r2 (that
is, B5 and B6) must win to proceed to the next round.

One can easily calculate the premiership probabilities for each of the final-8 teams in this system,
in the so-called equal probability model, where every match is assumed to be an even chance for either
team to win. Consider for example the top team in the final-8, Al. If A1 wins (probability %) it will
be on top in r2 (that is, B1) and if it loses (probability ) it will be in fifth position in r2 (that is, B5).
The probability that B1 will proceed to r3 is 1 because B1 cannot be eliminated, whereas B5 proceeds
to r3 with probability %, since it must win its r2 match, or it will be one of the two lowest ranked losers.
The premiership probability of A1l is therefore equal to

1 11 1 3
Pii=(Z2-1+2.2).2=2=0.1
Al (2 + 5 2) 1 16 0.1875 [R1 R>R3 system]



68 George Christos

The final factor of % outside the brackets is the probability that A1 wins its last two matches, in r3 and
the Grand Final (GF).

The team A2 in second position in the final-8, will be in second position in r2 if it wins in rl and A1l
also wins (probability 1), in top position in r2 if it wins but A1 loses (probability 1), and in a bottom-2
position (fifth or sixth) if it loses (probability ). From second position, A2 will proceed to r3 if it wins
(probability %), and if it loses, if A1 wins (probability %) The probability that B2, second in r2, will
proceed to r3 is therefore equal to % + % . % = %, and the premiership probability of A2 is equal to

Pyy = (i -1+ i : Z + % : %) : i = % =0.1719 [R1R2R3 system]
The other premiership probabilities for this system (Christos [1]) are given in Table 1.

These premiership probabilities are graded from top position (probability 0.1875) to seventh/eighth
position (probability 0.0781). This system has two possible faults. Firstly the teams are not particularly
well matched in rl and r2. If one was to calculate a simple linear difference index sum between the
teams that played each other in rl it would be equal to 16, which is the same as in the Mclntyre
system, where in r1 A1 v A8, A2 v A7, A3 v A6 and A4 v A5. The second problem relates to possible
rematches. Clearly without any constraints the same teams may be chosen to play each other again
in r2 that played each other in rl, and the same teams may be chosen to play each other in r3 that
played each other in either rounds 1 or 2. We have determined (Christos [1]) that it is possible to avoid
rematches (that is, have a redraw) when they occur in almost all cases, except with a probability of %,
that a rematch in r3 from rl cannot be avoided. In our view however rematches should not be given
such a high precedence, particularly when it comes to r1 rematches in r3. Admittedly a rematch in r2
from rl and a rematch in r3 from r2 may be undesirable. Note that rematches were present in the old
VFL (Victorian Football League, which was the precursor to the AFL competition) final-5 system, and
still occur in the final-4 system which is currently used in the Western Australian competition.

Final 8 premiership probability
Al & =22 —0.1875
A2 H =1 =0.1719
A3 PL =5 =0.1445
A4 e ={2L =0.1211
A5 e ={2h =0.1211
A6 3B = 1% =0.0977
AT F =33 =0.0781
A8 =82 =00781

Table 1: The premiership probabilities (equal probability model) in the top-half to bottom-half random
pairing system R Ry Rs.

3 The general random pairing system GGG

In this system the teams are randomly paired to play each other from any ladder position. Some possible
arrangements of matches in rl are shown in Figure 2. A similar arrangement of matches would occur
in rounds 2 and 3. Some variations on this theme will be considered in subsequent sections. What is
interesting about this system compared to the previous system is that the games are generally between
better matched teams, and hence more interesting from a spectator point of view. The matches are



Variations in random pairing finals systems 69

played at the home ground of the team with the highest ranking for each chosen pair, and so, in this
system lower ranked teams (except for A8, B6 and C4) also have a small probability that they may
host a home final. This probability is of course dependent on the ladder position of each team, Al
will always host a home final in rl, whereas A2 will host a home-final in r1 with probabilty % and A7
will host a home-final in r1 with probability % In previous work we have denoted this system by the
notation G1G2G3.

Al Al ——— Al
A2 :I A2 ——— A2 :I
A3 A3

]
A4 A4 A4
A5 :I A5 :I A5
A6 A6 A6 :I

A7 A7 A7
A8 :I A§ —— A8 :I

A3

Figure 2: Some possible arrangement of matches in rl in the general random pairing system G1G2G'3
where teams are randomly paired to play each other from any ladder position.

The premiership probabilities in this system can also be calculated in the equal probability model.
The crucial ingredients in these calculations are the so-called r2 survival probabilities. Bl cannot be
eliminated in r2 because even if it loses it will be the highest ranked loser, so its r2 survival probability
is equal to 1. B2 will be eliminated if it loses, if B1 also loses, because only the highest ranked loser
proceeds to r3. The survival probability for B2 is therefore equal to 1 — 1(B2 loses) - 2(B1 loses) -
%(Bl does not play B2) = %. Note that in this calculation we have had to exclude the case where B1
may have played B2 because it would then be impossible for both teams to lose. B3 will survive r2 if it
wins (probability 1) and if it loses if B1 and B2 both win. The r2 survival probability for B3 is therefore
equal to (B3 wins) + 1(B3 loses) - 1(B1 and B2 both win) - 2(B1 does not play B2) = 2. B4 will stay
in the competition if it loses if both B5 and B6 also lose. Therefore the r2 survival probability for B4 is
equal to 1(B4 wins) + 1(B4 loses) - 2(B5 does not play B6) - 2(both B5 and B6 lose) = £. B5 and B6
must win their r2 matches to proceed to r3 so their r2 survival probabilities are both equal to % The
r2 survival probabilities in the general random pairing system are given in Table 2. (Incidentally, these
survival probabilities are different in the Ry RsR3 system.)

We can now proceed to calculate the premiership probabilities. Consider Al. When Al wins
(probability %), it will be B1, and when A1l loses it will be B5. Using the r2 survival probabilities
(Table 2) the premiership probability for Al is equal to

Py = (% 1+ % : %) : i = % =0.1875 [G1G2G3 system]
which is the same as in the previous system. The premiership probabilities for A7 and A8 are also easily
calculated. A7 and A8 must win in rl (probability %) If A8 wins in rl it will be in fourth position
in r2, and if A7 wins it will be in either third or fourth position in r2. These r2 position each have a
survival probability of %, so the premiership probabilities for A7 and A8 are equal to

1 3 1 3
PA7 = PAg = (5 . g) . Z = 4—0 =0.075 [G1G2G3 System]
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Final-6 (r2) r2 survival probability
B1 1
B2 1
B3 2
B4 3
B5 3
B6 1

Table 2: The r2 survival probabilities for the six remaining teams to proceed from r2 to r3 in the
G1G2G3 system.

The other premiership probabilities require somewhat more work. The premiership probability for A2
depends on whether A2 plays Al in rl. The probability that A2 plays Al in rl is equal to %, and the
probability that they do not play is equal to % The premiership probability for A2 is equal to

6(1 14 11 11\ 1/1 1 1\\ 1 99
Piu=(2(z2-= ol o2l o) )= == =0.1768.
A2 (7(2 257227113 2>+7<2 3 2)) 4~ 560

(Note that in Christos [2] this probability is incorrectly given as 0.1679.)

The first three terms in the above expression, multiplied by %, correspond to when A2 wins (and
A1 also wins), A2 wins (and Al loses), and A2 loses respectively. In these cases A2 will be in second,
first and in a bottom-2 position in r2 respectively. The two terms multiplied by % (corresponding to
Al v A2 in rl), are for A2 wins and A2 loses respectively. The other premiership probabilities in the
G1G2G3 system are given in Table 3. Some of these calculations can get quite involved, since the fate
of each team depends on who plays whom and on the result of certain matches. For example

P—6113+111+114+111+111+114+111
MBTIT\2° 15721 2 25 242 2 2 2 T2 5 2 2)] 4
167
= ——=10.1491
112009’

where the terms in this expression correspond to the associated probabilities of [(Al does not play A2
in r1){(A3 wins r1)(Al & A2 win r1)(A3 = B3) + (A3 wins r1)(Al & A2 lose r1)(A3 = B1) + (A3 wins
rl)(only one of Al or A2 wins r1)(A3 = B2) + (A3 loses r1)(Al & A2 win r1)(A3 = B5) + (A3 loses
rl)(one of Al or A2 loses r1)(A3 = B6)} + (Al v A2 in r1){(A3 wins r1)(A3 = B2) + (A3 loses)(A3
= B6)}](A3 wins r3 and GF).

The premiership probability for A4 has 14 such terms.

A particularly interesting feature of these premiership probabilities is that they are uniformly graded
from top position to 7th/8th position, as is the case with the other random pairing system. What
makes this system more interesting than the previous system, other than the fact that the matches
are generally between more compatible teams (and hence more interesting) is that there are now many
more combinations of matches possible and all rematches can be avoided in later rounds. In rl there are
105 different possible combinations of matches in the G;G>G3 system compared to 24 in the R Ry R3
system. For rounds 2 and 3 there are 15 and three possible arrangements of matches in the general
system respectively, compared with six and two possible arrangements respectively in the restricted
system.
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Final 8 premiership probability
Al 13—6 =0.1875
A2 % =0.1768
A3 % =0.1491
A4 % =0.1328
A5 % = 0.1100
A6 % = 0.09375
A7 % =0.075
A8 % =0.075

Table 3: The premiership probabilities (equal probability model) in the G1G2G3 random pairing system.

4 Avoiding rematches in the G;GyG3 system

We need to show first that r1 matches can be avoided in r2. Let us label the two teams that played
each other in rl by the same letter, say for example two M’s, two N’s, two P’s and two Q’s. In going
from rl to r2, the two lowest ranked losers are eliminated, so it is impossible to eliminate two teams
with the same letter, because one of each of these pairs of teams must win in rl. Without any loss of
generality we will take the teams that make it to r2 to be

(M7 M7 N7 N7 P7 Q))

where the order of presentation of these teams does not reflect their positions on the ladder (or ranking)
at this stage. Note that the order on the ladder is not important in the general random pairing system
when it comes to pairing teams together to play each other. As we have noted earlier there are 15
different combinations of matches possible in r2. In five of these combinations of matches, a rematch
between teams that played in rl takes place, as shown in Figure 3.

D R D S D S R

P g i P
P P P
Q:I Q Q— Q—— Q

N
:I P P

Figure 3: Five combinations of matches in r2 in the G1G2G3 system where there is a rematch between
two teams that played each other in rl.

In the other ten combinations of matches, shown in Figure 4, no rematch takes place. Clearly it is
possible to arrange matters so that there are no rl rematches in r2.

Similarly, one can also show that r2 rematches in r3 can be avoided. With regard to rl rematches
in r3, there are basically three different scenarios that can arise. The four teams left in r3 may consist
of two, one or no pairs of teams that played each other in r1. We can label these combinations by
{M1, M2, N1, N2}, {M1, M2, N, P} and {M, N, P, Q}, without any loss in generality, where teams
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Q — Q Q — Q — Q

Figure 4: Ten combinations of matches in r2 in the G;G2G3 system where there are no rematches
between any teams that played each other in rl.

beginning with the same letter played each other in r1. The worst possible scenario arises when there
are two rl pairs in r3. Suppose that M1 played say N1 in r2, then the other combination of matches is
always new, since if M1 played N1 then M1 could not have played N2 and N1 could not have played M2.
It turns out that it is always possible to find at least one combination of matches in r3, and perhaps
two such combinations, where there are no rematches between any of the teams that may have played
each other in rl or r2.

5 Premiership probabilities in G;G3G3 system with no rematch
option

It is certainly not clear a priori how the premiership probabilities are affected by the added restriction
in the G1G>G3 system that rematches are to be avoided in rounds 2 and 3. If one looks through the
previous calculations given above, and repeats them for this situation one quickly realises that they are
unchanged by this added restriction. The premiership probability of Al is clearly unchanged. Refer to
the calculation given previously. The situation is exactly the same for other premiership probabilities.
These premiership probabilities are unchanged because the r2 survival probabilities are unchanged under
the restriction of no rematches. If one looks back at the calculation of the r2 survival probabilities one
can see that they are unaffected by this restriction. The only way that they may be affected is if B1
could not play B2, or B5 could not play B6, because they played each other in round one. This is clearly
impossible since the top four teams in r2 correspond to the four winners and they could not have played
each other in r1, whereas B5 and B6 are the two highest ranked losers from rl so they could not have
played each other in rl also. The premiership probabilities in this system where rematches are avoided
in subsequent rounds (whether it is r1 matches in r2 and r3, and r2 matches in r3, or rl matches in r2

and r2 matches in r3) are therefore exactly the same as before when the option of no rematches was
ignored.
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6 Premiership probabilities in general random pairing system
with no matches between A1l and A2 in rl and r2

Another interesting system to consider is where the top two teams Al and A2 in the final-8 are not
allowed to play each other in rounds 1 and 2. This is desirable because one would like to allow these
teams separate passage to the later rounds, hoping that they may meet in the Grand Final. We denote
this system by the notation-Gr&»G3, where the strikethrough refers to the fact that a match between
Al and A2 is excluded in rounds 1 and 2. Some of the previously calculated premiership probabilities
are affected by this restriction. The main effect is in the r2 survival probabilities, since now B1 may
not play B2, as they may correspond to A1 and A2 respectively, and there is no need to exclude this
circumstance as in previous calculations. See Section 3. The situation can get quite complicated and
so we have only calculated a few of these premiership probabilities. One should refer to the previous
calculations in the G1G2G3 system to see how the situation changes in this case. Consider Al. In the
previous calculation we had two terms, corresponding to when Al wins in rl (Al = B1) and when Al
loses (A1 = B5). A problem may occur in the second scenario if A2 also loses, because then Al and A2
will correspond to B5 and B6, which is one of the situations that we had to give special consideration
to previously. This however does not change the premiership probability of A1l because Al is in fifth
position in r2, and the only r2 survival probabilities that are actually affected by possible matches
between B5 and B6 are the survival probabilities for B2, B3 and B4. See the discussion preceding
Table 2. As before,

1 1 1\ 1 3
Py = (5 -1+ 5 : 5) . Z = 1_6 =0.1875 {G1G2G3 system]

The premiership probability for A2 is however affected by the added restriction that Al and A2
should not play in r1 and r2:

1 1\ 1 11

4.2 ).2===0172
+ D) 2) 1 64 0.17 [G1G2G3 system]

The first term in brackets corresponds to the situation when Al and A2 both win, but in this case the

ladder looks like (in order, where X = some other team)

Al A2, X, X, X, X

The r2 survival probability of A2 is affected in this case, since now B1 and B2 cannot play each
other (refer to previous calculations). A2 will survive r2 so long as Al does not also lose when A2
loses. The r2 survival probability of A2 is therefore equal to 1 — % - % = % = 0.75, which should be
compared to previous survival probability in the unrestricted model, which was 0.8. The second term
in the premiership probability for A2 in the above expression comes from the situation when A2 wins
in rl (probability %) and Al loses in rl (probability %) In this case the ladder looks like (A2, X, X, X,
A1, X), and A2’s survival probability is equal to 1. The last term in the premiership probability for A2
corresponds to when A2 loses, in which case A2 will be in either fifth or sixth position, from where it
has a survival probability of %, since it must win.

We have calculated two other premiership probabilities in this general random pairing system without
matches between Al and A2 in rounds 1 and 2. The premiership probability for A8 is given by

1 15 1 3 3\ 1 97
Pio=|=--2.242-.2.2 =" =
‘A8 (2 1'% + 51 5) 1 1280 0.0758 [G1G2G3 system]

The first term in the above expression corresponds to when A8 wins in rl and both Al and A2 lose,
which means that A8 is in fourth position in r2 with A1 and A2 in fifth and sixth position (ladder (X,
X, X, A8, A1, A2)). From this position, A8 will survive r2 if it wins, and if it loses if A1 and A2 both
lose in r2. Since A1l and A2 cannot play each other in this system, the survival probability for A8 in
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this case is equal to % + % . % = %, which is different from the value of % in the unrestricted G1G>G3
system. The second term in the expression for P4g above comes from the situation where A8 wins, and
at least one of Al or A2 also wins (probability %) In this case A8 is in fourth position in r2 again, but
now B5 and B6 may play each other. In this case A8 (= B4) has an r2 survival probability equal to 2.

The fate of A7 seems to depend on whether or not it plays A8 in rl. If A7 plays A8 (probability %)
and it wins, it can finish in fourth position in r2, whereas if it does not play A8 in rl, it can finish in
third position (if A8 also wins) or fourth position. Once again one must go through the specifics in this

case to see where Al and A2 finish in r2. The premiership probability for A7 is given by

P_161153311533 1 (15 3 3 1
A7—§(?'{§'<1'§+1'5>+5'(1'5*1'3)}*?'{1'5*1‘5}) 1
= %;0 = 0.0758 [G1G2G3 system]

The factor of % in front corresponds to the fact that A7 must win in rl. The first set of terms in curly
brackets corresponds to the situation where A7 does not play A8 in rl (probability %), and the second
term in curly brackets to when A7 plays A8 in rl (probability %) The first term inside the first curly
brackets correspond to (A8 wins r1)[(Al & A2 win rl) or (only one of Al or A2 lose)] and the second
term to the same thing except that A8 loses in rl. Note, depending on the situation, A7 has a different
r2 survival probability like in the A8 calculation. When Al and A2 win the ladder looks like (A1, A2,
A7, X, X, X), and the survival probability needs to be adjusted as before because B1 = A1 cannot play
B2 = A2, whereas when one of A1 or A2 loses the survival probability is as before. The second term
in curly brackets corresponds to the situation when A7 plays A8 in rl. In this case, A7 is in fourth
position in r2 when it wins. The survival probability needs to be adjusted (first term in curly brackets)
if A1 and A2 both lose in rl, as then the ladder looks like (X, X, X, A7, A1, A2) and B5 cannot play
B6. The second term in the second curly brackets corresponds to when one of A1 or A2 loses. It is
interesting that in the end A7 and A8 have the same premiership probabilities.

The calculated premiership probabilities in this restricted system are listed in Table 4. P4; is the
same as in the G1G2G3 system, Py» is slightly lower compared to the G;G2G3 system, while P47 and
Pyg are slightly higher in comparison. We have not calculated the premiership probabilities for A3, A4,
A5 and A6, because they are quite involved, and also because we expect them to be approximately the
same as in the G1G2G3 system.

Final 8 premiership probability
Al 2 =0.1875
A2 & =0.1719
A3 NC
A4 NC
A5 NC
A6 NC
AT ST =0.0758
A8 o =0.0758

Table 4: The premiership probabilities in the-G+&5G3 random pairing system, where teams are ran-
domly paired to play each other in rounds 1, 2 and 3, except that matches between Al and A2 are not
allowed in rounds 1 and 2. NC means that the premiership probability has not been calculated, but
these are expected to be similar to the probabilities in the unrestricted G1G2G3 system.
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7 Avoiding rematches in the -G1GyG3 system

In this section we wish to address the question of whether rematches can also be avoided in the general
random pairing system with no matches between A1 and A2 in rounds 1 and 2. The first thing that one
can note is that there are 6-5-3 = 90 different possible combinations of matches in r1, and 12 different
combinations of matches in r2 in the-Gr&>G3 system, compared to 105 and 15 different combinations
of matches in the unrestricted G1G>G3 system. This would seem to suggest that this system is not
overly constrained by this added restriction.

Referring back to the previous rematch analysis for the unrestricted system, Figure 4 shows the
allowed combinations of matches where rematches from rl are avoided. Some of these matches are
however also excluded in this system if we wish there to also be no matches between A1 and A2 in r2.
Note that, since A1 and A2 did not play in rl in this system, they must correspond to different letters.
Either A1 and A2 correspond to M and N (or N and M), or to M and P (or M and Q, or N and P, or
N and Q), or to P and Q. If A1 and A2 correspond to an M and N labeled team (say the first to an M
and the second to an N, without any loss in generality) there are three arrangements of matches shown
in Figure 4 that must now be excluded to ensure that Al and A2 do not play in r2. If A1 = M (or N)
and A2 = P (or Q) then two arrangements of matches must be excluded from Figure 4. Finally, if
Al = P and A2 = Q, or vice versa, two arrangements of matches must be excluded from Figure 4 in r2.
Therefore one can exclude rematches in r2 from rl and also matches between Al and A2 in rounds 1
and 2.

We can also address the question of rl and r2 rematches in r3. The previous arguments can also be
carried over to this system, and there is always at least one combination of matches in r3, where there
are no rematches from previous rounds.

8 Conclusion

We have analysed a number of different finals systems where the teams are randomly paired to play
each other under certain conditions. We have calculated (most of) the premiership probabilities in
these systems in the equal probability model. These calculations can be extended with the aid of a
computer to models where the form of the teams is taken into account as outlined by Christos [1, 2] or
by Schwertman and Howard [5].
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Abstract

This paper investigates the extent of home advantage in the Olympic games. The number and type
of medals won by each country in the Modern Olympics is analysed. The total number of medals
and gold medals won are highly correlated, and many countries show a highly variable performance
as measured by the percentage of total medals won. There is a large home advantage or host country
effect. The home country wins about three times their away percentage of medals, and about twice
their average in the games immediately before and after their home games. There is also evidence
that the mix of medals is richer, with home teams winning a proportion of gold medals higher than
both their historical average and the proportion available.

1 Introduction

The Olympic games vies with the World Cup of soccer as the World’s premier sporting event. The
ancient games began at Olympia with a single foot race, and continued for twelve centuries until
abolished in 394 AD. The modern Olympics began in 1896, and like its predecessor, the event list has
steadily grown. Also like its predecessor, the first modern games did not allow women to compete.
However they have steadily increased their participation until they now make up 30% of the competing
athletes. These two effects have seen an increasing number of medals awarded. In 1896, 122 medals
including 44 gold were awarded. One hundred years later athletes competed for 841 medals including
271 gold.

Success on the sporting field is becoming increasingly important for competing nations. While no
official tables are kept, unofficial tallies of the number of gold, silver and bronze medals won by each
country are keenly recorded in the media. Final tallies are used by governments to measure the success
of sporting policies and allocate funding. How well can Australia expect to perform at the Sydney
Olympics? This question could be answered by a detailed analysis of each sport in order to accumulate
the total chances of each country winning or placing. For example Dyte and Clarke [2, 5] demonstrate
for tennis and soccer a method that could be used to calculate medal chances in most team sports with
a knockout or tournament structure. A model is fitted to official rankings to predict a chance of winning
any match, and the complete tournament is then simulated to generate probabilities of final finishing
positions. In individual events, while several papers have been written predicting winning times and
world records [1, 6, 8], there is little in the literature giving an athletes chance of winning or achieving a
certain place. Perhaps some of the methods used in horse racing could be adapted. However, clearly an
approach that requires detailed investigation in each sport is a very large study. Perhaps the conference
as a whole could undertake such a study for the 2004 results with each participant looking at a different
sport. This study simply investigates the past global results.

*My thanks to David Johnson, an undergraduate student who collected and computerised data for this paper.
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Stefani has carried out several studies [10, 12] into performance at the Olympic games, but from
the point of improvement in the various sports. A recent paper [4] uses neural networks and regression
to model the number of medals countries won at the Atlanta Olympics, based on various economic
variables such as area, population and length of rail road track. Sommers [9] also looks at the Atlanta

games, and measures the success of nations per unit of population.

Number of Number of
Olympiad  Year City Country countries to win medals
medals
I 1896  Athens Greece 10 122
II 1900 Paris France 18 276
111 1904 St Louis USA 9 282
- 1906  Athens Greece 19 226
v 1908 London Great Britain 19 323
\% 1912 Stockholm Sweden 18 309
VI 1916 Berlin Germany cancelled
VII 1920 Antwerp Belgium 22 435
VIII 1924 Paris France 26 366
IX 1928 Amsterdam  Netherlands 33 327
X 1932 Los Angeles USA 27 348
XI 1936 Berlin Germany 32 388
XII 1940 Helsinki Finland cancelled
XIIT 1944 London Great Britain cancelled
X1V 1948 London Great Britain 33 409
XV 1952 Helsinki Finland 43 459
XVI 1956 Melbourne Australia 39 470
XVII 1960 Rome Italy 45 464
XVIIT 1964 Tokyo Japan 42 498
XIX 1968 Mexico City Mexico 43 5925
XX 1972 Munich Germany 46 596
XXI 1976 Montreal Canada 41 613
XXII 1980 Moscow USSR 36 631
XXIIT 1984 Los Angeles USA 46 687
XXIV 1988  Seoul South Korea 52 739
XXV 1992 Barcelona Spain 64 815
XXVI 1996 Atlanta USA 78 841
XXVII 2000 Sydney Australia

Table 1 shows the venues for each of the modern games.

Table 1: Venues for the modern Olympic games.

Seventeen countries have hosted the

games—four countries twice and the USA four times. The modern games had a chequered beginning.
The Paris and St Louis games in 1900 and 1904 were overshadowed by the Paris Universal Exhibition
and the Louisiana Purchase Exposition and were not a success. (At the St Louis games in 1904, only
12 nations attended and the USA won 84% of the medals.) Interim games were held in 1906 in Athens
in an attempt to revive the flagging Olympic movement. While the IOC does not recognise these as
official and they are not numbered in sequence, Wallechensky [14] not only includes them but credits
them with helping to save the Olympic movement. An Olympiad is a period of four years starting with
an Olympics, so the numbering was also upset by the World Wars. Thus while Sydney will be held in
the 27th Olympiad it will be the 24th official modern games.

Of the seventeen countries to host the Olympics, fourteen have won their greatest ever percentage
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of available medals at home. In studying the performance of countries in the Olympics, the effects of
home ground advantage arise. The existence of home advantage in sport is well documented, but most
study centres around team sports. It is well known that home teams win a majority of the matches
at home. The causes of home advantage are usually listed as positive effects for the home side due
to ground familiarity and a partisan crowd, and negative effects on the visitors mainly due to travel.
Clearly such effects are present during an Olympic games.

While the games are awarded to a host city, the causes of home advantage apply to all athletes from
the home country. In Sydney, visiting athletes will suffer from change in season and time zones, while
Australian athletes will have a home crowd to spur them on. While most research on home advantage
has been within country, Stefani [11, 13] shows that in soccer the effects increase once international travel
is involved. While there appears to be little research on the effects of home advantage in individual
sports, the performance of French and Spanish tennis players in the French Open is a good example of
players performing better on home or near home soil.

There are some other reasons peculiar to the Olympics why the home country can expect to do better
than usual. The home country has some choice in the sports that will be offered, and naturally includes
sports in which it excels or has a special interest. The host country also fields larger teams and competes
in a larger range of events than usual. In addition boycotts have marred several games, reducing the
strength of competition. Since no country has boycotted its own games, this has advantaged the home
team.

2 Analysis and discussion

The data analysed in this paper consist of the final gold silver and bronze medal tallies of all competing
countries. Although unofficial, such tables are of great interest during the conduct of the games, usually
published in order of the number of gold medals won. Results can be collected from various print and
web sources. For example, Wallechinsky [14] has details for all events up to 1984. The data used here
were collected by undergraduate students and consist of the gold, silver and bronze medal tallies for
all countries that won medals—a total of 841 observations. There were no data on the countries that
competed but won no medals. Table 1 also shows the total number of countries that won medals, and
the total number of medals awarded.

There are many factors that could be taken into account when analysing the data. The increasing
number of medals awarded means that most strong countries will increase their medal tally throughout
the period. For this reason we generally model here the percentage of available medals won by each
competing country. Boycotts in particular years will obviously affect the strength of competition. More
subtle effects arise with the amalgamation or separation of countries. For example, a field event might
now see many strong competitors from countries previously part of the USSR. Such effects would
generally strengthen individual events by increasing the number of competitors, but may weaken or
strengthen team events, since players are spread more thinly over more teams. To allow for such effects
is beyond the scope of this paper. We merely seek to measure in a global way the overall performance
of countries and the effect of home advantage.

2.1 Total medals versus gold medals

While many countries measure their success by the number of gold medals won, there is a larger
percentage of random element present in this measure than in the total number of medals won, and
the latter may be a preferable measure. Figure 1 shows the total number of medals won each year
against the number of gold for Australia, with the home performance marked with a +. This illustrates
the strong relationship between the two measures that exists for most countries. For Australia, the
correlation between the total number of medals and the number of gold medals is 0.87. The correlation
between gold and silver is 0.71, and between silver and bronze is 0.69. For the stronger USA, these
figures rise to 0.95, 0.92 and 0.90.
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Figure 1: Total number of medals won against number of gold medals won for Australia.

2.2 Performance over time

79

When the performance of a single country is investigated over time, most countries show some trend in
performance. The number of gold medals won by the USA is shown in Figure 2, with home performances
marked with a +. This appears to demonstrate a steady increase in success by the USA, with outstanding
performances when on home territory.

However when the increasing number of medals awarded is taken into account the story is not so
rosy. Figure 3 gives the number of medals won by the USA as a percentage of the medals available.
While this is distorted by the performance in St Louis, it shows what now appears to be a slightly
decreasing trend. Again, the home performances stand out, with the exception of Atlanta, which now
appears as a poor performance.
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Figure 2: The number of gold medals won by the USA each year.
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Figure 3: The number of medals won by the USA each year as a percentage of medals available.

2.3 Australia’s performance

The performance of Australia in all Olympics is shown in Table 2. The percentage of all medals that
Australia has won is given in Figure 4. A smoothing spline highlights the changes in performance. Such
rises and falls are often attributed in the media to events such as the establishment of the Institute
of Sport. This was proposed following the performance in Canada, where Australia failed to gain a
gold medal. While the figures show that Australia’s performance has improved over the years, the
huge variation in performance to be expected from year to year demonstrates the folly of attempting to
predict a tally for an individual country. However home performance is again an obvious outlier, with
Australian winning over 50 percent more medals than its next most successful games.

TOTAL PERCENTAGE

0 T T ! T T
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Figure 4: Percentage of available medals Australia won each year.
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Percentage
Year Gold Silver Bronze Total of available

medals won
1896 2 0 0 2 1.64
1900 4 0 4 8 2.90
1906 0 0 3 3 1.33
1908 1 2 2 5 1.55
1912 2 2 3 7 2.27
1920 0 2 1 3 0.69
1924 3 1 2 6 1.64
1928 1 2 1 4 1.22
1932 3 1 1 5 1.44
1936 0 0 1 1 0.26
1948 2 6 5 13 3.18
1952 6 2 3 11 2.40
1956 13 8 14 35 7.45
1960 8 8 6 22 4.74
1964 6 2 10 18 3.61
1968 5 7 5 17 3.24
1972 8 7 2 17 2.85
1976 0 1 4 5 0.82
1980 2 2 5 9 1.43
1984 4 8 12 24 3.49
1988 3 6 5 14 1.89
1992 7 9 11 27 3.31
1996 9 9 23 41 4.88

Table 2: Australia’s Olympic performance.

2.4 Comparison of home to away performance

In order to compare the home and away performance we concentrate on the percentage of available
medals won for the seventeen countries who have hosted a games. There are several ways of estimating
home performance. Table 3 lists the teams that have hosted games, along with their average home
performance and away performance. There is clearly a large home advantage. Canada is the only
country to do worse at home, and the median ratio is 3.5. Thus 50% of host countries win more than
3.5 times their historical average of medals. Since the original data only includes Olympics where that
team won medals, there may be away games where the team won no medals that are not included. If
anything, the figures underrate the effect of home advantage.

The high home advantage for Greece in Table 3 demonstrates that the early Olympics, where a few
powerful countries were very successful, can distort figures. Various combinations can be tried, but the
overall pattern remains. For example, restricting the data to the games after Melbourne, and excluding
data from the boycotted games at Moscow and Los Angeles, gives the results shown in Table 4. The USA
is now the only team to do worse at home, Germany does the same, but most countries perform much
better. Canada is now 40% better at home. Again the median performance is high at 2.5 times better at
home. Trends in performance coupled with a bias in the selection process for host cities could distort the
above averages. For example, if a rising performance in sport were a factor in gaining selection as host
country, home teams would generally perform better at home than they had historically. Comparing
the percentage of medals won at their home games, with the average percentage of medals won in the
most recent games in which they competed prior to hosting the games and the earliest games in which
they competed after they host the games, allows for any increase or decrease in performance over time.
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Percentage of
Country available medals won Ratio
Away Home Home : Away
Australia 2.3 74 3.2
Belgium 1.3 8.1 6.0
Canada 2.1 1.8 0.9
Finland 3.3 4.8 14
France 5.0 23.7 4.8
Great Britain 5.3 25.3 4.8
Germany 6.6 14.8 2.2
Greece 0.4 26.8 62.3
The Netherlands 1.7 5.8 3.4
Italy 4.3 7.8 1.8
Japan 3.1 5.8 1.9
Korea 1.2 4.5 3.6
Mexico 0.4 1.7 3.9
Soviet Union 16.9 30.9 1.8
Spain 0.5 2.7 5.1
Sweden 4.5 21.0 4.7
USA 17.0 37.9 2.2

Table 3: Percentage of available medals won by host countries at home and away.

The results are given in Table 5. Again the ratios are generally greater than one with a median of about
two. Clearly the home advantage is not due to some ancient performances or the results of boycotts,
and is still present in recent performances.

Percentage of
Country  available medals won Ratio
Away Home Home: Away
Italy 3.1 7.8 2.5
Japan 3.7 5.8 1.6
Mexico 0.2 1.7 8.6
Germany 6.7 6.7 1.0
Canada 1.3 1.8 1.4
Korea 1.3 4.5 3.4
Spain 0.7 2.7 4.2
USA 15.8 12.0 0.8

Table 4: Percentage of available medals won at home and away by host countries at Olympic games
1960-1976, 1988-1996.

2.5 Proportion of gold medals

There is evidence in the literature that in many sports different teams enjoy different levels of home
advantage [3, 7, 11]. This would probably be true in the Olympics, where teams may or may not
travel across several time zones and even seasons, and to possibly different cultures. The question arises
whether home advantage is greater for the better athletes. It seems reasonable that crowd involvement
may be greater when a home athlete is a chance for gold than when they are possibly vying for a
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Average of
performance in
Year Country games before Home Ratio
and after being performance
host
1896 Greece 114 38.5 3.4
1900 France 13.4 37.0 2.8
1904 USA 14.7 84.4 5.7
1906 Greece 19.9 15.0 0.8
1908 Great Britain 12.2 44.9 3.7
1912 Sweden 11.1 21.0 1.9
1920 Belgium 14 8.1 5.6
1924  France 7.9 10.4 1.3
1928 Netherlands 24 5.8 24
1932 USA 15.8 29.9 1.9
1936 Germany 5.6 22.9 4.1
1948 Great Britain 3.0 5.6 1.9
1952 Finland 4.0 4.8 1.2
1956  Australia 3.6 7.5 2.1
1960 Ttaly 5.4 7.8 1.4
1964 Japan 4.3 5.8 1.3
1968 Mexico 0.2 1.7 9.3
1972  Germany 5.7 6.7 1.2
1976 Canada 3.6 1.8 0.5
1980 USSR 19.1 30.9 1.6
1984 USA 14.0 25.3 1.8
1988 Korea 3.6 4.5 1.3
1992 Spain 1.3 2.7 2.1
1996 USA 13.3 12.0 0.9

Table 5: Comparison of percentage of available medals won by host countries at home and in the
Olympics before and after home games.

medal. This should produce a greater proportion of gold medals for home teams than normally. A
higher proportion of gold medals is also obtained under a model where a country that normally wins
the same proportion of gold silver, bronze and fourth places enjoys a home advantage that lifts the
same proportion of placegetters up one level. Both these effects would result in a “richer” mixture
of winning medals. The actual numbers of medals available alters both in number and proportion at
various games. In the early days, the number of gold exceeded the number of silver and bronze, but this
is reversed in later games, with more bronze medals than gold being awarded. In total, 7376 gold, 7280
silver and 7642 bronze have been awarded for an overall percentage of gold medals of 33%. Table 6 gives
the proportion of gold medals won by the host country at each Olympics, and compares it with both
their average away proportion and the actual proportion of gold medals available at their home games.
Certainly in the second half of the century, almost all teams have won a richer mixture of medals than
both their away games average and the average available at their home games. From the time of the
last games in Australia, Canada with no gold is the only country to have a worse winning mixture than
was available. The median home performance has a 10% richer mix than is available and than their
historical performance. Apart from the early games, most teams win both a greater percentage of gold
medals at home, and better than expected at home. Clearly a home country is likely to have a richer
mix than their own average in away games and the overall average at their own games.
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Gold medals Percentage Average
Country Year won as percent of gold medals away percentage
of total won available of gold medals
Greece 1896 21.3 36.1 27.8
France 1900 28.4 34.8 31.1
USA 1904 33.6 35.1 43.1
Greece 1906 23.5 34.1 27.8
Great Britain 1908 38.6 34.1 23.5
Sweden 1912 36.9 32.7 29.3
Belgium 1920 40.0 35.9 23.2
France 1924 34.2 33.9 31.1
Netherlands 1928 31.6 33.6 20.8
USA 1932 394 33.6 43.1
Germany 1936 37.1 33.5 27.9
Great Britain 1948 13.0 33.7 23.5
Finland 1952 27.3 32.5 35.1
Australia 1956 37.1 32.6 29.9
Italy 1960 36.1 33.0 38.8
Japan 1964 55.2 32.7 26.4
Mexico 1968 33.3 33.1 12.4
Germany 1972 32.5 32.7 27.9
Canada 1976 0.0 32.3 24.7
USSR 1980 41.0 32.3 39.0
USA 1984 47.7 32.9 43.1
Korea 1988 36.4 32.6 11.6
Spain 1992 59.1 31.8 14.7
USA 1996 43.6 32.2 43.1

Table 6: Percentage of gold medals won by host countries.

3 Conclusion

There is a large random element in the performance of countries in the Olympic games. The total
numbers of medals and gold medals are highly correlated, and the number of medals awarded has
steadily increased over the years. The percentage of all available medals would be a better measure
of a country’s performance than the number of gold, which is the measure usually trumpeted by the
media. Australia’s performance has steadily increased over the years, with a more dramatic increase
since Montreal. In 2000, Australia has the bonus of what is clearly a large home advantage. Historically
the home team wins over three times their usual percentage of medals, but this may be difficult to
achieve given the large base level of performance Australia has recently attained. At its last home
Olympics, Australia gained 7.6% of available medals, twice the percentage they achieved in the games
immediately before and after Melbourne. However the isolation of Melbourne in 1956 resulted in a low
number of athletes attending, and the games were also weakened by two boycotts. This time Australia
is also coming off a strong performance in Atlanta of nearly 5% so to expect a repeat performance of
their last games effort might be optimistic. However there is also strong evidence that the mix of medals
is richer for the home teams, so Australia can expect to win a proportion of the gold medals greater
than both their long term average of 30% and the actual percentage available at Sydney.

In making predictions there is always the effect of randomness. Most of the above applies equally
well to Canada, a country usually about the same level as Australia on the medal tally. Let’s hope that
after Sydney, Canada remains the only country in the Modern Olympics not to win a gold medal at the
games they host.
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Abstract

This paper consists of a selection of articles published in mathematics-related journals, and a few
books and chapters from books, that are related to sport and suitable for incorporation into ele-
mentary university mathematics subjects. Sports are arranged alphabetically and annotations are
used to indicate the relevant mathematics.

1 Introduction

This paper consists of a personal and very incomplete selection of articles published in mathematics-
related journals, and a few books and chapters from books, that are related to sport and suitable for
incorporation into elementary university mathematics subjects. It was compiled originally as part of
the development of a new subject called Mathematics in Sport that I have taught at the University of
Technology, Sydney, over the last few years, and has since been considerably supplemented.

The format is alphabetical by sports, apart from the first section on articles and books that are of
general interest or span a few sports, and the second on draws, tournaments, rankings and ratings. A
brief description is given for many of the items listed. The personal nature of the selection must be
emphasised—personal in terms of my own interests and background, and personal simply by nature of
the fact that an exhaustive search for such articles has not been attempted, and would no doubt be
foolhardy to attempt. There must be others with their own lists, perhaps only slightly intersecting this
one, and it would be of interest to gather these together.

The articles are not necessarily wholly suitable for use in a first-year mathematics subject, but
aspects are and at least the general tenor and the conclusions reached would be of interest. In many
cases, articles have lists of further references, so useful project topics abound by simply asking students
to follow through the references. The World Wide Web is now also a tremendous resource for information
and data in this area, but I have made no attempt here to document the relevant sites. Often, magazines
such as New Scientist will be secondary sources for interesting items.

The classification for the articles has not always been obvious, and some items of interest may not
be in the first place you would look. For example, articles on the rating of teams in the Australian
Football League have been placed under Draws, Tournaments, Rankings and Ratings (the second of the
following sections), rather than under Football.

There have been four conferences on Mathematics and Computers in Sport held at Bond University,
Queensland, and many references are to the proceedings of these conferences. They will be identified
below as follows:

86



An annotated bibliography of mathematical articles on sport 87

Bond 1: First Conference on Mathematics and Computers in Sport, N. de Mestre (editor), Bond
University, Queensland, Australia (1992).

Bond 2: Second Conference on Mathematics and Computers in Sport, N. de Mestre (editor), Bond
University, Queensland, Australia (1994).

Bond 8: Third Conference on Mathematics and Computers in Sport, N. de Mestre (editor), Bond
University, Queensland, Australia (1996).

Bond 4: Fourth Conference on Mathematics and Computers in Sport, N. de Mestre and K. Kumar
(editors), Bond University, Queensland, Australia (1998).

Copies of these proceedings may be obtained by writing to the School of Information Technology,
Bond University, Gold Coast, Queensland 4229, Australia.

2 The bibliography

General interest

1. A. Armenti, Jr (editor), The Physics of Sports, American Institute of Physics, New York (1992).
A collection of reprinted papers in a huge array of sports.

2. P. Avery, “Mathematics in sport”, Math. Gaz., 73 (1989), 1-6. Elementary calculus, probability,
combinatorics and statistics applied respectively in rugby, squash, speedway and soccer.

3. J. Bennett (editor), Statistics in Sport, Arnold, London (1998).! Covers a great many sports and
includes a chapter on tournament design.

4. P. J. Brancazio, Sport Science—Physical Laws and Optimum Performance, Touchstone, New York
(1985). An elementary approach to the physics and mathematics behind many sports.

5. A. Brown, “The probability of breaking sports records”, J. Rec. Math., 26(1) (1994), 42-47. The
main application is to baseball.

6. K. D. Buchan and P. M. Sommers, “Judging Olympic judges for political bias”, J. Rec. Math.,
28(2) (1996-97), 93-97. Uses paired t-tests to seek evidence of bloc voting in women’s gymnastics
in the 1992 Olympics.

7. G. L. Cohen, “The subject: Mathematics in Sport”, Bond 4, 225-235. A full description of the
syllabus and assessment methods in this subject.

8. G. L. Cohen and P. Petocz, “Proof by sporting analogy”, Austral. Math. Soc. Gaz., 25(5) (1998),
242-245. The proofs are of some combinatorial identities.

9. M. Cover, “Do longer games favour the stronger player?”, Amer. Statist., 43(4) (1989), 277-278.

10. D. S. F. Crothers, “Mathematics in sport, I”, Int. J. Math. Educ. Sci. Technol., 23 (1992), 117-
126. Aspects of mechanics, applied to sport, treated with vectors.

11. D. S. F. Crothers, “Mathematics in sport, II”, Int. J. Math. Educ. Sci. Technol., 23 (1992),
225-233. An intriguing miscellany, including encryption for passing messages on the rugby field.

12. J. S. Croucher, “Scientific method in sport”, in ASOR ’87 (conference proceedings, Australian
Society for Operations Research 8th National Conference, Melbourne, 11-14 October 1987), 44-54.
Surveys applications of computing software in a number of sports.

13. J. S. Croucher, “Winning with science”, Bond 1, 1-22.

T am grateful to the referee for suggesting the inclusion of this book.
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23.

24.

25.

26.

27.
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C. B. Daish, The Physics of Ball Games, English Univ. Press, London (1972). Includes, for exam-
ple, the mechanics of where to strike a snooker ball so that it rolls without skidding.

N. J. de Mestre, “Mathematics and sport”, Austral. Math. Teacher, 43(4) (1987), 2-5. Problems
combining mathematics and sport, separated into those suitable at tertiary, secondary and primary
levels.

N. J. de Mestre, “Mathematics applied to sport”, Bond 1, 137-148. Survey of a number of areas
combining mathematics and sport.

N. J. de Mestre, The Mathematics of Projectiles in Sport, Cambridge University Press, Cambridge
UK (1990).

Y. Gerchak, “Operations research in sports”, in Handbooks in Operations Research and Man-
agement Science, (volume 6, Operations Research and the Public Sector), S. M. Pollock, M. H.
Rothkopf and A. Barnett (editors), North-Holland (1994). Includes a huge list of references.

D. Hoffman, “A taxonomy of sporting events applying operations research methodology”, Bond 1,
101-10. Includes a large bibliography.

J. B. Keller, “A characterization of the Poisson distribution and the probability of winning a
game”, Amer. Statist., 48(4) (1994), 294-298. Perhaps better suited to a second course in statistics;
includes applications to soccer and baseball.

S. P. Ladany and R. E. Machol (editors), Optimal Strategies in Sports, North—Holland Publishing
Company (1977). Includes an extensive annotated bibliography and list of references on pages
206—224.

A. G. Mackie, “Mathematics in sport”, Bull. Inst. Math. Appl., 16(1) (1980), 2—6. Includes appli-
cations to high jumping, rugby football and ball games.

R. D. Mehta, “Aerodynamics of sports balls”, Ann. R. Fluid Mech., 17 (1985), 151-189.

L. E. Sadovskii and A. L. Sadovskii, Mathematics and Sports, American Mathematical Society
(1993). The examples are mainly in terms of the techniques of operations research.

P. M. Sommers, “Greying of Olympic gold”, J. Rec. Math., 28 (1) (1996-97), 18-21. Tests the null
hypothesis that the average age of US Olympians in swimming and track and field has remained
constant from 1972 to 1988.

M. S. Townend, Mathematics in Sport, Ellis Horwood, New York (1984).

M. S. Townend and D. C. Pountney, Learning Modelling with DERIVE, Prentice—Hall, London
(1995). Many of the examples are sporting applications.

Draws, Tournaments, Rankings and Ratings

28.

29.

30.

G. W. Bassett, Jr, “Robust sport ratings based on least absolute errors”, Amer. Statist., 51(2)
(1997), 99-105. A least squares approach to sports ratings, applied to teams in the NFL.

F. Budden, “Speedway tournaments in the classroom”, Math. Gaz., 61 (1977), 266-272. A com-
binatorial problem allowing the introduction of some group theory.

R. M. Dawes and J. B. Kadane, “Partial round-robin comparisons with perfect rankings”, Amer.
Statist., 41(3) (1987), 204—205. An application of probability.
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. N. J. de Mestre, “Speedway problem”, Working Paper 1997-8-019/A (April 1997), Bond Univer-
sity, Queensland 4229, Australia. Considers a generalisation of the usual draw for 16 riders in the
World Speedway Championships.

J. H. Dinitz, E. R. Lamken and W. D. Wallis, “Scheduling a tournament”, in The CRC Handbook
of Combinatorial Designs, C. J. Colbourn and J. H. Dinitz (editors), CRC Press (1996), 565-578.
Includes such things as softball balanced tournament designs.

T. J. Fletcher, “Speedway tournaments”, Math. Gaz., 60 (1976), 256-262. The draw is discussed
in terms of finite geometries.

J. E. Freund, “Round robin mathematics”, Amer. Math. Monthly, 63 (1956), 112-114. The draw
is developed using modular arithmetic.

W. A. Glenn, “A comparison of the effectiveness of tournaments”, Biometrika, 47 (1960), 253-262.
D. L. Hoffman, “A team rating system”, ASOR Bull., 11(2) (1992), 6-10; also Bond 1, 23-28.

R. J. Leake, “A method for ranking teams with an application to college football”, Management
Se. in Sports (1976), 27-46.

S. B. Maurer, “The king chicken theorems”, Math. Mag., 53(2) (1980), 67-80. Aspects of graph
theory directed towards finding a winner in a round-robin event.

P. A. Rogerson, “Inconsistencies in league standings”, J. Rec. Math., 28(2) (1996-97), 81-84.
Demonstrates inconsistencies in different approaches to ranking teams in a league, with application
to baseball.

N. C. Schwertman and L. Howard, “A probability model for the Victorian Football League final
series”, Austral. Math. Teacher, 7(10) (1989), 2-3.

N. C. Schwertman and L. Howard, “A probability model for the Australian Football League final
series”, Austral. Math. Soc. Gaz., 17(4) (1990), 89-94.

P. M. Sommers, “Meddling with Olympic results”, J. Rec. Math., 28(1) (1996-97), 49-52. Applies
a medal point rate to determine the top countries in the 1992 Olympics.

W. D. Wallis, “One-factorizations of graphs: tournament applications”, College Math. J., 18(2)
(1987), 116-123. How to construct round-robin tournaments, and why you need to think about
this.

R. O. Weber and N. J. de Mestre, “Finals draws”, Bond 2, 105-111. The application is to Aus-
tralian Rules football.

J. J. Wiorkowski, “A curious aspect of knockout tournaments of size 2n”, Amer. Statist., 26
(1972), 28-30. Considers the probability that the second best player should be the runner-up.

Baseball

46

47

. J. Bennett, “Did Shoeless Joe Jackson throw the 1919 World Series?”, Amer. Statist., 47(4) (1993),
241-251. Answer: Probably not. A very detailed statistical analysis of the 1919 World Series.

. J. D. Gibbons, I. Olkin and M. Sobel, “Baseball competitions—are enough games played?”, Amer.
Statist., 32(3) (1978), 89-95. How many games are required in order to state that the probability
is at least some specified value that the better team wins the World Series?
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48. C. Harman, ““Who’s on first!” ‘What?’ ‘What’s on second!” and how ‘What’ got there on an
optimal baserunning path”, Bond 4, 217-223. Using calculus, particularly an analysis of curvature,
to determine the optimal path for a baseballer sprinting through first base to second.

49. W. Runquist, Baseball by the Numbers, McFarland, North Carolina (1995). An introductory text-
book on statistics, with all the standard topics motivated by baseball.

50. P. M. Sommers, “Probably the greatest hitter who ever lived”, J. Rec. Math., 26(1) (1994), 32-35.
Uses probability to determine whether Ted Williams was really amongst the best, given that he
lost five years due to war service.

51. P. M. Sommers, “Pitcher perfect: all tall talk?”, J. Rec. Math., 28(3) (1996-97), 177-179. A use
of the chi-squared distribution to compare left- and right-handers by height.

52. P. M. Sommers, “Home-field advantage in the World Series: myth or reality?”, J. Rec. Math.,
28(3) (1996-97), 180-184. The null hypothesis is that winning and home games are independent.
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53. Y. Gerchak and M. Henig, “The basketball shootout: strategy and winning probabilities”, OR
Letters, 5 (1986), 241-244.

54. N. C. Schwertman, T. A. McCready and L. Howard, “Probability models for the NCAA regional
basketball tournaments”, Amer. Statist., 45(1) (1991), 35-38. The models are tested using the
chi-squared distribution.

55. P. H. Westfall, “Graphical presentation of a basketball game”, Amer. Statist., 44(4) (1990), 305—
307.

Cricket

56. M. N. Brearley, J. C. Burns and N. J. de Mestre, “What is the best way to hit a cricket ball?”,
Int. J. Math. Educ. Sci. Technol., 21 (1990), 949-961. Some rotational dynamics, backed up by
experiment.

57. G. L. Cohen, “One-day cricket: inferences from bowlers’ strike rates”, Math. Today (Bull. Inst.
Math. Appl.), 35 (1999), 45-47. The harmonic mean of individual bowlers’ strike rates gives the
team bowling strike rate and leads to the probability of bowling the other side out.

58. G. L. Cohen, “One-day cricket: the effect of running out an opposing batsman”, Math. Today
(Bull. Inst. Math. Appl.), to appear.

59. P. Coutis, “Modelling the projectile motion of a cricket ball”, Int. J. Math. Educ. Sci. Technol.,
29(6) (1998), 789-798. Simple use of differential equations and perturbation techniques, resulting
from a linear drag model, to determine the trajectories required to hit a six.

60. F. C. Duckworth and A. J. Lewis, “A fair method for resetting the target in interrupted one-day
cricket matches”, J. Oper. Res. Soc., 49(3) (1998), 220-227. See also Bond 3, 51-68, and Lewis
and Duckworth, below.

61. D. Dyte, “Constructing a plausible test cricket simulator using available real world data”, Bond 4,
153-1509.

62. S. Innes and S. Sugden, “One day cricket scoring program”, Bond 4, 45-49.
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M. I. Johnstone, S. R. Clarke and D. H. Noble, “Assessing player performance in one day cricket
using dynamic programming”, Asia Pacific J. Oper. Res., 10 (1993), 45-55. A dynamic program-
ming formulation to develop a method of calculating the contribution of each batsman to the
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C. Kimber and A. R. Hansford, “A statistical analysis of batting in cricket”, J. Roy. Statist. Soc.
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T. Lewis and F. Duckworth, “Developments in the Duckworth-Lewis (D/L) method of target-
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J. M. Watson, “Howzat hypothesis”, Austral. Math. Teacher, 45(1) (1989), 9. Hypothesis testing
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D. J. Winteridge and D. C. Young, “Mathematics, cricket and common sense”, Math. Gaz., 69
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68.

69.

70.

W. H. Cogill, “The mathematics of bicycling”, Bond 2, 37-41. Showing that the potential energy
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W. H. Cogill, “The mathematics of bicycling: Part II”, Bond 4, 245-248. Continuing the theme
of the previous note, the consideration here is the overturning moment on a bicycle.

J. C. Smith and D. W. Hill, “Mathematical models of the power—time relationship in high intensity
cycling”, Med. Sci. Sports Exerc., 24 (S74) (1992).
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71.

72.

73.

74.
75.

76.

7.

G. L. Cohen and E. Tonkes, “Dartboard arrangements”, Electron. J. Combin., to appear. An
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H. A. Eiselt and G. Laporte, “A combinatorial optimization problem arising in dartboard design”,
J. Oper. Res. Soc., 42 (1991), 113-118. Treats the problem as one in linear programming.

P. J. Everson and A. P. Bassom, “Optimal arrangements for a dartboard”, Math. Spectrum, 27
(1994), 32-34.

D. Kohler, “Optimal strategies for the game of darts”, J. Oper. Res. Soc., 33 (1982), 871-884.
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D. Percy, “Winning darts!”, Math. Today (Bull. Inst. Math. Appl.), 35 (1999), 54-57. Uses
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K. Selkirk, “Re-designing the dartboard”, Math. Gaz., 60 (1976), 171-178. The problem is to
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78.

G. Aldis, G. Fulford, R. Weber and N. de Mestre, “Flight of a football”, Bond 1, 125-136. The
model includes lift and drag, and is solved numerically.
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80. S. R. Clarke, “Analysing football finals with a spreadsheet”, Austral. Senior Math. J., 7(1) (1993),
35-44.
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82. A. Hughes, “Conversion attempts in rugby football”, Math. Gaz., 62 (1978), 292-293. Whimsical
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83. D. E. Hughes, “When is a pass forward?”, Math. Gaz., 62 (1978), 44-45. An application of vectors.

84. D. C. Isaksen, “How to kick a field goal”, College Math. J., 27(4) (1996), 267-271. Uses coordinate
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85. A. Mehrez, J. S. Pliskin and A. Mercer, “A new point system for soccer leagues: Have expectations
been realised?”, Euro. J. Oper. Res., 28 (1987), 154-157.

86. R. T. Stefani and S. R. Clarke, “Australian Rules football during the 1980’s”, ASOR Bull., 10(3)
(1991), 11-15.

87. H. Stern, “On the probability of winning a football game”, Amer. Statist., 45(3) (1991), 179-183.

88. N. Tomecko and J. A. Filar, “Player assignments in Australian Rules football”, Bond 4, 171-179.
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89. M. S. Townend, “Getting a kick out of numerical differentiation”, Teaching Math. and its Appl.,
5(2) (1986), 57-61.

90. G. Worsnop, “An aid to conversions in rugby”, Math. Gaz., 73 (1989), 225-226. More whimsy
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91. S. R. Clarke and J. M. Rice, “How well do golf courses measure golf ability? An application of test
reliability procedures to golf tournament scores”, ASOR Bull., 14(4) (1995), 2-11. For example,
there is often a negative correlation in golfers’ scores from one hole to the next.

92. 1. L. Collings and N. J. de Mestre, “A refined aerodynamic model for low trajectory flight”, Bond 4,
15-20. Analyses differential equations governing the motion of a golf ball.
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94. R. Heiny and C. E. Crosswhite, “Best-ball events in golf: an application of the multinomial dis-
tribution”, Amer. Statist., 40(4) (1986), 316-317.

95. P. Moin and J. Kim, “Tackling turbulence with supercomputers”, Sci. Amer., (January 1997),
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in Optimal Strategies in Sports, S. P. Ladany and R. E. Machol (editors), North-Holland (1977),
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97. L. J. Riccio, “Statistical analysis of the average golfer”, in Science and Golf, A. J. Cochran (editor),

Chapman and Hall, London (1990), 153-158.
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98. F. J. Scheid, “On the normality and independence of golf scores with various applications” in
Science and Golf, A. J. Cochran (editor), Chapman and Hall, London (1990), 147-152. The scores
of individual golfers generally follow roughly a normal distribution.

99. R. C. Stroud, “Mathematical underpinnings of the slope handicap system”, in Science and Golf,
A. J. Cochran (editor), Chapman and Hall, London (1990), 135-140. Applies some very simple
coordinate geometry.
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100. G. Mullet, “Simeon Poisson and the National Hockey League”, Amer. Statist., 31(1) (1977), 8-12.
Goals for and goals against, both home and away, tend to follow Poisson distributions.

Jai Alai

101. L. E. Moser, “A mathematical analysis of the game of jai alai”, Amer. Math. Monthly, 89(5)
(1982), 292-300. Uses game trees and probability for a complete analysis.

Lawn Bowls
102. M. N. Brearley, “A mathematician’s view of bowling”, Math. Gaz., 80 (1996), 501-510. Discusses
the bowl’s bias in terms of precession, among other things.

103. M. N. Brearley and B. A. Bolt, “Dynamics of the lawn bowl”, Quart. J. Mech. and Appl. Math.,
XI(3) (1958), 351-363.

104. T. Roper, “The mathematics of bowls”, Math. Gaz., 80 (1996), 298-307.

105. H. Williams, “The mathematics of flat green bowling”, Math. Gaz., 82 (1998), 242-253. Various
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Netball

106. D. H. Noble, “Formation of netball teams for a series of trial matches”, Bond 3, 97-109. A specific
application of the assignment problem.

Rowing

107. M. N. Brearley, “Oar arrangements in rowing eights”, in Optimal Strategies in Sports, S. P. Ladany
and R. E. Machol (editors), North-Holland (1977), 184-185. Calculates moments of the relevant
forces.

108. M. N. Brearley and N. J. de Mestre, “Modelling the rowing stroke and increasing its efficiency”,
Bond 3, 35-46.

109. M. N. Brearley and N. J. de Mestre, “The effect of oar flexing on rowing performance”, Bond 4,
21-32. Practical mechanics, with a useful conclusion.

Squash and Racquetball

110. W. J. Brooks and L. P. Hughston, “A problem in squash strategy”, Math. Gaz., 72 (1988), 92-95.
The probability of winning a game, given the probability of winning a point.
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114. R. E. Machol, “Assigning swimmers to a relay team”, in Optimal Strategies in Sports, S. P. Ladany
and R. E. Machol (editors), North—Holland (1977), 168. A classical application of the assignment
problem.
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115. W. H. Carter, Jr, and S. L. Crews, “An analysis of the game of tennis”, Amer. Statist., 28(4)
(1974), 130-134. The probability of winning a game, and the expectation of the length of a game,
among other things.

116. J. S. Croucher, “Changing the rules of tennis: who has the advantage?”, Teaching Statist., 7(4)
(1985), 82-84.

117. J. S. Croucher, “The effect of the tennis tie-breaker”, Res. Quart. for Ezercise and Sport, 53(4)
(1982), 124-127. In terms of probability and expectation.

118. J. S. Croucher, “The conditional probability of winning games of tennis”, Res. Quart. for Exercise
and Sport, 57(1) (1986), 23-26.

119. J. S. Croucher, “Using computers and scientific method to determine optimal strategies in tennis”,
Bond 4, 1-14.

120. D. Gale, “Optimal strategies for serving in tennis”, Math. Mag., 5 (1971), 197-199.

121. S. L. George, “Optimal strategy in tennis: A simple probabilistic model”, J. Roy. Statist. Soc.
Ser. C, 22(1) (1973), 97-104.

122. J. R. Magnus and F. J. G. M. Klaasen, “The final set in a tennis match: four years at Wimbledon”,
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123. G. H. Pollard, “An analysis of classical and tie-breaker tennis”, Austral. J. Statist., 25(3) (1983),
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Track and Field

124.

125.

126.

127.

N. J. de Mestre, M. Hubbard and J. Scott, “Optimizing the shot put”, Bond /, 249-257. Uses
perturbation techniques on the equations of motion, and tests with real data.

D. R. Heffley, “Assigning runners to a relay team”, in Optimal Strategies in Sports, S. P. Ladany
and R. E. Machol (editors), North-Holland (1977), 169-171. An application of the assignment
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Abstract

Perhaps more than any other sport, cricket is brimming with a multitude of statistics and records
that provide a feast of data for the enthusiastic statistician to analyse. In this case, consideration
is given to the triangular one-day international series between Australia, India and Pakistan played
during the 1999/2000 season. A formula is suggested for ranking both the batsmen and bowlers and
a simulation made to predict the outcome of the final series of matches.

1 Introduction

Each Australian summer two cricketing nations are invited to Australia to participate in a triangular
series of one-day international matches. The rounds of the tournament involve each team playing each
other four times so that a total of twelve matches are involved. Teams are awarded two points for a win,
one point for a draw and no points for a loss. The two teams with the most points at the end of these
initial matches then play in a best of three match final series.

A one-day match consists of each team batting for a maximum of fifty six-ball overs where the team
that scores the most runs is declared the winner. The number of wickets lost along the way is not
relevant, although the innings is over when all ten wickets are lost.

There is much strategy involved in this type of cricket with issues such as the best batting order,
optimal field placings and judicious use of bowlers all given careful consideration since each bowler is
allowed a maximum of only ten overs. Decisions such as whether to bat or bowl first if the toss is won
can be vital depending on the state of the pitch and the degree to which the batsmen should attack the
bowling is of utmost importance. Since the number of balls faced is limited, there has to be a fine balance
between scoring runs and losing wickets and not all teams achieved this result successfully. Means of
comparing cricket performance of all-rounders can be found in Skinner [13] and Nemeruck et al. [12]
while improvements to the notion of batting average are given in Kimber and Hansford [10]. One-day
cricket, probably since it is easier to analyse because of its nature, is also popular with researchers with
scoring programs being developed by Innes and Sugden [8], scoring methods by Christos [1] and de Silva
and Swartz [6], scoring policies by Johnson et al. [9] and bowlers’ strike rates and the effect of run outs
by Cohen [2, 3].

Even umpires do not escape attention with Croucher [4] and Crowe and Middledorp [5] setting their
sights on the consistency of leg-before-wicket decisions. An interesting paper by Kumar [11] suggests
that it is possible in some cases to forecast the run rate per over during the last few overs of one-day
matches. But it the work of Duckworth and Lewis [7] that has probably captured the most attention
since it is their technique that has been adopted for deciding the required score to win by the batting
team in rain interrupted one-day matches.

95



96 John S. Croucher

2 The 1999/2000 series

The series played in Australia during the 1999/2000 summer comprised the nations of Australia, Pak-
istan and India. It wasn’t long before India found themselves in trouble by losing their first four matches.
They did not recover and were the team eliminated from the final series. Each team had their strengths
and weaknesses in both batting and bowling and team selections were sometimes experimental to give
fringe players a chance or to give star players a rest during the rounds. At the end of the rounds, India
had won only one of their eight matches, Pakistan had won four and Australia had won seven, all in
succession after losing their first match.

The final series therefore consisted of Australia versus Pakistan, with Australia the clear favourites
after having won the Test Series against them 3-0 as well as their previous three one-day matches. They
had also won the World Cup in 1999. Their strength was reflected in the betting market framed on the
morning of the match by SportsTAB who offered a $1.35 return for each successful $1 bet on Australia
and $2.90 for Pakistan. These represented odds of around 3-1 on for Australia and nearly 2-1 against
for Pakistan.

3 Batting index

Whenever a player comes in to bat the television coverage always displays a number of statistics relevant
to their previous batting record and are provided to indicate their strengths or weaknesses. Prominent
among these are two crucial figures:

o The batting average. This is defined as the total number of runs that the batsman has made divided
by the number of times that they were dismissed. This might be considered an indication of an overall
“expected” value of their likely score, although it would clearly depend on the quality of the opposition
bowling. There could also be considerable variation due to playing conditions and the state of the game
during their innings. In practice, the batting average alone is often viewed as a measure of the worth
of a batsman, although it can be misleading if a batsman has a relatively high proportion of not-out
scores.

e The batting strike rate. This is defined as the number of runs the batsman has scored for every 100
balls that they have faced. In other words, this indicates the “speed” at which the batsman has scored.
For instance, if a batsman has a strike rate of 73, this means that he has scored 73 runs for every 100
balls faced. Batting strike rates of close to, or exceeding, 100 are only achieved by very few players
during their career.

Both of these statistics are very important to the selection of an appropriate player. For example,
it is not of much use having a batsman who can average 50 runs if they have a strike rate of only 20
since they would be far too slow and take up too many balls in reaching their score. On the other hand,
a batsman with a strike rate of 120 but an average of only 12 would not be of much use as a frontline
batsman but might be handy if only a few balls remain in the innings. With this in mind, the ideal
batsman in this type of cricket is one who can score a great deal of runs and can score them relatively
quickly. This naturally leads to the question of how to compare or rate each batsman and there are no
shortages of how this might be done. One simple method of achieving this goal is to construct a Batting
Indez, which may be likened to the calculation of a batsman’s momentum.

The momentum of a body is defined in physics as the product of its mass and velocity. In this
case, the momentum of a batsman may be considered as the simple product of their batting average
(analogous to mass) and strike rate (analogous to velocity). In other words:

Batting Index = batting average x batting strike rate (1)

Using the definition in (1), a player’s batting utility may be ranked according to their Batting Index.
With the strike rate calculated as the number of runs scored per 100 balls, values for the Batting Index
will almost always be under 5000 and usually around 3000 for a specialist batsman and less than 1000
for a specialist bowler.
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Tables 1, 2 and 3 show the values of the Batting Indexes for the players from Australia, Pakistan and
India, respectively, at the commencement of the 1999/2000 series. The outstanding player was Michael
Bevan whose batting average of 59.01 was 25% higher than any other batsman in the history of one-day
international matches. This, coupled with his outstanding strike rate, makes him arguably the most
valuable batsman to have ever played the game.

Player Innings | Strike rate | Batting Average | Batting Index
Michael Bevan 111 75.4 59.01 4449
Mark Waugh 197 76.8 38.42 2951
Adam Gilchrist 78 87.4 33.29 2910
Ricky Ponting 95 71.5 40.40 2889
Andrew Symonds 9 82.9 31.50 2611
Steve Waugh 252 82.2 31.66 2602
Damien Martyn 38 78.1 28.20 2202
Shane Lee 22 85.4 18.23 1575
Adam Dale 12 57.4 19.50 1117
Tan Harvey 9 69.2 14.42 997
Glen McGrath 32 49.5 3.46 699
Damien Fleming 23 50.0 7.75 388

Table 1: Career one-day International batting records for Australia.

Player Innings | Strike rate | Batting Average | Batting Index
Saeed Anwar 187 82.8 46.10 3817
Yousuf Youhana 31 72.9 45.28 3301
Inzaman-ul-Haq 192 72.3 38.91 2813
Tjaz Ahmed 221 80.0 32.21 2577
Moin Khan 126 80.6 23.91 1927
Shahid Afridi 88 77.0 23.51 1810
Wasim Akram 224 89.1 15.82 1410
Abdur Razzaq 29 57.4 24.22 1391
Azhar M 58 75.8 18.06 1369
Shoaib Akhtar 11 62.2 18.66 1161
Saglain Mushtaq 66 52.6 14.24 749
Wagar Younis 89 71.2 10.57 753

Table 2: Career one-day international batting records for Pakistan.

From Tables 1, 2 and 3 it is evident that, in contrast to the Australian and Pakistan teams, the
Indian batsmen were going to suffer by comparison since they had only three batsmen with a Batting
Index above 2500 compared with six for Australia and four for Pakistan. To make matters worse, their
star batsman and captain, Sachin Tendulkar, ultimately turned out to have a poor series (for him) with
a batting average of less than 30.

There are, of course, far more complex systems of rating players and in 1998 the global professional
services firm PricewaterhouseCoopers introduced ratings for players in limited-overs internationals. Play-
ers considered must not have retired and must have appeared in an official match during the previous
twelve months. Batsmen were rated on factors including runs scored, the rate at which they scored, the
overall rate for the match, the ratings for opposing bowlers and the result of the match. However, the
Batting Index is much easier to calculate and can be found by anyone who cares to watch the television
broadcasts.
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Player Innings | Strike | Batting | Batting
rate | Average | Index
Sachin Tendulkar 225 86.5 42.34 3662
Sourav Ganguly 124 73.0 42.72 3118
Rahul Dravid 104 68.4 37.47 2563
Robin Singh 89 78.3 27.75 2173
H. Kanitkar 23 67.1 17.22 1155
Nikhil Chopra 23 63.3 16.72 1058
Javagal Srinath 93 86.5 11.60 1003
Devang Gandhi 2 45.6 18.00 821
Anil Kumble 90 66.6 10.03 668
Vengatesh Prasad 54 61.5 6.10 375
V.V.S. Laxman 9 36.8 9.37 319
Sameer Dighe 3 19.3 3.66 71

Table 3: Career one-day international batting records for India.

Although the actual PricewaterhouseCoopers formula for the ratings is not revealed, at the beginning
of the series in 2000 Australia dominated the top rankings with three players Bevan (first), Ponting
(fourth), and Mark Waugh (sixth). Ganguly (third) was the only Indian batsman in the top ten while
Anwar (seventh) was the only Pakistan batsman.

These rankings are quite consistent with the simple Batting Index proposed here, although Tendulkar
had a current PricewaterhouseCoopers’ batting ranking of eleventh (after being first only one year
before) and Gilchrist was ranked 13th in the world.

4 Expected number of balls faced

As well as determining the Batting Index, it is easy to calculate the expected number of balls that a
batsman might take to achieve their average score. This can be found from:

Batting Average

Expected number of balls faced = -
Strike rate

x 100 ()

For example, using (2), a player with a batting average of 32 and a strike rate of 80 would be
expected to score these in (32/80) x 100 = 40 balls. In this way an expected number of balls that might
be faced can be calculated for each player. However, when these are added for a team they may well
exceed the maximum of 300 balls since there will be variation with some players facing much more than
their expected value and other players might not even get a turn at bat.

From the three teams combined, the ten batsmen with the longest expected stay at the crease during
their career are shown in Table 4. For comparison, the final column shows their average stay during
the 1999/2000 series. The correlation coefficient between the series and career mean balls faced was
0.60 which was only marginally significant. The biggest disappointments for Pakistan included Yousuf
Youhana who had a series batting average of only 23 and faced an average of only 36 balls—both
about half of what might have been expected. But Inzaman-ul-Haq was even worse with a series batting
average of about 12, facing an average of only 23 balls.

Batsman such as Bevan, Ganguly, Dravid and Razzaq were the closest to performing according to
their past records. The case of Michael Bevan is particularly interesting since his batting average of
nearly sixty was due to the fact that he normally batted at number six and remained not out nearly
40% of the time. However, in the 1999/2000 series he moved up to bat at number four, yet still managed
to achieve a series batting average of 55 runs.
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No. of | Career Average Average
Player Country | innings | Batting career series
Average | balls faced | balls faced
Michael Bevan Australia 111 59.01 78 77
Yousuf Youhana | Pakistan 31 45.28 62 36
Sourev Ganguly | India 124 42.72 59 64
Ricky Ponting Australia 95 40.40 57 37
Saeed Anwar Pakistan 187 46.10 56 39
Rahul Dravid India 104 37.47 55 58
Inzaman-ul-Haq | Pakistan 192 38.91 54 23
Mark Waugh Australia 197 38.42 50 28
Sachin Tendulkar | India 225 42.34 49 33
Abdur Razzaq Pakistan 29 24.22 42 48

Table 4: The ten series batsmen with the longest career average stay at bat per innings and how they
performed in the current series.

5 Bowling index

In the same way as the Batting Index can be constructed, it is also possible to create a simple index to
rank the utility of bowlers in one-day cricket. This is also based on the notion of momentum where this
time the mass is represented by the bowling average (the number of runs conceded per wicket taken)
and the velocity is represented by the bowling strike rate (the number of balls bowled per wicket taken).
The formula is:

Bowling Index = bowling average X bowling strike rate (3)

Tables 5, 6 and 7 show the career Bowling Indexes for the leading bowlers from Australia, Pakistan and
India, respectively at the commencement of the series. In this case the lower the index the better it is. A
player with a low bowling average and high bowling strike rate is one who does not concede many runs
but does not take wickets quickly. A player with a high bowling average and low bowling strike rate is
one who can take wickets quickly but in doing so will concede many runs. The most valuable bowlers
are those who have low values in both aspects and hence have the lowest product or Bowling Index.

Taking into account only those bowlers who had taken at least ten wickets, the best two bowlers
based on the Bowling Index were Shoaib Akhtar and Saqlain Mushtaq from Pakistan with a rating of
less than 550, while the best for Australia were Fleming and Warne. As was the case with their batsmen,
India’s bowlers seemed to suffer by comparison with only one bowler, Agarkar, having a Bowling Index
less than 1000 compared to Pakistan with six and Australia with five.

PricewaterhouseCoopers also have a system for rating bowlers in one-day internationals, including
factors such as runs conceded per over, wickets taken and runs conceded for the match, the overall
ratings of the opposing batsmen and the result of the match. At the beginning of the series, the two
Pakistan bowlers Saqlain Mustaq and Azhar Mahmood were rated by them to be second and third in the
world while for Australia Glen McGrath was rated fourth, Damien Fleming seventh and Shane Warne
eighth. The highest ranked Indian bowler was Vekatesh Prasad at 16th. These are again consistent with
the Bowling Index with the exception of Azhar Mahmood who has a ranking much higher than his raw
figures suggest.

6 The finals series

As mentioned previously, the final series was played between Australia and Pakistan with Australia
heavily favoured to win. The first final was played at the Melbourne Cricket Ground as a day/night
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Player Wickets | Bowling | Bowling | Bowling
strike rate | average Index
Andrew Symonds 16 26.2 20.87 547
Damien Fleming 107 33.6 24.05 808
Shane Warne 214 34.7 24.28 842
Glen McGrath 155 36.6 24.30 889
Shane Lee 27 38.1 28.59 1089
Mark Waugh 81 41.5 32.98 1369
Adam Dale 32 49.8 30.59 1523
Steve Waugh 191 45.4 34.41 1562
Michael Bevan 32 53.8 44.15 2375
Tan Harvey 7 59.5 46.42 2762
Damien Martyn 4 77.5 61.00 4728
Ricky Ponting 1 90.0 64.00 5760

Table 5: Career one-day international bowling records for Australia.

Player Wickets | Bowling | Bowling | Bowling
strike rate | average Index
Inzaman-ul-Haq 2 20.0 26.00 520
Shoaib Akhtar 51 27.1 19.60 531
Saqglain Mushtaq 212 28.0 19.59 548
Tjaz Ahmed 5 126.4 94.80 632
Wagqar Younis 290 30.5 23.31 711
Abdur Razzaq 44 33.7 24.13 813
Wasim Akram 397 36.7 23.53 864
Azhar Mahmood 80 43.6 31.83 1388
Saeed Anwar 5 43.6 35.20 1535

Table 6: Career one-day international bowling records for Pakistan.

Player Wickets | Bowling strike | Bowling | Bowling
strike rate average Index
A. B. Agarkar 76 30.2 26.50 800
Nikhil Chopra 43 38.7 26.60 1029
Javagal Srinath 247 37.9 27.60 1046
Anil Kumble 246 40.6 28.31 1149
Vengatesh Prasad 164 42.0 32.14 1350
Sourav Ganguly 45 45.2 37.33 1687
Robin Singh 64 49.5 39.42 1951
Sachin Tendulkar 78 58.3 48.06 2802

Table 7: Career one-day international bowling records for India.

match on 2 February 2000 and the Pakistan captain Wasim Akram won the toss and decided to bat.
Such was the strength of the Australian team, they could not find a place for Damien Fleming who
was rated the seventh best bowler in the world and second best (behind McGrath) in Australia by
PricewaterhouseCoopers. They also omitted the spinner Stuart MacGill who had played in three of the
series round matches and was voted man of the match in one of them. Instead, the Australian selectors
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opted for a newcomer in Brett Lee (the fastest bowler in the country) and the leg-spinner Shane Warne
who had missed six of the round matches through injury.

Armed with an endless supply of cricket statistics, it is an interesting exercise to try to determine
just how such a cricket match might turn out. With plenty of variables to worry about, however, this
is no easy task. To keep matters simple, in this section a basic technique is used to see if the winning
team, along with a few statistics, can be predicted. To do this, only the form of the players during
the current series was considered (since recent form was considered the most reliable). In particular,
only the batting attributes of the players were used to try and predict just how many runs they might
score in the final. The relevant series records leading up to the finals, in the correct batting order, for
Australia and Pakistan are shown in Tables 8 and 9, respectively.

With Australia having six batsmen with a Batting Index above 2000 while Pakistan had only three,
the form suggested that the Pakistan team was going to struggle in the run-making department. The
weak link of the specialist batsmen seemed to be Inzamam-ul-Haq, who lived up to expectations with a
second ball duck. The strongest in-form batsman on paper was Abdur Razzaq who managed the second
top score of 22 in Pakistan’s innings in the first finals match.

Player Innings | Runs | Balls | Strike | Batting | Batting
scored | faced | rate | Average | Index
A. Gilchrist 8 212 260 81.53 | 26.50 2161
M. Waugh 8 242 363 66.66 | 30.25 2016
R. Ponting 8 276 309 89.32 | 34.50 3082
M. Bevan 8 331 485 68.24 | 55.16 3765
S. Waugh 7 139 202 68.81 | 23.16 1594
D. Martyn 7 117 271 69.29 | 55.66 1420
A. Symonds 6 139 114 | 121.92 | 27.80 3390
S. Lee 5 94 69 | 136.23 | 31.33 4268
S. Warne 2 25 38 65.78 | 25.00 822
B. Lee 2 3 6 50.00 1.50 75
G. McGrath 2 0 5 0 0 0

Table 8: Australian batting records during the 1999/2000 series.

Player Innings | Runs | Balls | Strike | Batting | Batting
scored | faced | rate | Average | Index
214 310 | 69.03 26.75 1847
107 139 | 76.98 21.40 1647
263 349 | 75.36 32.88 2478
97 180 | 53.88 12.12 654
187 286 | 65.38 23.37 1529
201 238 | 85.16 40.20 3425
97 103 | 94.17 24.25 2283
125 176 | 71.02 15.62 1110
133 219 | 60.73 19.00 1154
80 141 | 55.94 20.00 1135
4 19 | 21.05 - -

Saeed Anwar
Shahid Afridi
[jaz Ahmed
Inzamam-ul-Haq
Yousuf Youhana
Abdur Razzaq
Anzhar Mahmood
Moin Khan
Wasim Akram
Saqlain Mushtaq
Shoaib Akhtar

L O 00 0O ~J 00 o o Ut

Table 9: Pakistan batting records during the 1999/2000 series.

The Pakistan innings started disastrously since after only 17 balls their top three batsmen were all
dismissed for no score—all out to Glen McGrath. Worse was to follow and they soon found themselves
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5 for 28 after 14.3 overs and the match was as good as lost. However, as is often the case when there
is a dramatic collapse of top order batsmen, the middle and lower orders seem to find an inner reserve.
This was the situation here when the team hung on until the 48th over to be all out for 154, a much
better score than seemed likely not long after the start.

To determine just how unexpected was a total of 154, Table 10 shows the actual score of each
Pakistan batsman along with the score that might be expected if they had scored their series average
score. The difference column in Table 10 shows just how far each was above or below this expected score
and sadly the predominance of minus signs shows just how badly Pakistan batted. Only Moin Khan
managed to score more than his series average, but with no assistance from the rest of his team it was
not enough. Pakistan were allowed a simulated value of 18 runs for extras (sundries) since this was their
average per 50 overs during the series. Their final total was 54 runs behind their expected value and
left Australia with just 155 runs to win the match.

Based on their run rate in the series, the simulation suggested that Pakistan, on average, should
have been 8 for 235 at the end of their 50 overs. This left them 81 runs short of what might have been
hoped.

Batsman Actual score | Simulated score | Difference
Saeed Anwar 7 27 —20
Shahid Afridi 0 21 -21
Tjaz Ahmed 0 33 -33
Inzaman-ul-Haq 0 12 —12
Yousuf Youhana 14 23 -9
Abdur Razzaq 24 40 —16
Azhar Mahmood 16 24 -8
Moin Khan 47 16 +31
Wasim Akram 15 16 n.o. -1
Saqlain Mushtaq 16 5 n.o. +11
Shoaib Akhtar 3 n.o. did not bat +3
Sundries 12 18 —6
Total 154 235 —81

Table 10: The Pakistan innings—actual and simulated scores.

Using equation (2) based on the expected number of balls that each batsman would last, the simulated
score at the fall of each wicket and the over in which it would fall can also easily be calculated. It was
assumed that batsmen are equally likely to face a ball bowled i.e. if a partnership lasted 30 balls then it
is assumed that each batsman would face 15 balls. In this way it was possible to determine the expected
order in which the batsmen would be dismissed as well as the expected score of the not out batsman.

These simulated values, along with the actual values, are shown in Table 11. Because of the unex-
pected early batting collapse, the scores at the actual fall of wickets were distorted early on and never
really recovered.

With the Pakistan total only a modest 154 runs, this was going to affect the way in which the
Australian team batted since there was no real hurry and it was not necessary to take risks. Despite
this, they lost their two opening batsmen (Adam Gilchrist and Mark Waugh) to put them at 2 for 27
in the eighth over. However, the innings was steadied by Ricky Ponting with 50 (this being 15 above
his series average) and Michael Bevan who scored 54 (only one less than his series average).

The simulation shown in Table 12 is based on Australia having a full 50 overs to bat. This would
have been the case had they batted first and the figures suggest that they would have finished with 7
for 259 had they done so. In fact, since they only required 155 runs to win, the simulation predicted
that they would do so with the loss of three wickets and in the 33rd over. The actual victory came with
the loss of four wickets (Bevan was dismissed with a few runs left to score) in the 43rd over.
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Wicket | Actual (over) (Batsman out) Simulated (over) (Batsman out)
Ist 1—1(0.5) (Shahid Afridi) 1— 42 (9.2) (Shahid Afridi)
2nd 2 -4 (2.3) (Ijaz Ahmed) 2 - 60 (13.0) (Saeed Anwar)
3rd 3 -4 (2.5) (Inzamam-ul-Haq) | 3 — 91 (20.2) (Inzamam-ul-Haq)

4th 4 - 12 (7.2) (Saeed Anwar) 4 - 108 (24.0) (Ijaz Ahmed)
5th 5 — 28 (14.3) (Y. Youhana) - 147 (32.2) (Y. Youhana)
6th 6 — 59 (27.1) (A. Mahmood) - 189 (39.4) (Abdur Razzaq)
Tth 7 - 78 (29.5) (Abdur Razzaq) - 197 (41.0) (A. Mahmood)
8th 8 — 147 (39.1) (Wasim Akram) 8 223 (47.0) (Moin Khan)
9th 9 — 147 (45.3) (Moin Khan)

10th | 10 — 154 (47.2) (S. Mushtaq)

Table 11: The Pakistan innings—actual and simulated fall of wickets.

Batsman Actual score | Simulated score | Difference
A. Gilchrist 9 27 —18
M. Waugh 10 30 —-20
R. Ponting 20 35 +15
M. Bevan 54 95 -1
S. Waugh 19 n.o. 23

D. Martyn 4 n.o. 29

A. Symonds 28

S. Lee 31

S. Warne 13 n.o.

B. Lee did not bat

G. McGrath did not bat

Sundries 9 17 -8
Total 4 for 155 7 for 259 -32

Table 12: The Australian innings—actual and simulated scores.

Using the same principles as for the Pakistan team in Table 11, the predicted score at the fall of
each Australian wicket is shown in Table 13. The order of the first three batsmen dismissed was correct
and the fall of the third wicket was out by only 12 runs.

Wicket | Actual (over) (Batsman out) | Simulated (over) (Batsman out)
1st 1-11 (3.6) (A. Gilchrist) 1 - 51 (11.0) (A. Gilchrist)
ond | 2 - 27 (7.4) (M. Waugh) 2~ 72 (15.0) (M. Waugh)
3rd | 3104 (29.6) (R. Ponting) 3 ~ 116 (24.0) (R. Ponting)
4th 4 — 147 (38.4) (M. Bevan) - 164 (35.4) (S. Waugh)
5th - 204 (42.2) (M. Bevan)
6th - 214 (43.2) (A. Symonds)
7th 7 259 (50.0) (S. Lee)

Table 13: The Australian Innings—actual and simulated fall of wickets.
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7 All-rounder index

Since it has been possible to produce a Batting Index as a measure of batting ability and a Bowling
Index as a measure of bowling ability, it seems appropriate that these two measures might be combined
in some way to rank players who are proficient at both. These players are known as “all-rounders”. The
higher the Batting Index and the lower the Bowling Index, the better the player in those aspects in
one-day cricket. Since these two measures are independent, a simple All-rounder Index could be defined
as in equation (4):

Batting Index

All-Rounder Index = 100 x 4)

Bowling Index
The ratio of the Batting Index to the Bowling Index is multiplied by 100 to yield easy to rank numbers
and is rounded to the nearest integer. To give an indication how this measure applies to the Australian
team, Table 14 shows the value of the All-Rounder Indexes for the top nine players.

Player Batting Index | Bowling Index | All-rounder Index
Andrew Symonds 2611 547 477
Mark Waugh 2951 1369 216
Michael Bevan 4449 2375 187
Steven Waugh 2602 1562 167
Shane Lee 1575 1089 145
Shane Warne 1024 842 122
Adam Dale 1117 1523 73
Damien Fleming 388 808 48
Damien Martyn 2202 4728 47

Table 14: The All-rounder Index values for current Australian players.

From Table 14 it can be easily seen that the best Australian all-rounder is Andrew Symonds, largely
because of his very low Bowling Index that in turn was due to taking 16 wickets for relatively few runs.
Suppose there were minimums of, say, 1000 runs and 30 wickets before a meaningful value could be
obtained. This would leave Mark Waugh clearly on top, followed by Michael Bevan and Steven Waugh.

8 Remarks

This paper would not be complete without mentioning the result of the second finals match played at
the Sydney Cricket Ground as a day/night fixture on 4 February 2000. This time Australia won the
toss and batted, managing to score a then all-time high one day international score (for Australia) of
seven wickets for 337 after their allotted 50 overs. Perversely, the only failure was Michael Bevan who
scored only three runs. Pakistan were unable to sustain an initial onslaught of the Australian bowling
and were dismissed for 185 in 36.3 overs.

Australia thus won the finals series 2-0. Of all the statistics that came from the international series
that summer, one of the more unusual was the batting of the Pakistan fast bowler Shoaib Akhtar who
batted five times and was never dismissed. Perhaps he could have been moved up the order from his
usual number 11 position.

The wealth of cricket statistics provides a gold mine for data analysts who try to make sense of it
all. The idea of the Batting Index suggested here has another analogy with momentum. The Principle
of Conservation of Momentum states:

In any system of bodies which act and react on each other, the total momentum remains constant.
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When likened to the Batting Index, this means that each batsman has an average score and a strike
rate figure that is a reflection of his true ability and that the product of these will not change. For
example, if the match circumstances are such that it becomes necessary for a batsman to score faster
than he otherwise normally would, his increase in risk of being dismissed is in proportion to the decrease
in his likely score.

For example, suppose that a batsman has a batting average of 40 and a strike rate of 60 to yield a
Batting Index of 40 x 60 = 2400. Then, if he is forced to score with a strike rate of 80, his expected
score decreases to 2400/80 = 30 to account for the higher risk he must take.

There are many other ways in which the worth of a bowler and batsman can be measured and the
techniques suggested in this paper are really just a starting point for discussion as to how this might
be done in an effective but easy to understand manner that is simple to explain. For any such index to
have credibility, however, it must be based on a minimum number of innings played or wickets taken
since otherwise new players may look far better than they actually are before reality sets in!
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Abstract

This article describes the flight of a cricket ball when it is struck so well by the batsman that it flies
through the air without obstruction from the centre of the field over the boundary. That is, the ball
is hit for six runs, similar to a home run in baseball. Quadratic drag is assumed and the path is
determined analytically to the point where parametric equations involving integrals are obtained;
the integrals must be evaluated numerically.

1 Introduction

This article concentrates on the flight of a cricket ball when it is struck so well by the batsman that
it flies through the air without obstruction from the centre of the field over the boundary. That is, the
ball is hit for six runs, similar to a home run in baseball. By assuming a rope boundary, rather than
a fence, we can make use of the mathematical simplification that the trajectory of the ball just passes
over the rope at a height equal to the height it had when struck by the bat. A similar mathematical
analysis can be used for bigger “sixes” or for the trajectory of any cricket hit to the first bounce.

The essential difference between a hit by a cricket bat and that by a baseball bat is that the baseball
bat can impart a great deal of spin to the ball, whereas a full-blooded hit in cricket requires the bowled
ball to rebound from the flat middle section of the bat with relatively little rotation imparted to the
ball compared with its translational speed.

The dynamics of a hit for six in cricket are therefore governed by the forces of gravity and aerody-
namic drag. Coutis [1] considered the drag force to vary linearly with speed, because this was easier
to handle mathematically than the more realistic quadratic dependency on speed, yet was more so-
phisticated than zero drag. Although the quadratic drag law can of course be handled by a numerical
Runge—Kutta approach, it is possible to solve the resulting differential equations analytically to a certain
extent, and it is the purpose of this paper to present the details of that approach.

In essence, the equations can be re-arranged to produce a Bernoulli-type first-order differential
equation. This equation was first formulated by Jacob Bernoulli (1654-1705) and solved by Gottfried
Leibniz (1646-1716) for a projectile problem in exterior ballistics.

2 The parabolic path — a first approximation
The simplest model of the flight of a cricket ball after it has been struck by the bat is one of zero drag
in which the only force acting is gravity. Then, by Newton’s second law of motion, the horizontal and

vertical components of the acceleration of the ball satisfy the equations

mi =0 and mij = —mg, (1)
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respectively, where m is the mass of the ball (taken as 0.16 kg) and g is the acceleration due to gravity
(9.81ms 2 in Sydney). The dots denote differentiation with respect to time ¢, and the origin of the
coordinate system is taken to be the point where the bat strikes the ball.

This is a system of differential equations. The usual initial conditions assume that the ball is struck
with speed u, at a launch angle 8 to the horizontal. Then, when ¢ = 0, we have x = 0, £ = ucosf,y =0
and § = usinf.

From (1) by integration, we obtain z = At + B and y = —%gt2 + Ct+ D, where A, B, C' and D are
constants, and then, from the initial conditions, we find that B =0, A =ucosf, D =0 and C' = usin$.
Putting this together,

v=utcosd and y=—1gt’+utsinb,

which are parametric equations for a parabola. The rectangular form can be obtained by eliminating t,
yielding
2 2
gx- sec” 0
=xtanf — ¥——.
Y 2u?

The graph of an instance of this inverted parabolic trajectory is shown later in Figure 2. There are three
conclusions that we wish to state, arising from this model of the path of a struck cricket ball.

(i) It is symmetrical in time and distance about the point corresponding to the apex of the trajectory.

(ii) Setting y = 0, we find = 0 (where the ball started) or z = R, called the range of the stroke
(where the ball first lands). We have

_ 2u’tan® _ u?sin26

gsec2f g

(iii) The range is therefore greatest when sin 26 = 1, that is, when 6 = 45°.

3 The effect of drag

For a cricket ball moving through air however, gravity is not the only force acting, and the aerodynamic
effect has to be included. As indicated earlier, a struck cricket ball will probably not have excessive spin,
and so lift due to spin will not be included in this analysis. On the other hand, the drag force due to
passage through the air must be included, and it is well-known that this is a nonlinear effect. Coutis [1]
modelled the drag D linearly because it allowed tractable mathematics and still indicated the general
tendencies. We shall adopt the more realistic model with

1 ~
D = —ipA'U2CD'U,

where p is the density of the air, A is the area of cross-section of the ball, v is its speed, Cp is the
drag coefficient and v is a unit vector in the direction of the ball’s velocity at any instant. Although in
reality the air density varies with height above the ground, the ball is not exactly spherical and the drag
coefficient varies with speed v, a suitable model for a cricket ball in flight is to consider the combination
of these in the drag formula as approximately constant. Thus we will model the drag force as

D = —Kv?v,

maintaining the nonlinear effect through the speed only. For a well-hit cricket ball, the speed of the
air particles near the ball will probably start off in the turbulent-drag region of flow where Cp =~ 0.2
and will then change very early along the trajectory path to the laminar-drag region of flow where
Cp = 0.45. These produce values of K of 0.0005 and 0.0011, respectively, and so the single value of K
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used in this paper will be 0.001 kgm~!. Consequently, for a big hit where the initial speed off the bat
is 40ms !, the ratio of the drag force to the gravitational force (Kv?/mg) is 1.02, that is, the drag of
the air in the early part of the trajectory has as much effect on the ball as its weight.

The relevant equations in rectangular cartesian coordinates are therefore

mi = —Kiv/i2 + 32,
mjj = —mg — Kj\/& + 7,
with the same initial conditions as before, namely z = 0, & = ucosf, y = 0 and §y = usinf when

t = 0. These equations may be solved numerically using a Runge-Kutta approach, but they may also
be partially solved analytically, as we now illustrate.

(2)

drag myg

(i

Figure 1: Forces on a cricket ball in flight.

We recast the equations in the tangential and normal directions (see de Mestre [2]), as opposed to
the more conventional horizontal and vertical directions. This yields

mo = —mgsiny — Kv?,

3)

mu) = —mg cos 1,

where 1 is the angle between the direction of the velocity of the cricket ball (tangent to the trajectory)
and the horizontal at any instant (see Figure 1). The initial conditions are v = u and ) = 6 when t = 0,
and the relationship to the original coordinate system is given by

& = wvcosy and y = vsina, (4)

with x =0 and y = 0 when ¢t = 0.
Now the time can be eliminated from the system of equations (3) by division to yield

1d
;ﬁ = tan ) + kv?sec),

where k = K/(mg) ~ 0.00064. This can be rearranged as

dv

— —wvtany = kv® sec

G vty v
and is then recognisable as a Bernoulli-type first-order differential equation. This is solved by dividing
both sides by v?, and using the transformation 2 = 1/v? to change the equation to a first-order linear
differential equation in z. An integrating factor sec 1) produces the following solution, which incorporates
the boundary condition v = u when ¢ = 6:

sec?¢)  sec?d

= +E(f(0) — f(¥), (5)

v2 u?

where

f(&) =sec&tané + In|sec& + tan(].
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This can easily be rearranged to give v = v(%)), relating the speed v at any point on the trajectory to
the intrinsic angle v of the tangent to the trajectory at that point. In particular, the speed at the apex
of the trajectory is obtained by putting ¢ = 0.

The time of flight from ¢ = 0 to any instant ¢ may be obtained directly from the second of the
equations (3) by first recasting it as

at _USQC1/J

g 6
& 7 (6)
Thus
1 r?
p=1 / v(€) sec & de. (7)
9 Jy
The corresponding values of x and y are obtained from the equations (4), using (6), as
1,
o= [ s (®)
9y
1[0,
v=> [ P@umed. )
9 Jy

4 Applications to a cricket ball

Consider a cricket ball struck so that its initial speed off the bat is u = 40 ms™! (or 144 kilometres per
hour, not much less than the maximum speed attained by any bowler), at a launch angle of § = 45°.
The graph of the trajectory, plotted from the parametric equations (8) and (9) by Mathematica, is
shown in Figure 2. On the same axes, the no-drag parabolic trajectory is also shown. The diagram is
similar to that obtained by Coutis [1]. This is because Coutis chose a linear expression for his drag
function, essentially by replacing /42 + ¢? in our equations (2) by the constant u (or 1.1u, in effect).
Consequently his model overestimates the effect of drag (as he suggested it might). Coutis predicts that
when v = 40ms~! the range will be about 90m whereas the quadratic-drag model predicts 95.4 m.

metres
40 +
30 T
no drag
20 +
drag
10 +
0 25 50 75 100 125 150  metres

Figure 2: The trajectories for a projectile launched with speed 40 ms™' at an angle 45° using a no-drag
model and a quadratic-drag model.

We turn our attention now to the three items highlighted in Section 2.
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(i) When drag is taken into account, the asymmetry of the trajectory is evident. In Figure 2, the
cricket ball traverses a longer horizontal distance on the way up (just over 51 m) than it does on the way
down (44m). With no air resistance, the batsman might expect to hit the ball approximately 163 m to
the first bounce, about 68 m more than predicted by our model.

metres
100 A

80 T

60 T

40 +

20 T

0 25 50 75 100 125 150 175 200 225 250 metres

Figure 3: The trajectories for a launch angle of 45° and initial speeds of 20, 40, 60, 80, 100 and 120 ms !,
respectively, from the left.

(ii) Just as for the no-drag model, we may put y = 0 in equation (9) to estimate the range R of the
batsman’s hit for various values of u and #. That is, we have to solve the equation

0
/ v (€) tanEdE =0
¥

for ¢, with v(£) given by equation (5). One solution is clearly ¢ = 6 (the take-off point), but there is
another at a negative value of ¢ (the impact angle), which we may evaluate using Mathematica, for
example. That value of ¢ is then inserted into equation (8) and the value of R determined numerically.
That has been done, in effect, in Figure 3 which shows the path of the “cricket ball” for a launch angle
of 45° and launch speeds of 20, 40, 60, 80, 100 and 120ms~!. Only the first three speeds are realistic,
but the others have been included for comparison with the corresponding figure by Coutis to show
that, when quadratic drag is applied to the model of a cricket ball’s motion, there is no indication that
the range of the stroke is bounded as a function of the speed with which the ball leaves the bat. This
contradicts the assertion by Coutis, and we believe that his conclusion is a product of the incorrect use
of the linear model for drag. The better quadratic model predicts a range of 249 m when v = 120ms™!,
and we even calculated a range well over 500m when u = 1000 ms!—but no cricketer can hit that
hard. In this latter hypothetical situation, the quadratic-drag model predicts that the ball travels almost
along the 45° straight line from impact for about 300 m before it curves sharply and plummets toward
the ground. The trajectory is very similar in shape to that of a normal golf ball driven with lift which
just counteracts the gravitational pull early in the flight path.

(iii) Figure 4 shows the path for a launch speed of 42ms~! and launch angles 10°, 20°, ..., 70°.
Again the curves obtained should be compared with those of Coutis [1]. The angle of projection for
maximum range when u = 42ms~! appears to be near 40°. When a Runge-Kutta numerical technique
is applied to equations (2), the predicted maximum range is 102.1m at 40.5° with very little variation
in this range over the sector 39° to 42°.

We end with an interesting use of the first of the equations (3). From it, we may determine the
terminal speed of the projectile. This is reached when ¢ = 0, and in the limiting case of vertical free-
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Figure 4: The trajectories for a projectile launched with initial speed 42ms™" and initial angles 10°,

20°, ... 70°, respectively.

fall, when ¢ = —n/2. Then, by that equation, the terminal speed will be y/mg/K, or approximately
37.9ms~! for a cricket ball.
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Abstract

The Duckworth-Lewis method is steadily becoming the standard approach for resetting targets in
interrupted one-day cricket matches. In this note we show that the Duckworth—Lewis resource table
can be used to quantify the magnitude of a victory in one-day matches. This simple and direct
application is particularly useful in breaking ties in tournament standings and in quantifying team
strength.

1 Introduction

There are four possible outcomes in one-day cricket matches:
(i) the team batting first can win in a non-abandoned match,
(ii) the match can end in a tie,

)
)
(iii) the match can be abandoned,
(iv)

In the first case, the run differential between the two teams is a sensible measure of the magnitude of
victory. In the second case, which is rare in practice, the tie itself indicates that there is zero magnitude
of victory. In the third case, either the game is declared null or one of the teams is declared the winner.
In the latter event, a projected score is determined for the team batting second, and again, magnitude
of victory can be assessed by calculating the run differential. However, in the fourth case, the magnitude
of victory is unclear because the match terminates as soon as the team batting second scores more runs
than the team batting first even though the team batting second may have leftover wickets and overs.

Why should we care about quantifying the magnitude of victory? Without such quantification,
statistical analyses are typically based on binary data corresponding solely to wins and losses. For
example, de Silva and Swartz [4] estimate the effect of the home team advantage in one-day international
cricket matches using logistic regression. It is a generally accepted statistical principle that data is
valuable and that one should not “waste” data by needless summarisation. Therefore, by quantifying

the team batting second can win in a non-abandoned match.
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the magnitude of victory in one-day cricket matches, future statistical modelling can better utilise the
information contained in matches. Quantifying the magnitude of victory may aid in assessing team
strength, determining betting strategies, breaking ties in tournament standings, etc.

How can we quantify the magnitude of victory? The Duckworth—Lewis method [5, 6, 7] is steadily
becoming the standard approach for resetting targets in interrupted one-day cricket matches. At the time
of writing, the Duckworth—Lewis method has been adopted for various competitions by the Zimbabwe
Cricket Union, the England and Wales Cricket Board, New Zealand Cricket, and most notably, the
International Cricket Council. In Section 2, we show that a simple application of the Duckworth—Lewis
resource table can be used to quantify the magnitude of victory in one-day cricket matches. This
approach and variations of it have also been considered by Allsopp and Clarke [1, 2, 3]. In Section 3,
we provide an example whereby a three-way tie could have sensibly been broken using our approach. In
Section 4, a second example is given which models the strength of ICC (International Cricket Council)
nations in one-day international cricket matches.

2 Quantifying the magnitude of victory

The Duckworth—Lewis resource table (see Table 1) was devised to improve “fairness” in interrupted one-
day matches. The resource table is based on the principle that resources are diminished in a shortened
match and that targets should be reset according to the resources available. Duckworth and Lewis [5, 6]
obtained the entries in the resource table using statistical methods based on historical match data. For a
brief introduction to the Duckworth—Lewis method, see the CricInfo website (http://www.cricket.org).

Wickets lost
Overs left 0 1 2 3 4 5 6 7 8 9
50 100.0 | 92.4 | 83.8 | 73.8 | 62.4 | 49.5 | 376 | 26.5 | 164 | 7.6
40 90.3 | 84.5 | 77.6 | 69.4 | 59.8 | 48.3 | 37.3 | 264 | 164 | 7.6
30 77.1 | 73.1 | 68.2 | 62.3 | 549 | 45.7 | 36.2 | 26.2 | 16.4 | 7.6
20 58.9 | 56.7 | 54.0 | 50.6 | 46.1 | 40.0 | 33.2 | 25.2 | 16.3 | 7.6
19 56.8 | 54.8 | 52.2 | 49.0 | 44.8 | 39.1 | 32.7 | 249 | 16.2 | 7.6
17 52.3 | 50.6 | 48.5 | 45.8 | 42.2 | 37.2 | 31.5 | 24.4 | 16.1 | 7.6
16 49.9 | 48.4 | 46.5 | 44.0 | 40.7 | 36.1 | 30.8 | 24.1 | 16.1 | 7.6
10 34.1 | 334|325 | 314|298 275|246 | 206 | 149 | 7.5
5 18.4 | 182 | 179 | 176 | 17.1 | 16.4 | 155 | 14.0 | 11.5 | 7.0
1 39 39| 39| 39| 39| 38| 38| 37| 35|31
0 00 00| 00| 0O 0O| 00| 00| 0.0 0.0/ 0.0

Table 1: Abbreviated version of the Duckworth—Lewis resource table. The table entries indicate the
percentage of resources remaining in a match with the specified number of wickets lost and overs
available.

Our problem, as stated in Section 1, is to quantify the magnitude of victory when the team batting
second wins in a non-abandoned match. Using the Duckworth—Lewis resource table, this is a straight-
forward task. We determine the resource percentage used U relative to a standard 50-over match. We
then solve UE/100 = R for E where E is the number of effective runs and R is the actual number of
runs scored. Here, the actual number of runs is simply the proportion of the effective number of runs
in accordance with the resources used. The effective number of runs is the same as the new projected
score as described by Allsopp and Clarke [3]. With effective runs, an effective run differential can then
be calculated to quantify the magnitude of victory.

Consider then the most complicated scenario possible where the batting team starts and stops
batting n times. When they start batting on the ith occasion they have a; resources available according
to Table 1, and similarly, when they stop batting they have b; resources available. Therefore, the team
has used U = Y"1 | (a; — b;) resources relative to a standard 50-over match. For example, consider a
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50-over match where ten overs are played and one wicket is lost. A rain delay occurs and the inning is
shortened to 20 remaining overs which are then played out. In this case, a; = 100.0, by = 84.5, a; = 56.7
and by = 0.0.

The simplicity of the approach is part of its appeal. Further, we note that in any shortened match,
we may want to scale the number of runs as described above so that they are comparable to a standard
50-over match.

3 An example concerning ties

We refer to the Asia Cup played in Sharjah, UAE, in April 1995. This tournament featured India,
Sri Lanka, Pakistan and Bangladesh in 50-over matches with the top two teams advancing to the
championship final. After the initial round, Bangladesh had no wins and three losses. The remaining
teams each had two wins and one loss. Under the three-way tie, India and Sri Lanka advanced to the
finals based on superior run rates.

Now it is widely accepted that run rates can be unfair. Suppose then that we had used the methods
of Section 2 to break the three-way tie. The relevant details of the initial round matches involving India,
Sri Lanka and Pakistan are given in Table 2. In match 1, Pakistan has a differential of 97 runs over
India. In match 2, India had lost only two wickets in 33 overs plus one out of six balls when it exceeded
Sri Lanka’s run total. Therefore, in a 50-over match, India had 16.83 of its overs left. Interpolating from
Table 1, India had 48.17% of its resources remaining. Therefore, we calculate India’s effective runs E by
solving (100 — 48.17)E/100 = 206. This gives India 397 effective runs and an effective run differential
of 397 — 202 = 195 over Sri Lanka. A similar calculation in match 3 gives Sri Lanka an effective run
differential of 118 over Pakistan.

Date | Team 1 (Runs | Wickets | Overs) | Team 2 (Runs | Wickets | Overs)

7 April Pakistan (266 | 9 | 50)* Tndia (169 | 10 | 42.4)
9 April Sri Lanka (202 | 9 | 50) India (206 | 2 | 33.1)*
11 April Pakistan (178 | 9 | 50) Sri Lanka (180 | 5 | 30.5)*

Table 2: Summary of the relevant initial round matches involving India, Sri Lanka and Pakistan in the
1995 Asia Cup as described in Section 3. We let Team 1 denote the team batting first and Team 2
denote the team batting second. An asterisk denotes the winner of a match.

Putting these results together, India has 195 — 97 = 98 net runs, Sri Lanka has 118 — 195 = —77
net runs and Pakistan has 97 — 118 = —21 net runs. Therefore, our approach would have advanced
India and Pakistan to the championship final rather than India and Sri Lanka. We note that the same
conclusion is reached when the matches involving Bangladesh are included in the calculation.

4 An example which models team strength

The data used in this analysis are the results of full 50-over one-day international matches involving the
nine nations of the ICC. We consider all matches in the 1990s up to and including the final of the 1999
World Cup of Cricket, held in England. There are 623 such matches, the results of which are available
from the “Archive” link at the CricInfo website.

As in Section 3, an effective run differential is calculated for every match. For matches in which the
team batting first wins, the effective run differential is simply the actual run differential. For matches in
which the team batting second wins, the effective run differential is calculated using the actual runs of the
team batting first and the effective runs of the team batting second obtained via the Duckworth—Lewis
resource table. We let indices i,5 = 1,...,9 correspond to the nine ICC nations and let ¥ = 0,...,9
correspond to the site of a match where k& = 0 refers to a neutral site. We then consider the model

dijk = Ti — Tj + Yijk + €ijk (1)
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where the response variable d;j is the effective run differential (i.e. team ¢ minus team j) for a match

at site k, 7; is a measure of strength for the ith team such that Z?:l 7; = 0, 4% is the home field
advantage such that

v, if k=1,
Yijk = -, if k = j:
0, otherwise,

and the €;j;, are independent and identically distributed Normal(0, o%) errors. This 10-parameter model
is taken over all 623 matches. It is sensible in that the determination of team strength takes into
account not only victories and losses, but also the magnitude of the victories and losses, the strength of
the opponent and the site of the match. Allsopp and Clarke [3] consider a similar model in the analysis
of one-day Australian domestic competition results taken from 1994 through 1999.

To give more emphasis to recent matches, we consider a weighted least squares approach where
the weight 1 is assigned to every match in 1999, the weight 19—0 is assigned to every match in 1998, the
weight % is assigned to every match in 1997, etc. In S-PLUS, the function glm (Venables and Ripley [9])
is used to estimate the model parameters. The results are given in Table 3. We observe an ordering for
the ICC nations where South Africa is the strongest team and Zimbabwe is the weakest. These estimated
parameters can be used to forecast the outcomes of matches. For example, should South Africa play
Zimbabwe in Johannesburg, we would expect South Africa to win by 27.4—(—37.6)+12.5 = 77.5 effective
runs. We also observe that the home field advantage v = 12.5 is meaningful in one-day international
cricket matches. Note that the error ¢ = 52.4 is somewhat large; this highlights the variability in
cricket matches, where unlike sports such as rugby, a considerably weaker team has a realistic chance
at upsetting a stronger team.

Parameter Wins (matches) | Est (Std Err)
Australia (1) 114 (184) 17.1 (4.4)
England (72) 31 (74) —2.1 (6.8)
India (13) 78 (166) 3.7 (4.6)
New Zealand (74) 54 (142) —14.3 (5.2)
Pakistan (1) 104 (195) 5.5 (4.3)
South Africa (76) 90 (137) 274 (5.0)
Sri Lanka (77) 67 (149) —4.0 (4.9)
West Indies (73) 57 (116) 11.7 (5.9)
Zimbabwe (79) 18 (83) ~37.6 (6.2)
home field (v) 12.5 (3.5)
standard deviation (o) 52.4

Table 3: Summary of the data and the estimated parameters as described in Section 4.

The results in Table 3 are particularly useful for betting purposes. Consider a match between Aus-
tralia and New Zealand in Auckland. Using model (1) and a continuity correction, the estimated prob-
ability of a win by Australia is

Prob(dy44 > 0.5) = Prob(17.1 — (—14.3) — 12.5 + € > 0.5)
~ Prob(Z > —18.4/52.4)
~ 0.64

where Z is a standard normal random variable.

We remark that different weightings have been considered with little effect on the results. Also, we
have considered different parametrisations for the home field advantage. For example, some very popular
teams (e.g. the West Indies) may actually experience a home team advantage at a neutral site. Again,
such changes do not greatly effect the results. Various residual plots indicate that the fitted model is
adequate. More extensive discussion of the model and the analysis is found in Pond [8].
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Abstract

A model is presented here for finding the likely effect of curvature on expected running times for the
200 and 400 metre sprints. The model is developed using data from the IAAF World Championships
in Athletics held in Seville in 1999. The data chosen for analysis consists of the 50 metre split times
for the world champions, Maurice Greene (200 metres) and Michael Johnson (400 metres). Allocation
of the eight lanes influences the amount of curvature endured by the runners. This paper extends
previous constant speed models by taking into account the speed profile from start to finish.

1 Introduction

There have been many studies of the processes and mechanics of running in a straight line. See for
example Fuchs [2], Pritchard [6] and Ward-Smith [7]. Apart from a paper on baseball baserunning by
the author (Harman [4]), models for running on a curve only seem to have been successfully devised
for circular arcs with constant speed (for example, Greene [3]). Greene’s model was supported by
experimental evidence and compares well with other models (Behncke [1]). Note that since there are
two Greene’s involved in this paper, the champion sprinter will always be referred to as Maurice Greene
and the biomechanical author will be referred to as just Greene.

Constant speed models have limited applicability. They ignore the important acceleration phase
and the considerable variation in speeds in events such as the 400 metre sprint. In this paper, speed
against distance sprint profiles are established and modified for curvature effects. The resulting predicted
running times are then contrasted between the extreme lanes 1 and 8 for both the 200 and 400 metre
events.

2 The TAAF world championship data

At the recent World Championships in Seville, accurate split times were recorded at 50 metre intervals.
In the 200 metres final, the subsequent winner Maurice Greene recorded the following times:

distance (metres) | 50 100 150 200
time (seconds) | 5.74 10.25 14.94 19.90

and in the 400 metres final, the champion Michael Johnson recorded:

distance (metres) | 50 100 150 200 250 300 350 400
time (seconds) 6.14 11.10 16.10 21.22 26.42 31.66 37.18 43.18
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It is a pity that more detailed measurements are not taken of the split times, but nevertheless, it will
be shown here that it is still possible to interpolate in a way to achieve a speed/distance profile. This
then enables the run times to be evaluated for non-uniform speeds and for differing curvature effects
depending on lane choice

3 The running track

The standard running track for the 400 metres consists of two 80 metre straights and two semicircular
sections with inside track circumference being 120 metres. There are eight lanes. The inside lane runner
starts at the beginning of the semicircle (at the end of the straight), runs anti-clockwise, and finishes at
the same point after running 400 metres. The lane width is about 1.3 metres and so runners in the outer
seven lanes start at varying distances around the semicircle in order to make the total distance 400
metres. For example the runner in lane eight starts from about 57 metres ahead around the semicircle.
All runners finish at the end of the second 80 metre straight.

For the 200 metre event, the inside lane starts at the same place at the start of the 120 metre
semicircle and finishes at the end of the 80 metre straight. The runner in the outside eighth lane starts
about 28.6 metres forward around the semicircle.

Runners in the inside lanes expend more energy in overcoming the greater curvature. There are ar-
guments that favour middle lanes for strategic or psychological reasons, but this paper is only concerned
with the mechanics.

4 Michael Johnson’s 400 metres sprint speed profile

It has been shown (Pritchard [6]) that an excellent model for a top sprinter’s speed-time profile for 100
metres is given by
v(t) = Pr(1 —e V7)),

where P is the maximum force per unit mass that the runner can exert and 7 is a constant determined
by internal resistances in the runner. From this formulation, it can be seen that P7 is the maximum
speed of the runner. Experimental data indicate that 7 is usually close to 1. However for sprint runs
over a distance of 200 or 400 metres, the speed profile is much more complicated. The approach to be
taken in this paper is to use Pritchard’s model up to 50 metres and then to use the subsequent 50 metre
split times from the 1999 World Championships to build a speed against distance profile for the entire
race. In order to contrast the lane curvature effects, the profile will then be moderated accordingly. In
order to do this, a variation on Greene’s constant-speed curvature adjustment will be used.
The Johnson data are first of all interpolated with a cubic spline. This results in the interpolation

function

t = f(z), 50 <z <400.
Then it follows that the velocity v is given by

v:d—m:L, 50 < & < 400.
& @

For the first 50 metres, it is not possible to infer anything much from the Seville data. So the approach
to be taken over this initial distance is to take 7 = 1 and to use Pritchard’s model for a sprinter with
the value of P chosen in some sensible fashion. Now for 0 < z < 50, it follows that

v=Pl—e").

But for 50 < 2 < 400 we have the velocity profile
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found from the cubic spline interpolation. In fact, the numerical value of the spline for v at = 50 was
10.049 and matching with Pritchard’s formulation with the recorded time ¢ = 6.14 at = 50, gives the
equation 10.049 = P(1 — e~5%!*) and so P = 10.071.

Integrating the equation

v=Pl—e),

gives
r=Pt—-1+et),

which defines a parametric relationship for v and x for values of & between 0 and 50 metres. A sample of
these values of v is then combined with z, v data at the measured z values from Johnson’s race and the
combined set is then interpolated with a cubic spline F to give the velocity profile v = F(z). Figure 1
shows the result. The circled points up to 50 metres are from the adaptation of Pritchard’s sprint model
and the remaining points marked with x’s are from the interpolated data.

speed (metres per second)

Il Il Il Il Il Il Il
50 100 150 200 250 300 350 400
distance (metres)

o8

Figure 1: Michael Johnson’s velocity profile.

The established velocity profile v = F(z) for Michael Johnson will be used in the following way.
First of all the profile will be assumed to represent a typical base running speed profile in the absence of
curvature influences. Of course the profile would be slightly different if he were to run in a straight line,
but we do not have access to that data. The profile is then used as a basis for velocities on lanes 1 and 8,
but with allowances made for the different curvature effects. The running times can then be calculated
and compared for significant differences.

In the absence of curvature, the running time 7" for the 400 metres can be calculated by

400 | 400 4
T:/ —dw:/ ——dz,
o U o F(x)

where F'(z) is cubic spline interpolation of the Michael Johnson velocity profile from Seville, as shown
in Figure 1. As a check on the numerical accuracy of the model, this was calculated to give the resulting
running time of 43.3 which compares well with the actual measured time of 43.18. This small difference
can be expected, since we imposed the Pritchard profile for the first 50 metres. With confidence in
the model, we now take the profile v = F(z) as our base and incorporate curvature effects in order to
compare running times for lanes 1 and 8.
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5 Curvature effects on the velocity profile

Greene [3] modelled the mechanical effects of a sprinter running around a flat circular turn of radius R
at constant speed. His model took account of the sprinter’s straight line top speed v, foot contact time,
ballistic air time, step length, and stride time. A reciprocal Froude number, or dimensionless radius
Rg/v?, enabled him to compare the theory against experiment for a large number of individuals on the
same set of axes. The influence of radius of the turn on subsequent velocity was predicted and tested.
The agreement between theory and practice was good and was verified for a range of radii between
about 4 and 28 yards. More complex models have since been formulated but Behncke [1] considers
that “the simplicity of Green’s [sic] result and the apparent ease of its derivation make it ... an ideal
candidate for the analysis of the track and field situation”.

Greene’s model requires the solution V (R, v) of the equation
Ve + (Rg)’V? = (Rgv)® =0,

where R is the radius of curvature, v is the runner’s natural top speed in the absence of curvature, and
g is the acceleration due to gravity. Then V is the resultant natural top speed adjusted by the curvature
effect. This equation is a cubic in V2 and so the solution can easily be found to be

W=

(27R292v2 + /108R5¢5 + 729R4g4v4) 25 R%g?
V= 1 - 0
543 (27R2g2v2 + \/108R6g6 + 729R4g4v4) |

For our purposes, at any point z in the run, the value of v can be replaced by the value found from
the velocity profile F'(z). This then gives a runner’s speed V', adjusted if necessary by the curvature
influence.

6 The time equation

As detailed above, the 400 metres consists of four sections: curve, straight, curve, straight. Let T}, T5,
T3, and Ty represent the respective running times on the sections and let 7" denote the race time given
by T =T, + T + T3 + T}. For the lane 1 runner, the section times are given by

120 4 120 1
T, :/ —dz :/ ———dx,
! 0 Vv 0 V(v(z))
200 | 200 4
T = / —dr = / dz,
120 UV 120 F(7)
320 320 1
T. :/ —dz :/ ———dx,
° 200 V 200 V(v(z))

400 4 400 4
T, = / —dzr = / —— dz,
320 U 320 F(2)

where v = F(z) is Michael Johnson’s basic velocity profile shown in Figure 1 and where V (v(x)) is the
curvature adjusted velocity profile using Greene’s method given by (1) above, with radius of curvature
of the inside lane given by R = 120/7 = 38.2 metres.
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For the lane 8 runner these equations are

9141 91.41 1
T = —dx = / ———dx,
! /0 4 o V(v()
171.41 4 174
T = / —dxr = / ——dx,
91.41 U o141 Fl(x)
320 320 1
T = —dx = / ———dx,
’ /171.41 Vv 171.41 V(v(7))

400 | 400 4
T, = / —dx = dz,
320 U 320 F(2)

where the radius of curvature of the eighth lane is R = 120/7 + 7 x 1.3 = 47.3 metres.

7 Results and conclusions

For the 400 metre sprint, using Michael Johnson’s velocity profile and calculating the resultant influence
on times of curvature as detailed above, the following results were obtained:

Lane 1 | Time T (with curvature) | 44.01 sec
Time (ignoring curvature) | 43.33 sec
Lane 8 | Time T (with curvature) | 43.77 sec
Time (ignoring curvature) | 43.32 sec

In the table, the time values (ignoring curvature) are given as an indication of the influence of track
curvature on a given lane. The significant result however is the time difference between the lanes 1 and 8
when curvature is taken into account. The time difference of 44.01 —43.77 = 0.23 seconds, is a difference
at the finish of about 2.5 metres. This could make the difference in an Olympic final between a gold
medal and an unplaced result.

The same techniques were applied to Maurice Greene’s 200 metre velocity profile from Seville and
the following results were obtained:

Lane 1 | Time T (with curvature) | 20.34 sec
Time (ignoring curvature) | 19.90 sec
Lane 8 | Time T (with curvature) | 20.20 sec
Time (ignoring curvature) | 19.90 sec

So the time difference for the 200 metres between lanes 1 and 8 amounts to 20.34 — 20.20 = 0.14
seconds. This would be about 1.4 metres at the finish.

These differences can be contrasted with the results of Jain [5] who extended some empirical results
to estimate that the time differences for the 200 and 400 metre events run on an oval track should be
0.07 and 0.14 seconds respectively. Greene [3] used constant speed curvature estimates to predict the
time difference for the 200 metres on an Olympic track to be about 0.123 seconds. The results of the
present paper indicate that the higher values of the time differences, as given above, are likely.
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Abstract

Flight equations of motion of the frisbee are presented. Few reports of aerodynamic force and
moment coefficients are available in the literature. Aerodynamic coefficients are estimated using
parameter identification by matching predicted and experimental trajectories of markers on the
disc. RMS errors as small as 1.4mm are achieved between predicted and measured marker posi-
tions in flights of about 2m. Longer flights are calculated but performance is very sensitive to the
aerodynamic coefficients.

1 Introduction

The frisbee was invented in 1948. Since then it has enjoyed remarkable popularity. Today it is used by
millions as a recreational toy and by thousands in the sport of Ultimate Frisbee. Despite its popularity
there is relatively little scientific and technical information in the literature documenting the dynamics
and aerodynamics of the implement. The book by Johnson [6] is a practitioners’ handbook which includes
information on the history of the frisbee, frisbee games and throwing techniques. Two brief, somewhat
anecdotal, descriptions of the flight dynamics and aerodynamics for the informed layman have been
provided by Bloomfield [2] and Schuurmans [12].

A study of a self suspended frisbee-like flare was conducted by Stilley [14]. This work included
spinning and non-spinning wind tunnel tests, computer simulations of flight, and experimental flight
tests of three disc configurations. A main conclusion was that the effect of spin on the aerodynamic
forces is small. Stilley hypothesised, but did not measure, a “Magnus rolling moment”, induced by
the interaction of spin and velocity. Stability criteria were presented involving relations between the
stability derivatives. Mitchell [9] measured the lift and drag forces on three different frisbees over a
range of speeds and angles of attack. He confirmed the observation of Stilley [14] that spin affects lift
and drag only little, but did not measure pitching moment.

Recently, Potts and Crowther [11] studied the aerodynamics more completely. They accurately mea-
sured lift and drag forces and pitching and rolling moment as a function of Reynolds number and spin
parameter, the ratio of speed at the edge of the disc due to spin to the speed of the centre. They corrob-
orated the results of Stilley and Carstens [15] at zero spin. Slight differences in lift force and pitching
moment were attributed to the different cross-sectional shapes and thickness ratios of the frisbees tested
from those of Stilley and Carstens. Potts and Crowther found little effect of Reynolds number on lift
and drag except at high angles of attack (o > 20°). Although they detected virtually no effect of spin
parameter on lift and drag, nonzero rolling moments and small but distinct effects of spin parameter
on pitching and rolling moments were observed.

In related work, Soong [13] analysed the dynamics of the discus throw, whose shape differs from
that of the frisbee mainly in that it has a plane as well as an axis of symmetry. Soong did not include

*This paper was partially researched and prepared while participating in an Ultimate Frisbee tournament in Hawaii.
The author is grateful for the hospitality shown by all.
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any rolling aerodynamic moments and showed that the main effect of pitching moment is to cause a
precession of the spin in roll, thus decreasing lift later in the flight.

Frohlich [4] also investigated the flight dynamics of the discus. With computer simulations that
relied on discus lift and drag coefficients determined experimentally by Ganslen [5] and others, he
showed that the discus can be thrown farther against the wind than with it. Although this paper
included a complete discussion of the effects of aerodynamic moments on the subsequent flight, the
analysis remains somewhat hypothetical because of the absence of any experimental data on pitching
and rolling aerodynamic moments. Frohlich also noted the remarkable similarity between the discus and
the frisbee.

The present paper presents a three-dimensional mathematical model of frisbee flight including the
translational and rotational dynamics of the disc driven by the aerodynamic forces and moments caused
by the motion. The aerodynamic coefficients used in the model are estimated using experimental flight
data. These are also compared to values of similar coefficients from the literature.

2 Flight dynamics model

The frisbee is assumed to be an axially symmetric rigid body with mass m and axial and diametral mass
moments of inertia I, and I, respectively. Several reference frames are used in the development of the
equations. The frisbee centre of mass (cm) is assumed to be located at coordinates zyz in an inertial
reference frame N with the zy plane horizontal and the direction of the x axis chosen (arbitrarily) so
that the initial (or release) velocity vector v of the centre of mass lies near the zz plane.

A body-fixed reference frame C (see Figure 1) has its origin at the mass centre and its cice plane
parallel to the plane of the disc. The general orientation of the frisbee (and of the C' frame) in the N
frame is achieved through three successive Euler angle rotations (a 123 Euler angle set). As shown in
Figure 1, first the N frame is rotated about its my axis through angle ¢ to reach the intermediate A
frame. Next the A frame is rotated about the ag axis through angle € to reach a second intermediate
frame B. Finally the B frame is rotated about its bs axis through angle v to reach the body-fixed C'
frame. In the derivation of the equations of motion below we often express vectors in the B frame. The
three Euler angles ¢, # and v determine the general orientation of the disc. Only ¢ and 8 are involved
in the transformation matrix 7" relating the IV and B frames,

cosf 0 sin
T= sinfsing cos¢ —cosfsing | . (1)
—sinfcos¢ sin¢g  cosfcos ¢

The angular velocity of the disc relative to the inertial N frame is given by
w = ¢c030b1 +60by + (q'bsin0+"y) bs.
In the general flight configuration, the velocity of the center of mass is written as
v = uby + v by + wbs, (2)

consistent with the typical procedure followed in analyses of flight vehicles (Etkin and Reid [3]).

The equations of motion, the details of which are summarised in the Appendix, are a Newton—Euler
description of the motion of a rigid body. These are expressed in the B frame since, because of symmetry,
B is (as well as C) a set of principal axes of inertia for the disc. The equations in vector form are given
by

dv
F:m<E+wbxv>, (3)

M:Idd—u:+wb><lw, (4)
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Figure 1: A frisbee body-fixed reference frame is attained with a 123 Euler angle set of rotations.

where F' and M are the aerodynamic and gravitational forces and moments applied to the disc, re-
spectively, wpis the angular velocity of the B frame relative to N, and [ is the moment of inertia
matrix
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3.1 Forces

The natural directions for decomposition of the aerodynamic forces are determined by the velocity
(see Figure 2). Let the unit vector along the projection of v on the b1bs disc plane be denoted by d.
Assuming d3 (= bs) is perpendicular to the plane of the disc, we let d2 = d3 X d1. The angle of attack «
is defined as the angle between v and d;. We assume that the two components of the aerodynamic force
along and perpendicular to v in the di1ds plane (called the lift L and drag D, respectively) are each
functions of lift and drag coefficients in the standard way:

L= CiApv? /2, D = CyApv? /2,

where here v denotes the magnitude of v (not to be confused with the by component of v in equation (2)),
p is the air density, and A is the projected or planform area of the disc. The lift and drag coefficients
C; and Cy are further assumed (for small angles of attack) to be given by the expressions

C, = Clo + Claoz, Cy = Cdo + C’daa2.
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mg

Figure 2: Drag and lift forces act along and perpendicular to the velocity vector v and are functions
of a, the angle between v and d; in the disc plane.

The forms of the relations for L and D above are consistent with the general findings of several re-
searchers that spin does not affect L and D to first order (McShane et al. [8], Stilley [14], Mitchell [9]).
Note that the lift is linear in a while drag dependence is quadratic. Although this form is exact for
a symmetric airfoil, the formulation of Potts and Crowther [11] is probably more accurate in that it
predicts the minimum drag to occur at the zero-lift angle of attack, which they measure to be about
—4°,

It is important to remember that the four coefficients above are chosen (in contrast to using measured
forces) for purposes of simplicity and efficiency. This description provides a more practical version of
the dependence of the forces on angle of attack, at some cost in accuracy.

Were the lateral projected area of the frisbee (in the dids plane) larger compared to its platform
area, it would be important to include a third ds component of the aerodynamic force. For example, in
the flight of spherical balls (Alaways and Hubbard [1]) the Robins—Magnus lift force produced by the
circulation due to spin about the dz axis is important, but this force is neglected here. Thus the four
constant coefficients Cj,, C;, Ca,, Cq, are assumed here to be a simplified but complete parametric
description of the force-producing capability of the disc. Decomposing the lift and drag into the D frame
gives an expression for the aerodynamic force

F = (Lsina— Dcosa)d; + (Lcosa+ Dsina) ds. (5)

3.2 Moments

The net aerodynamic force acts at the centre of pressure (cp) which, in general, does not coincide with
the centre of mass. Thus it also exerts a moment about the cm. One of the components is a pitching
moment about the do axis of the form

My = Adpv* (Car, o+ Car, &) /2,

where the angular stiffness and damping coefficients Cys, and Cjy, , respectively, are constants and d is
the diameter of the disc.

For an axisymmetric non-spinning disc, the cp would lie in the d;ds plane. However, the nonzero
spin causes the position of the cp to have a small d2 component as well. The coefficient Cr, models this
effect (called the “rolling Magnus moment” by Stilley [14]) and assumes that a part of the d1 component
of the moment is proportional to the spin 4. A physical explanation of this coefficient is the small effect
the spin has on the rotation of the mean flow separation line away from the do direction. Its magnitude
is typically very small. Potts and Crowther [11] have shown that this coefficient is significantly different
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from zero only at small angles of attack a < 10°. The previously introduced damping coefficient Cs,
also relates the dy component of disc angular velocity to the other part of the moment in the d; direction
yielding

M, = Adpv2(CRw'7 + Cpw - d1)/2.

Finally there is a spin-deceleration torque which acts along the dg axis. This torque differs funda-
mentally from the Cjr, term in M,, for example, in that it is due to viscous shear stresses in the fluid
rather than from a displacement of the cp from the cm. It is assumed to be proportional to the d3
component of the disc angular velocity ¢sinf + 4 through the spin-down coefficient Cy,:

Ms = Cn, (¢sin + 7).

Justification for a functional dependence of Cy, on « can be found in Stilley [14] (and Nielsen and
Synge [10]) which is here neglected. Combining the three components of the aerodynamic moments
above yields

M:M1d1+M2d2+M3d3. (6)

In summary, the aerodynamic forces and moments are parametrised by the eight coefficients shown
in the heading of Table 1.

3.3 Evaluation of coefficients

The experimental evidence in the literature for the values of these aerodynamic force and moment
coefficients is scanty and incomplete. Stilley [14] contains wind tunnel results for lift, drag and pitching
moment as a function of angle of attack for a single frisbee. Mitchell [9] measured lift and drag coefficients
in the range of angles of attack —20° < a < 20° for three different frisbees in a wind tunnel over the
range of speeds 2.7 < v < 28.2ms L. Mitchell also found that spin did not affect the lift and drag forces
substantially, but he did not measure pitching moment and thus provided no information regarding the
moment coefficients Caz, , Ca, , Cr, and Cl;, . The recent, more detailed work of Potts and Crowther [11]
does give measurements of pitching and rolling moments. However, wind tunnel tests must be essentially
quasistatic, and consequently no experimental evidence is available on the dependence of forces and
moments on angular velocities.

In another approach, approximations of the aerodynamic coefficients may be obtained from flight
data. Three small circular reflective markers were attached to the top of the frisbee and their three
dimensional inertial coordinates tracked during flights using high speed (120Hz) video. Estimates of
the aerodynamic coefficients, together with initial conditions for the short experimental flight, were
determined iteratively by modifying the aerodynamic coefficients and initial conditions in a simulation
to minimise the differences between predicted and measured marker positions. Coefficients for two flights
are shown in Table 1.

Flight C. C.. Cq Cua., Cy, Cuys Cr, s Cn, Nms
fssh3 —-0.40 1.89 0.83 0.83 —0.16 0.029 0.012 0.000074
bfH8 1.17 028 5.07 0.077 0.22 0.025 —0.0030 —0.00000025

Table 1: Aerodynamic force and moment coefficients for two flights.

Figure 3 shows the projections in the horizontal zy plane of the predicted and measured marker
trajectories for flight fssh3. The disc makes almost one complete revolution and the marker trajectories
superimpose nearly harmonic motion in z and y on the mean motion of the cm. Figure 4 shows the
residuals, the differences between the measured and predicted positions of the three markers, arrayed
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Figure 4: Prediction errors in z, y and z for three markers in flight fssh3 have an rms of only 1.4 mm.

end-to-end. Even though the root mean squared (rms) error in the prediction is only 1.4mm over
the course of the 2m long flight and the residuals are nearly white, there is some obvious correlation
present indicating that a more completely descriptive model of the flight might be possible, including
possibly a more accurate drag parametrisation. The aerodynamic coefficients determined from the flight
portrayed in Figures 3 and 4 are shown in the first row of Table 1. Coefficients from a second flight are
shown in the second row. There exist frisbees of many sizes and cross-sectional shapes, and certainly
with correspondingly different aerodynamic coefficients, but a single frisbee was used in all our flight
experiments. Even though one would expect the coefficients from two flights of the same disc to be
nearly equal, as seen in Table 1 this was not the case. It is curious that the more typical (in the sense
discussed below) flight bffl8 yields unlikely and in some cases physically impossible coefficients, while
the less typical flight fssh3 produces coefficients that are more similar to those found in the wind tunnel
experiments discussed above.

This suggests a modified procedure for the identification of the aerodynamic coefficients in the future.
Rather than identifying a different set of coefficients for each flight, a single set of coefficients may be
determined which allow a best fit of the marker data from numerous flights, covering a wide range of
initial conditions.

It is also worthwhile to note the sensitivity of the identified coefficients to noise in the experimentally
measured marker positions. Small errors can require unrepresentative, or in some cases even physically
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Parameter m I, I d A p g
kg kg m? kg m? m m?>  kem? ms?
0.175 0.00197 0.00138 0.269 0.057 1.23 9.7935
Table 2: Values of non-aerodynamic simulation parameters.
Flight Zo Yo Zo Uo Vo Wo bo o Yo ®o 6o Yo

m m m ms' msT! ms! rad rad rad rads™' rads™' rads”!
fssh3 —-0.71 —-0.52 1.13 3.03 —-045 —-2.25 —-0.066 —-0.34 3.01 —-3.03 —0.76 —8.91
b8 —1.42 —-0.40 0.81 8.40 —-0.15 —-1.23 —-0.081 —0.25 4.40 —6.33 0.37 —37.1

Table 3: Initial conditions for two flights.

impossible, values of coefficients to yield dynamics which will fit the data. This has apparently happened
in the second of the flights in Table 1, which yielded a negative, but still extremely small, value for C,
implying that the spin actually increased very slightly during the flight rather than decreasing. Similar
unreasonable estimates of negative drag coefficients have occurred in cases involving errors in measured
x position that required the velocity to increase in flight. Thus an essential requirement for this technique
of coefficient identification is very accurate marker position data. In addition, flight times are required
that are long enough to make the effects of the coefficients apparent through the dynamics. In the
simulations of two flights presented below we assume the aerodynamic force and moment coefficients
are those given in the two rows of Table 1. Table 2 contains the non-aerodynamic parameters for the test
frisbee which are also the parameters for the simulations discussed below. The mass, in particular, is
relatively large compared to typical recreational discs, and is the official weight of discs used in Ultimate
Frisbee competition.

4 Simulation results

Shown in Figure 5 are time histories of eleven of the twelve state variables (zy zuvw ¢ 0 b6 %) for an
atypical right hand, backhand-thrown flight of about 0.5 seconds. The initial conditions for this flight
are shown in the first row of Table 3. This is a simulation of a flight which corresponds to that shown in
Figures 3 and 4. The disc was thrown rather slowly, with a velocity of 3.77ms™!, and with a relatively
small spin (8.91rads™!) and artificially large initial angle of attack. The disc was released 1.13m from
the ground and fell 1.04 m within 0.5s. The small dynamic pressure (of the order of 10Pa) makes the
aerodynamic forces relatively insignificant compared to the weight and results in a nearly parabolic fall.
During the flight it travelled 1.62m in the z direction, curving slightly right (in y) of the mean direction
and then back again to the left. Because of the large initial angle of attack, the component of velocity
perpendicular to the disc plane, w, is larger than the vertical component of velocity 2. The reader should
recall that the velocities shown in part b) of Figure 5 are components referred to the disc plane and are
not the derivatives of z, y and z in part a).

The disc was initially oriented with its far (away from the thrower) edge tilted downward, ¢ =
—0.065rad, and the leading edge tilted upward, § = —0.34rad. These angles changed significantly over
the course of the flight. However, the angular velocity time histories, qﬁ and 6, indicated some signs of
damping. Because the duration of the flight was so small compared to the characteristic time of spin
decay (about 7s), the frisbee lost only about 10% of its initial spin rate of —8.91rads !

Shown in Figure 6 are the same eleven state variables for a more typical flight than Figure 5 (i.e. larger
initial velocity and spin rate and smaller initial angle of attack). A simulation of 1.0s was created using
the measured coefficients from flight bffi8 (see Table 2). The initial conditions for this flight are listed in
Table 3. In this flight the dynamic pressure is more than four times that of the flight shown in Figure 5.
As a result the characteristic times of response are correspondingly reduced and the mean aerodynamic
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Figure 5: State variables versus time for flight fssh3 of Figs. 3 and 4 and aerodynamic parameters from
row 1 of Table 1.

force more nearly equals the weight. The inertial x coordinate increased roughly at the thrown speed
of 8.48ms™! and the frisbee travelled 6.71 m. The inertial z coordinate increased initially but began to
decrease after approximately 0.2s and underwent a net drop of 0.84 m. The y component of the disc
mass centre remained relatively constant. The disc was initially spinning at 4 = —37.1rads ™! but this
decreased to ¥ = —35.4rads ! over the duration of the flight. Initially the far edge of the disc was tilted
down, ¢ = —0.081rad, and the leading edge was tilted up at § = —0.25. For about the first 0.3s the
angular velocities ¢ and § underwent damped oscillations. Decreasing attitude oscillations such as these
can frequently be observed with the naked eye. After the early oscillations subsided, ¢ then gradually
increased through the flight to ¢ = 0.29rad. The leading edge continued to tilt up as 6 decreased to
—0.21rad.

5 Conclusions

The equations of motion of frisbee flight have been presented. Numerical solutions of these equations
can provide quantitative flight information but are sensitive to the coefficients relating body orientation
and translational and angular speeds to the aerodynamic forces and moments. Simulations of this type
can provide a means for creating sets of initial conditions which produce flights with certain desirable
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Figure 6: State variables versus time for extended flight bffi8.

characteristics. For example, in game situations one may use throws with sharp curvature in one direction
or another since these may be advantageous from a tactical point of view. Alternatively a throw may
be desired which hangs or flares over or near a given point on the field. Throws such as these may be
investigated and “designed” using the simulation techniques described herein.

Further work is needed in making the estimates of the aerodynamic coefficients from flight data
more reliable and meaningful and perhaps in creating more complex parametric descriptions of the
aerodynamics. This will require considerably longer experimental flights and more accurate kinematic
data acquisition techniques. In addition, the use of data from a wide variety of flight conditions will make
the identified coefficients more representative of the dynamic behavior of the frisbee over a similarly
broad flight regime.

Appendix Equations of motion

In the derivation of the equations of motion, the aerodynamic forces and moments originally expressed in
frame D in equations (5) and (6) are transformed to the B frame by multiplying by the transformation
matrix 75 relating B to D:

Fy, =1,F, My, =1ToM,
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where

cosB —sing 0
Tp= | sin8 cosB O
0 0 1

and where [ is the angle between the b; and d; axes:
B = arctan(v/u).

Then the differentiations in equations (3) and (4) are carried out and the scalar components are solved
for the accelerations yielding

Finally, the velocity vector v with components u,v and w in the B frame is transformed into the NV
frame by multiplying by the transformation matrix 7" from equation (1) to give the rates of change of
the inertial coordinates:

T =wucosf +wsinb,
9 = usinfsin ¢ + v cos ¢ — w cos f sin ¢,

2 = —usinfcos ¢ + vsin ¢ + w cos O cos ¢.
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Abstract

An extensive analysis into the new final eight system employed by the AFL was undertaken using
certain criteria as a benchmark. An Excel spreadsheet was set up to fully examine every possible
outcome. It was found that the new system failed on a number of important criteria such as the
probability of a premiership decreasing for lower ranked teams, and the most likely scenario of
the grand final being the top two ranked sides. This makes the new system more unjust than the
previous Mclntyre Final Eight system.

1 Introduction

Recently, many debates have occurred over the finals system played in Australian Rules football. The
Australian Football League (AFL), in response to public pressure, released a new finals system to replace
the McIntyre Final Eight system. Despite a general acceptance of the system by the football clubs, a
thorough statistical examination of this system is yet to be undertaken. It is the aim of this paper to
examine the new system and to compare it to the previous Mclntyre Final Eight system.

In 1931, the “Page Final Four” system was put into place for the AFL finals. As the number of teams
in the competition grew, so to did the number of finalists. The “McIntyre Final Five” was introduced
in 1972, and a system involving six teams was in place in 1991. This was changed to the “MclIntyre
Final Six” system the next year, and was changed yet again to the “McIntyre Final Eight” in 1994. This
system has been used despite much controversy until the year 1999. In that year the Western Bulldogs
and Carlton lost the first round of the finals, Carlton played West Coast Eagles in Melbourne and the
Western Bulldogs played Brisbane at Brisbane in the second round of the finals. Hence, Carlton, who
finished lower on the ladder, played a lower ranked team than the Western Bulldogs. Consequently,
the authors received at least ten finals systems from the AFL to analyse. Christos [1] also developed
several alternative models to the McIntyre and new system. However, the AFL delivered another dif-
ferent method for the year 2000. This new system uses an interesting combination of single knockout
tournament systems and double knockout tournament systems where certain teams are eliminated after
one loss or two losses depending on their ranking. However, under certain conditions, a lower ranked
side may have a greater probability of winning the premiership than a higher ranked side throughout
the tournament if teams are not re-seeded after each round [2, 7]. The MclIntyre Final Eight system
involved reseeding of teams after Round 1 of the finals, but the new system does not.

Monahan and Berger [11] established some criteria for determining the appropriateness of a fair
playoff or finals system. They said that the system has to maximise the probability that the highest
ranked team wins the premiership, and maximise the probability that the best two teams play in the
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grand final. Clarke [3] suggested further criteria for a good system: the probability that a team finishes
in any position or higher should be greater than for any lower-ranked team; the expected final position
should be in order of original ranking; the probability that a team finishes above a team of lower rank
should be greater than 0.5, and should increase as the difference in rank increases; the probability of any
two teams playing in the grand final should decrease as the sum of the ranks of those teams decreases.
In addition, the organisation of a finals system may have additional requirements such as the number
of matches, number of repeat games and closeness of matches.

Using the above criteria, Clarke analysed the McIntyre Final Eight system based on a equal prob-
ability of winning. It is assumed that each team has a 50% chance of winning, despite the opposition
and the venue of the match. He also used a model based on past results, where victory in each match
depended on the match participants and the venue. Other authors have used a variety of different meth-
ods to analyse the probability of teams winning matches. The use of paired comparisons in the analysis
of round robin and knockout tournaments began with David [5], Kendall [8] and Maurice [9]. McGarry
and Schutz [10] constructed a probability matrix of certain teams defeating other teams based on their
ranking.

All these methods of analysis assume stationarity and independence within this playing matrix. That
is, the probabilities of teams defeating other teams do not change as a function of time (stationarity) and
do not change as a function of past events (independence). It is most unlikely that these assumptions
are valid, as a team might build confidence following a victory or lose morale following a loss. Although
transient probabilities have been considered in paired comparison tournaments [6], this study will assume
stationarity and independence within the playing matrix for simplicity reasons. Clarke [4] found that
in the years from 1980 to 1995, the average home ground advantage was 58%, and away teams were
expected to win 42% of games.

This study will use both the equal probability method and home ground advantage as outlined by
the following criteria.

e The probability of a team finishing in any position or higher should be greater than for any
lower-ranked team.

e The expected final position should be in order of original ranking.

e The probability of a team finishing above a team of lower rank should be greater than 0.5, and
should increase as the difference in rank increases.

e The probability of any two teams playing in the grand final should decrease as the ranks of those
teams decrease.

e Systems with no repeat games excluding the grand final are preferable.

e No system should have a fatal flaw. A fatal flaw might include dead matches, where the outcome
is inconsequential, or giving teams “unfair” advantages.

2 The new final eight system

In this system, the winners of the top four sides obtain the bye, whilst the losers play at home to the
winners of the bottom four teams. The two losers of the bottom four sides are eliminated. After the
first round where first, second, fifth and sixth placed sides obtain the home state advantage, only teams
who finished the year in the top four get to play at home.

In short, the system is as follows:
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Week 1 Game A Team 1 v Team 4 Winners obtain the bye
Game B Team 2 v Team 3 Winners obtain the bye
Game C Team 5 v Team 8 Losers are eliminated
Game D Team 6 v Team 7 Losers are eliminated

Week 2 Game E = Loser Game A v Winner Game C
Game F Loser Game B v Winner Game D

Week 3 Game H Winner Game A v Winner Game F
Game I Winner Game B v Winner Game E

Week 4 GameJ  Winner Game H v Winner Game I

All teams that are mentioned first receive a home ground advantage (if it exists) with the exception
of the grand final (Game J) which is played at the MCG. There is no reseeding in the new model, unlike
the McIntyre model that re-seeds after the first round. In the McIntyre system, the outcome of a game
could involve one team obtaining a bye, and the other being eliminated; however, this doesn’t occur in
the new system. The following week’s matches in the McIntyre system could not be established until all
the matches were complete. The new system is very simple and clear as to what teams are competing
in the next round after each match.

3 Performance of the new system using the equal probability
model
The following tables were calculated using the equal probability model where it is assumed that each

team has a 50% chance of winning the game. Clarke [3] gives similar tables for the McIntyre Final Eight
system.

Team  Current system  McIntyre Final Eight
1 18.75 18.75
2 18.75 18.75
3 18.75 15.62
4 18.75 12.50
5 6.25 12.50
6 6.25 9.37
7 6.25 6.25
8 6.25 6.25

Table 1: Percentage chance of teams winning the premiership given equal probabilities.

Table 1 shows the probability of the premiership is the same for each team in the top four, as well as
for teams 5 to 8, although teams 1, 2, 5 and 6 play at home. But what happens if there is no significant
home ground advantage, that is, when two teams of the same state play each other? Given this, there
may be situations where teams will deliberately lose in the last home and away round so as to play in
their home state.

Also note that Table 2 shows that the most likely scenario for the grand final is not the best two
teams. It is more likely that Team 2 will play Team 3 or Team 1 will play Team 4, than Team 1 vs
Team 2. This means that this system does not give the two best teams throughout the year the greatest
chance of meeting in the grand final. This is a major problem with the system. Table 3 shows that
Team 1 is more likely to finish above Team 2 and Team 3 than it is Team 4. This is obviously because
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Teams | 2 3 4 5 6 7 8
1 7.8 78 125 31 16 16 3.1

2 125 78 16 31 31 1.6
3 78 16 31 31 16
4 31 16 16 3.1
) 16 16 0
6 0 1.6
7 1.6

Table 2: Percentage chance of teams playing other teams in the grand final given equal probabilities.

Final position

Team 1 2 3 4 5 6 7 8 EFP
1 188 18.8 31.3 6.3 25.0 0 0 0 3.00
188 18.8 234 141 188 6.3 0 0 3.14

188 18.8 234 141 188 6.3 0 0 3.14

188 188 15.6 219 125 125 0 0 3.28

63 63 31 94 125 125 50.0 0 5.53
63 63 16 109 63 188 25.0 250 | 5.86
6.3 63 16 109 63 188 25.0 25.0 | 5.86
6.3 6.3 0 12.5 0 25.0 0 50.0 | 6.19

0~ O U Wi

Table 3: Percentage chance of teams finishing in certain positions with the Expected Final Position
(EFP) using equal probability matches.

Team j

Team i 1 2 3 4 5 6 7 8
1 - 57.0 57.0 50.0 82.8 852 852 828
2 43.0 - 50.0 57.0 85.2 82.8 828 85.2
3 43.0 50.0 — 57.0 85.2 82.8 828 85.2
4 50.0 43.0 43.0 - 82.8 85.2 852 82.8
5 172 148 148 17.2 - 66.5 66.5 50.0
6 14.8 17.2 172 148 335 - 50.0 66.5
7 14.8 17.2 172 148 33.5 50.0 - 66.5
8 172 148 148 17.2 50.0 33.5 335 —

Table 4: Percentage chance of team i (row) finishing above team j (column) using equal probabilities.

Team 1 plays Team 4 in the opening round. Likewise, it is more likely to finish above Team 5 than it is
Team 8.

Table 3 shows that the expected final position for the top four teams does not differ significantly,
but is considerably greater than the expected finals position of the fifth and lower teams. This is also
highlighted in the premiership probabilities with fourth being three times more likely to win the grand
final than fifth.

The system has removed the possibility of playing repeated games by swapping the semi-finals. If all
the favourites were to win leading up to the semi-final, Team 1 would then play Team 3, and Team 2
plays Team 4. This means that Team 2 has an easier game than Team 1. If repeat games were not
undesirable, then it is understandable that Team 1 would play Team 4 and Team 2 play Team 3 in
the semi-finals. Team 1 should be rewarded for finishing on top of the ladder by playing a less difficult
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team (Team 4 as opposed to Team 3). But in this case repeat games occur, and the AFL has chosen to
“swap” the semi-finals, so that Team 1 plays a harder side than Team 2 so as not to get repeat games.
In fact, it is quite possible for Team 2 to play Team 8 in the semi-final, and Team 1 to play Team 3,
despite both teams winning the same number of games in the finals. This agrees with Chung [2] and
Israel [7] who found that in tournaments that do not re-seed after each round, lower ranked sides could
have a greater chance of winning the premiership, which is the case here. This shows an unjustness in
the system.

4 Home ground advantage model

If the only difference between teams in the top four and teams in the bottom four is home ground ad-
vantage, what happens if there is no significant home ground advantage? No significant home advantage
can occur in a number of different scenarios. For example, if Carlton play Geelong, this match would be
played at either the MCG or Colonial stadium, giving neither team an advantage. Likewise Richmond
can play Melbourne at the MCG, which is a neutral game. Adelaide might meet Brisbane in the grand
final at the MCG which is also neutral. Given this, there may be situations where teams will deliberately
lose in the last home and away round so as to play in their home state.

As mentioned earlier there is a large problem with home ground advantage. If the first and fourth
teams share a home ground, then there is no greater advantage in finishing first than there is fourth.
Also as highlighted by an unjust situation that occurred in 1997, Geelong could play away at the MCG
versus Melbourne or Richmond, for example, despite finishing higher on the ladder. This problem would
not occur in the previous Mclntyre system as the top ranked team has a distinct advantage over the
fourth ranked team irrespective of any home ground advantage.

In 1999, approximately 58% of matches were won at home. Clarke [4] found similar results to this
in the years 1980-1995. Given this distinct advantage for playing a home game, one can analyse the
new finals system and compare it to the previous finals system for certain teams. Considering the home
grounds of the 16 teams in the AFL, they will be split up into five groups according to their home
ground nature.

GROUP 1 GROUP 2 GROUP 3
Team Home Ground Team Home Ground Team Home Ground
Brisbane "Gabba Carlton Optus Oval Adelaide Football Park
Sydney SCG Geelong Kardinia Park  Port Adelaide Football Park

West Coast ~ Subiaco/ WACA
Fremantle Subiaco/WACA

GROUP 4 GROUP 5
Team Home Ground Team Home Ground
Essendon Colonial Collingwood MCG
St Kilda Colonial Hawthorn MCG
West Bulldogs Colonial Kangaroos MCG
Melbourne MCG
Richmond MCG

The reasons these groups have been set up are as follows:

e Group 1 teams do not share their ground with any other team in the league and are guaranteed
a home ground advantage if they finish in a position which deems a home ground.

e Group 2 teams do not share their ground with any other team, so will not achieve a home ground
advantage in any final. Moreover, they may be at a disadvantage if they play an MCG or Colonial
based team.
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e Group 3 teams share their ground with one other team, and Group 4 share theirs with two others,
and will get a home ground advantage if they finish in a position which deems a home ground,
unless they play a co-tenant.

e Group 5 teams share their ground with four other teams and will get a home ground advantage
in the finals if they finish in a position which deems a home ground. They are also guaranteed a
home grand final.

Quite obviously, Carlton and Geelong are at a disadvantage because they will receive no home
ground advantage despite their final position at the end of the year. Whilst teams in Group 5 will have
the advantage of playing on their home ground in the grand final if they are to make it, there would
be no distinct advantage if they were playing someone else in Group 5. We investigate whether these
advantages and disadvantages are greater or less in the new finals system as opposed to the McIntyre
system.

Premiership odds for each group given their final position and taking home advantage into account
can be calculated. For example, if Adelaide were to finish fifth, then their first game would be at their
home ground. However, there is a % chance that there will be no home ground advantage if they play
Port Adelaide. If Geelong finish second, then it is assumed the match will be played at the MCG. This
means that there is a % chance that they will play away (a team from Group 5) and a % chance that
it will be a neutral ground. These premiership probabilities for each of the groups are given in the
following table.

Final position Group 1 Group 2 Group 3 Group 4 Group 5
1 20.9 15.6 20.7 20.5 22.6
2 20.9 15.6 20.7 20.5 22.6
3 18.6 14.9 18.5 18.5 19.7
4 18.6 14.9 18.5 18.5 19.7
5 5.1 4.1 5.2 5.3 6.1
6 5.1 4.1 5.2 5.3 6.1
7 3.8 3.6 3.9 4.1 5.1
8 3.8 3.6 3.9 4.1 5.1

Table 5: Percentage chance of a premiership for each of the five groups of teams given their final position
and home ground advantage for the new finals system.

As shown in Table 5, premiership probabilities between Groups 1, 3 and 4 do not differ that signif-
icantly. However, Group 2’s chances are well below average, whilst Group 5’s probabilities are higher
than normal despite sharing the MCG with four other tenants. This is largely because Group 5 will
always enjoy either a home game or neutral grand final, whilst other groups will either play a neutral
or away grand final. This problem is common to any system. The MCG is the largest capacity sporting
ground in Australia and well deserves the right to host the grand final.

Of greater importance is that Group 2’s (Carlton, Geelong) probabilities are somewhat significantly
less than other groups. In fact, they are so low that any other team that finishes fourth has a greater
probability of winning the premiership than Carlton or Geelong do if they finish first. Of course, one
of the reasons this occurs is that they will never obtain a home ground in any of their matches, but
this highlights the problem with the new system in that the top four sides have the same probabilities
of winning the premiership given equal probability matches. In the McIntyre system and most other
ranking systems, first place has a significant advantage over fourth despite any home ground advantage,
but this does not occur in this system.

Carlton and Geelong are 26% less likely to win the premiership given their home ground status than
other teams, whereas teams in Group 5 are 11% more likely to win the premiership because of their
MCG advantage.
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Final position Group 1 Group 2 Group 3 Group 4 Group 5
1 19.72 15.11 19.46 19.31 21.52

2 19.72 15.11 19.46 19.31 21.52
3 16.29 12.73 16.21 16.13 18.10
4 12.59 12.73 12.54 12.49 14.00
5 10.75 9.62 10.86 10.97 12.76
6 7.27 9.18 7.37 7.47 8.74
7 5.09 4.05 5.10 5.24 6.14
8 5.09 4.05 5.10 5.24 6.14

Table 6: Percentage chance of premiership for each of the five groups of teams given their final position
and home ground advantage for the MclIntyre Final Eight system

These results can be compared to that of the old McIntyre Final Eight system.

Table 6 shows that the same pattern still occurs; that Group 2’s probabilities are below average
whilst Group 5’s probabilities are greater than average. In fact, the probabilities of each of the groups
winning the premiership has barely changed from system to system. However, the new system has given
a greater chance of premiership for the top four teams than the bottom four. This is because Team 7 and
Team 8 will receive no home games in the new system, but will obtain a home game in the Mclntyre
system if they win the first game. But probably the greatest difference is that under the MclIntyre
system, if teams from Group 2 finish first or second, then their probability of a premiership is greater
than any other team who has finished fourth. This is not the case in the new system.

For the new system to work properly, every team needs to have their own different and distinct
home ground that they will be guaranteed a home game at in the finals if they finish in the required
positions. This of course will never happen, with ten teams in Victoria. It is our conclusion that the
MeclIntyre system performs better on the criteria.

The question remains that although the McIntyre Final Eight system takes preference over the new
system, is it fair and just? The answer to this is no.

5 Conclusions

These results show that the new finals system is far from perfect. It does not match the criteria that
higher ranked sides have a higher probability of winning the premiership, as Team 1 has an equal chance
with Team 4, and Team 5 has an equal chance with Team 8. There is also little difference between the
expected final position of the top four, and little difference between the bottom four. Fifth place is
three times less likely to win than fourth. Also, the best two teams are not the most likely grand final
quinella. With the possibility of teams deliberately losing games in the final home and away season
round and unfair match-ups in the semi-finals, the new system has several problems. As the new system
is so dependent on higher ranked teams having a significant home ground advantage, certain teams
may be more likely to win the premiership when finishing fourth, than others finishing first or second.
The system would be more just if every team possessed their own separate home ground, but still some
problems would occur. Like the MclIntyre Final Eight system, the general public will respect the new
system until one of its inadequacies is shown up by a particular draw.
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Abstract

The ever increasing demand of golfers for improvements in the performance of equipment has
spawned many research programs in recent years. In the technology of the ball, the work has mainly
been successful, but for the club the efforts of the researchers have produced markedly less usable
results. The paper discusses why this should be, taking as its basis the swing pattern that needs to
be achieved, and considering the effect of club head and shaft design during the swing and impact
with the ball. The paper shows that the golf swing and the impact process are very complex and
varied and concludes that mathematical modelling and computation will prove to be the only way
for future research in this area.

1 Introduction

The performance of golf clubs must be defined by their ability to produce the desired shot. For many
golfers this rarely happens and we must question whether this is the unchangeable fault of the golfer or
the inability of the manufacturers of the equipment to supply suitable clubs. Part of the answer to this
question lies in the history of the technology of the game and part in the complex nature of the swing
that is widely advocated by teachers of the art.

Any serious study of golf club design will show that clubs have changed little for over 200 years apart
from the use of modern materials. The benefit to the average golfer has been minimal. This is despite
quite significant advances made in the understanding of the various mechanisms involved in the game.
For confirmation of this and as a background to the topics discussed in the paper, the reader is referred
to the many papers and articles in Cochran (1990, 1995), Cochran and Farrally (1994), Farrally and
Cochran (1998), and Haake (1996, 1998).

This paper considers the nature and diversity of the very complex swing patterns, and the way
they affect the movement of the club, giving examples of and commenting on theories which have been
developed and how computational models are used to predict the correct club for each golfer.

The aim of the swing is achieved with the impact of the ball and the face of the club and, again
in this area, experiments and theory are developing side by side. Computer models are aiding a more
complete understanding of the mechanisms involved in propelling the ball forward and of how high
values of backspin are generated.

Once it has left the club, the flight of the ball is governed by the aerodynamics of spinning objects.
Most computer models of the flight are based on simple Newtonian mechanics using measured aerody-
namic data such as that of Smits and Smith (1994). The computations are mainly used in the choice of
the correct values of loft for the clubs and the models are sufficiently accurate for this purpose.

Finally the paper makes a prediction of what now needs to be done and how computers could be
used to match the physical abilities of the player to the right equipment.
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2 The golf swing

2.1 The unique swing

Early attempts at mathematically modelling the swing came almost before computers were generally
available. Figure 1 is a representation of a stick model which is based on a stroboscopic photograph of
the swing of Bobby Jones (one of the best ever golfers). This was used directly by Williams (1967) and
inferred by Jorgensen (1970). The Lagrangian approach used by the latter and the classical approach of
the former both suggest that there is but one way of swinging a golf club to utilise the golfer’s ability
to the maximum.

A distillation of what is proposed for this unique swing is as follows.

o Starting the downswing, the golfer must accelerate the club as a solid body. The arms and wrists
hold the club with a constant angle between the arms and the club. This solid body rotation carries
on for about 120°, during which the constant angle is maintained by applying an increasing torque
through the wrists and hands in opposition to the torque caused by centrifugal acceleration of the
clubhead.

e At this point, the hands and wrists cease to resist the torque allowing the club to rotate about
a pivot roughly in the middle of the hands until, if the timing of the swing is correct, the head
impacts with the ball when it has achieved its maximum velocity and it is travelling along the
intended direction of the shot with the face of the club at right angles to that line.

470 N

Figure 1: Stick representation of a good swing.

Milne and Davis (1992), with the advantage of computation, solved the complex equations of motion
of the swing, taking the analytical model much further. Although the results of his work are extensive
and interesting, his main conclusion confirmed the findings of his predecessors.

The geometry and muscular distribution of the golfer must dictate the exact pattern of the swing
but the timing of the swing of the top golfers is, with few exceptions, very similar.

The golfer must recognise the importance of these results. To achieve a good swing and utilise his
efforts to the full, the golfer should reproduce as closely as possible the timing of the unique swing but
at a speed which he can control. Unfortunately, as will be described in the next sections, few golfers
understand this requirement and, worse still, very few instructors teach it.
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2.2 The real swing

For a very good swing, the forces acting along the line of the shaft are as shown in Figure 1. Provided
that the golfer applies a torque sufficient to maintain the club angle (as above) then the forces acting
along the arms of the golfer are large only in the last stage of the swing when the club is entering
the impact area. The golfer at this point is in an ideal position to withstand the large forces that are
transmitted through the legs, which are flexed evenly, through the spine which is untwisted, and into
the shoulders and arms which carry the force equally.

If the swing pattern is other than this, and for the greatest majority of golfers it is, then the body is
in a poor position to withstand these large forces and hold the club on line. For instance, for the golfer
who slices the ball, the wrists do not maintain the angle and the force along the arms is then large
in the early part of the downswing. Because the body is in a twisted state, with the weight unevenly
distributed on the legs, the golfer inevitably is pulled sideways. By now the club is travelling well outside
the correct plane, with the result that the golfer has to pull the left shoulder out of the way to let the
club come across and into the ball. This action, as a whole, produces a slice.

This explanation is not given merely as a condemnation of poor golfers. It is done because the market
is mainly for these players, and it is essential that any model of the golfer used for club design replicates
this swing.

2.3 The model of the real swing

The models of Williams, Jorgensen, and Milne are mathematically complex but, even so, have been
shown to be limited in realism. If clubs are to be designed for the very wide range of ability in the
amateur game, then more sophisticated models are needed. These will be beyond analytical treatment
and will rely heavily on the power of the computer to simulate the many elements of the anthropometric
system. In this way, the effect of the forces exerted on the body during the swing can be evaluated.
Much more work is needed in this area.

As an encouragement to this work, it has already been shown (Mather, Waites and Vardy (1992))
that it is possible to force the golfer into a better swing pattern. In this, the mass distribution of a
device representing a club is altered in a series of tests with the individual golfer. The club head speed
at impact and the angle and direction of the face of the club are checked. The final distribution is put
through the design program to check the shaft flex, lie and loft. The process has been successful with a
number of golfers, and is being constantly developed.

2.4 Design and testing of golf clubs using robots

The conclusion of the previous section that the use of the complex design process is essential in design,
begs the question of the relevance of robot golfing machines.

Traditionally, these have been used to aid and advance the testing and design processes. Early designs
were based on a double pendulum, the two points of rotation representing the middle of the shoulders
and the middle of the hands. Three and four link robots have been tried but none reproduce the complex
physique and geometry of the real golfer. It is now clear that a multi-link system is required, representing,
as a minimum, the trunk, each shoulder, the upper and lower arms, and each wrist. Without this, the
robot is singularly unrepresentative and therefore cannot be used to develop golf clubs except, perhaps,
for the very good amateur or professional golfer.

Such robots will be extremely expensive and it seems that, if realistic progress is to be made, effort
should be put into generating, mathematically, an androidal model of the golfer. Some simplification
may still be necessary and this may take the form of assuming, perhaps, that the elements of the
body below the waist rotate on a horizontal plane. This concept is the subject of a current study at
Nottingham.
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2.5 Statistical analysis of the average golfer

Section 2 implied that the average golfer swings the club far too fast. Since this is a fact well-known to
all teachers of the game, it is right that the non-golfer should ask why do players continue to do it?

Riccio (1990) shows that accuracy of the shot to the green is by far the most important quantity in
playing better golf. For these shots the golfer has simply to produce sufficient head speed for the club
he is using to propel the ball the required distance. But the golf industry has cleverly pushed the golfer,
by advertising and marketing, into believing that distance from the tee is the essential ingredient to
better play. The player is thereby encouraged to swing hard and fast with the most difficult club in the
set, the driver, with which, unsurprisingly, he does not remotely approach the correct swing. It is this,
more than anything, that gives rise to the widespread incidence of the poor swing pattern referred to
in Section 2.

3 Modelling of the swing

The data of Figure 1 show the distribution of high amplitude forces to which the club is subjected
during the swing. Since the club is highly elastic, being a heavy weight on a very slender shaft, and the
accelerations rise to over 300 g, the shaft must bend and twist significantly throughout the swing. If the
golfer applies a different force pattern, the club bends and twists in a different manner.

Many attempts have been made to develop computer programs which model the three-dimensional
movement of the club throughout the swing. Starting with the forces and torque introduced to the club
by the golfer, they compute the location and attitude of the club. This requires a knowledge of the
boundary condition supplied by the hands. In the golf swing, the boundary condition changes markedly
during the downswing. At the start, the hands hold the club lightly, just enough to reverse the motion
of the club from upswing to downswing and with a force which is normal to the line of the shaft. Once
the downward motion has started, the golfer holds the wrists cocked at a fixed angle, which suggests
something of a distributed boundary condition. The role of each hand and the forces and torque applied
through the fingers of each hand are not the same. Towards the end of the downswing, when the
centrifugal forces acting along the shaft rise to over 400N, the tapered grip of the club jams into the
hands, which, with the aid of friction, grasp the club hard enough to prevent slippage. At this stage,
the boundary condition could be modelled as a form of elastic clamp.

3.1 A new method of modelling the club

This leads to the conclusion that it would be useful to develop a method of modelling the club movement,
based as before on force and acceleration, which avoids the need for the boundary condition. The
fundamentals for such a system were reported by Cooper and Mather (1990), who devised a method
which measured, for golfers with the complete range of ability, the vector accelerations in the region of
the shaft immediately below the grip. In this area the shaft can be assumed to be straight and untwisted.
These accelerations are then used to compute the movement of the head and shaft in the swing. The
angle of the face and its direction of travel are found throughout the swing and the effects of different
shafts are evaluated. This will be a useful tool for the designer.

The results of the calculations are interesting. Figure 2, for example, plots the typical deflection of
the head of the club caused by shaft bending in the swing of a good golfer. The maximum deflections
both in the plane of the swing (defined locally throughout the swing) are about 20mm and those
perpendicular to this up to 50mm, depending on the location of the centre of gravity of the head and
its mass, the shaft flex and stiffness.

Impact with the ball is at 0.4 seconds, with the shaft bent forwards and downwards (droop) as shown
(in exaggerated form) in Figure 3. It is clear that the velocity in addition to the mean head velocity in
the swing is almost zero at impact giving a lie to the marketing hype that this final “kick” of the shaft
produces extra head velocity. To take advantage of any velocity gain the impact would have to occur,
say, at 0.35 seconds and even then the “added” velocity is less than 1 ms™! or 3% of the mean.
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Figure 2: The deflection of the shaft during the swing.

The same computation can be used to evaluate the effect of changing head mass, shaft length and
flex—an extremely useful tool for the designer, and one which is being widely used.

Forward bend | Downward bend - droop

Figure 3: Bend and droop of the club at impact.

3.2 Three-dimensional curvature of the shaft

The overall flex of the shaft is shown in Figure 4. This is one of the figures taken from Mather et
al. (2000) and shows the curvature of two clubs (each with two swings) immediately prior to the impact
of the club and the ball, for the swings of a golfer of good amateur standard.

The radius of curvature in centimetres is plotted against the distance along the shaft. The minimum
radius of curvature is generally about 0.5m and is situated between 35 and 45 cm from the tip of the
shaft. The golf industry states that “the location of the kick point governs the gradient of the shaft as
it enters the club head and thereby the overall loft of the club; the higher up the shaft the kick point is,
the lower the gradient of the club head and the lower the flight of the ball.” Apart from the technical
non-sequiturs in this concept, the curvature shown in the diagram is found to be mainly in droop and
therefore has virtually no effect on the loft of the club head, but a very significant effect on the angle
the face presents to the ball. This is vital in the impact process and determines the direction of flight
and the amplitude of backspin on the ball.
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Figure 4: Curvature of shafts before impact.

It is interesting to note, though, the consistency between the performance of club 5 from swing to
swing, and the slight inconsistency of the swings with club 4.

As far as is known, such valuable results are only available by using photogrammetric systems such
as that described in Smith et al. (1998) and the powerful matrix computations needed for this system.
With this, results can be obtained for any golfer using any club—again an extremely useful tool. The
research in this area is yielding very useful data for the design of clubs specifically for amateur golfers.

4 The impact of the ball and the head

This section deals with the models of the head and ball which allow and assist the designer to predict
the outcome of any shot.

4.1 Forces on the face

First assume the swing is correct. The head arrives at the ball travelling along the intended line and
with the face at right angles to it. The force of impact is well documented, for example by Lieberman
and Johnson (1994), Gobush (1996) and Johnson and Lieberman (1994), and has two components. The
first is normal to the face and generates the force necessary to propel the ball forward. The second is
perpendicular to this and acts along the face. This generates the spin on the ball. Typical values for
these two forces are shown in Figure 5. The negative tangential force towards the end of the impact is
probably caused by the effect of a torque created because the normal through the centre of pressure
of the contact area does not pass through the centre of gravity of the distorted ball. If correct, this
mechanism increases the backspin and probably explains why soft “balata” balls spin more than hard
two-piece balls.

The normal force is not insubstantial, rising to over 13,000N simply because the 43gm ball is
accelerated from rest to 70ms™! in a time of 500 microseconds. In this time, the collision causes the
head to divert from its original path, the shaft to bend and to twist. The ball is still in contact with
the head during this movement which, therefore, determines its initial direction, velocity and three
dimensional spin, and its subsequent flight.

For the average amateur, the swing is far from correct. The attitude of the head at impact, and the
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Figure 5: Forces on the club face.

force patterns on the face, particularly in angle, are all different from the data currently available and
there is a substantial horizontal component which creates side spin. The movement of the head and the
reaction of the ball are bound, therefore, to be different.

4.2 Design principles

The parameters which influence the motion of the head include head mass and mass distribution (and
hence the inertia matrix of the clubhead), shaft flex in bending and twist and the attitude of the club
at impact, known as prebend.

The aim of club design would, at first sight, seem to be to minimise flight deviation, so encouraging
straighter shots. Such clubs, using commercial jargon, would be more forgiving for the golfer. It is often
necessary, however, for the good golfer to shape the shot in order to avoid obstacles or to counter
natural forces such as the wind, and this could be negated, somewhat, by the forgiveness of the club.
The designer needs to consider all sectors of the market and design accordingly.

4.3 Model of the impact phase

Several models have been made of the club at impact. Typical studies are reported in Hocknell et
al. (1998) and Clafton (1999). Leong (2000) includes the pre-bend of the club at impact as discussed
in Section 3 and Daniels (2000) models the time-variant pressure distribution on the face. All of these
studies are based on the finite element method but use different base models. In some, only the head
is treated, the assumption being made that, in the very short time of impact, the motion is unaffected
by the shaft. In others the shaft is modelled as a series of hollow tubes and the head as a point mass
concentrated at the centre of gravity together with an inertia matrix about that point. Figure 6 shows
such a system with nodes distributed over the face (only a fraction of those used are shown), the centre
of gravity displaced away from the face, and the shaft connected to the head model so that the values of
the loft and lie angles are maintained throughout the impact, as would be the case for a normal head.

All of the results obtained with a shaft confirm that the boundary condition at the hands has no
effect on the impact phase of head and ball.
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Impact

Figure 6: Nodal arrangement for FE analysis.

4.4 Results

The computation proceeds to find the response characteristics of the system. The eigen-frequencies and
shapes are derived for a given geometry and the forced response is computed. Measurements of the
response of clubs clamped in a manner designed to simulate the hands suggests that only the first five
or so modes are required to determine the motion of the head during impact, although this remains
to be confirmed by dynamic testing. Figure 7, taken from Leong (2000), shows the motion of the tip
section of a club, starting from the original shape with pre-bend and ending with the deflected shape
at the end of impact. As expected, the head deflection is about 3 mm.

Figure 8 shows the results of a computation by Clafton (1999) of the response of a head modelled
as a semi-ellipsoid. The four results shown are obtained by varying the location of the centre of gravity
and therefore the inertia matrix whilst maintaining the overall mass, this being particularly apposite
for head design.

The first and second modes (not shown) are cantilevers parallel and perpendicular to an axis through
the face of the club. The figure shows the nodal axes of the third, fourth and fifth modes, which pass
through the body of the club head at various angles. The ball impact excites these modes and their
phased combination determines the head motion.

Experiments in the field with a wide variety of clubs show that heads with different responses (but
with the same general parameters such as mass, shaft length and flex) produce different ball flights.
Further, a comparison of modal response with ball flight suggests that individual modes or groups of
modes can be associated with certain flight characteristics. The details of this are contained in the work
of Mather (1996), but generalising the conclusions of that work,

e modes which have nodal axes parallel to the ground control backspin,
e modes which have nodal axes at 90° to the ground control side spin.

Translating these effects to the results in Figure 8(a), mode 5 (nodal axis 5) generally governs the
degree of backspin on the ball. Modes 3 and 4 (nodal axes 3 and 4) have more control over the amount
of side spin.



The use of computers to predict the performance of golf clubs

0.0000

-0.0050

-0.0100
. -0.0150 /
é /
c -0.0200
S
S 00250 - ! /
% -0. | [after 480 microsecoV
© 0.0300 %7

b

-0.0350 —

-0.0400 linitial

_0.0450 T T T T T T

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

distance from the tip of the shaft (m)

Figure 7: Deflection of the shaft at the end of the impact period.

151

There has been much said about the “sweet spot” on sports devices and golf is no exception. In
Figure 8, the sweet spot might be defined as the impact point or area that induces the minimum head
movement. The effect of the cantilever modes is controlled by the flex of the shaft, particularly in the
tip region, and the designer can choose the shaft accordingly. For the higher order modes a sweet spot
will exist at or near to the junction of the nodal axes. For the results in Figure 8(a) and (d) this would
be, say, in the middle of the triangular areas generated by the nodal axes. For Figure 8(b), the axes
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Figure 8: The modal response of an ellipsoidal head.
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coincide at a single point but, unfortunately, one which is of no use because of its extreme location. In
Figure 8(c), two of the nodal axes cross in the centre of the club, and the third is parallel to one of
them. Of the designs shown, this would probably be the most usable club for a good golfer. Shots hit
towards the toe or heel will induce side spin bending the ball left (draw) or right (fade) in flight. But
the design for a truly forgiving club for the average golfer might be one which counters the ill-effects
caused by an incorrect swing. In this respect, the design in Figure 8(d), has a fair degree of backspin,
and induces side spin which counters a slice. This is by way of a qualitative argument but one which
aids the design process once the experienced designer learns to relate the head response with probable
ball flight. The actual values for the movement of the head are always available.

Clearly, the program can be made to design the head to achieve whatever ball reaction the designer
wishes. The current design process involves the use of Computer Aided Design to create a usable and
marketable shape, from which the location of the centre of gravity and the inertia matrix are found and
put into the modal response program. The system then iterates, balancing the aesthetics of the club
with the practicality of impact response.

Such a program, or more accurately a suite of programs, is essential for the designer of the next
generation of clubs.

5 Modelling the flight

Using simple Newtonian mechanics and the drag and lift data of spinning balls (Smits and Smith (1994))
the flight to impact can be calculated with reasonable accuracy. These calculations require the initial
angle of the trajectory, the vector of the velocity and the spin rate. These will vary with:

e the swing pattern of the golfer,

e the type of ball normally used,

e the response of the club,

e the head velocity, and attitude at impact.

As well as tailoring the club to the golfer, the choice of head design might, conceivably, involve the
playing location of the golfer. For instance, those who play near to the seaside (links) require shots
which penetrate under the wind yet have enough spin to stop on or near to the green. Those who play
on courses which might be referred to as having “target golf” with greens and fairways which are well
guarded, would prefer high shots which finish with an almost vertical drop to the green. Figure 9 shows
examples of these, where loft, head attitude and velocity have been varied.

6 Measurement and analysis of the performance of the golfer

Most of what has been described above requires measurements to be taken of the club during the swing
and the impact. Computer modelling is of no use unless it has been confirmed as realistic. Commercially
available optical systems often suffer from two deficiencies—the limited number of targets that they can
measure and the accuracy that can be achieved bearing in mind that the swing volume is large, being 5m
by 4m by 2m deep. High speed stroboscopes and rapid spark guns are now regularly used to determine
the location of the shaft (and the golfer) during the swing and impact. In these the number of targets
is limited only by analysis time and accuracy by pixel size. Cost is also important and techniques are
now being developed using cheap non-metric cameras and transformation techniques based on standard
photogrammetric procedures (Smith et al. (1998)). In these, the use of large and powerful computers is
absolutely vital.
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7 Summary and conclusions

Ten years ago, the design of golf clubs came from the mind of the marketing man and not the engineer.
Competition for the market is more extreme now than it has been for some time and it is essential for
companies to take on board the latest technical developments to offer the golfer better products. The
problem, inevitably, arises from the fact that this can only happen through a quantum change in culture.
The speed with which the technology, referred to above, is developing only adds to this problem. The
paper has outlined the use of mathematical modelling and computation in the fields of:

e the swing of the golfer,

the design of the shaft for the swing,

the effect of the interaction between the shaft and head,

the design of the head for impact response,

the generation of spin on the ball,

the flight envelope of the ball.

The research is continuing. Certainly, better models for the human form are needed. Testing of club and
shaft response during the swing and impact with the ball will yield better designs for different categories
of golfer. Finally data on the drag and lift of a spinning ball at low velocities need to be provided.

References

G. Clafton (1999), The use of finite element analysis for the performance of a golf club, thesis for the
degree of MEng, University of Nottingham, Nottingham, UK (unpublished).

A. J. Cochran (editor) (1990), Science and Golf (Proceedings of the First World Scientific Congress of
Golf), E. & F. N. Spon, Chapman & Hall, London.



154 J. S. B. Mather

A. J. Cochran (editor) (1995), Golf the Scientific Way, Aston Publishing Group, Hemel Hempstead.

A. J. Cochran and M. Farrally (editors) (1994), Science and Golf II (Proceedings of the 1994 World
Scientific Congress of Golf), E. & F. N. Spon, Chapman & Hall, London.

M. A. J. Cooper and J. S. B. Mather (1994) “Attitude of the shaft during the swing of golfers of different
ability”, in Science and Golf II, A. J. Cochran and M. Farrally (editors) E. & F. N. Spon, Chapman &
Hall, London, 271-277.

C. Daniels (2000), The effect of time based pressure distributions on the response of a golf club, thesis
for the degree of MEng, University of Nottingham, Nottingham, UK (unpublished).

M. Farrally and A. J. Cochran (editors) (1998), Science and Golf III (Proceedings of the World Scientific
Congress of Golf), E. & F. N. Spon, Chapman & Hall, London.

W. Gobush (1996), “Friction coefficient for golf balls”, in The Engineering of Sport, S. Haake (editor),
A. A. Balkema, Rotterdam, 193-194.

S. Haake (editor) (1996), The Engineering of Sport: Proceedings of the First International Conference
on the Engineering of Sport, A. A. Balkema, Rotterdam.

S. Haake (editor) (1998), The Engineering of Sport; Design and Development: Proceedings of the Second
International Conference on the Engineering of Sport, Blackwell Science, Oxford.

A. Hocknell, R. Jones and S. J. Rothberg (1998), “Computational and experimental analysis of a golf
club”, in Science and Golf III, M. Farrally and A. J. Cochran (editors), E. & F. N. Spon, Chapman &
Hall, London, 526-534.

S. H. Johnson and B. B. Lieberman (1994), “An analytical model for ball-barrier impact. Part 2, A
model for oblique impact”, in Science and Golf II, A. J. Cochran and M. Farrally (editors), E. & F. N.
Spon, Chapman & Hall, London., 315-320.

T. Jorgensen (1970), “On the dynamics of the swing of a golf club”, Am. J. Phys., 38 (5), 644-651.

D. Leong (2000), “The effect of pre-bend on the deflection of the club head during impact”, Research
report for Decathlon, Lille, University of Nottingham, Nottingham, UK.

B. B. Lieberman and S. H. Johnson (1994), “An analytical model for ball-barrier impact. Part 1, Models
for normal impact”, in Science and Golf II, A. J. Cochran and M. Farrally (editors), E. & F. N. Spon,
Chapman & Hall, London., 309-314.

J. S. B. Mather, B. Waites and D. Vardy (1992), “The design of weighted golf clubs”, US Patent
No. 5,152,527.

J. S. B. Mather and M. A. J. Cooper (1994), “Categorisation of golf swings”, in Science and Golf II, A.
J. Cochran and M. Farrally (editors), E. & F. N. Spon, Chapman & Hall, London, 65-70.

J. S. B. Mather (1996), “The role of club response in the design of current golf clubs”, in Proc. 14th
IMAC, Dearborn, Michigan USA, 397-403.

J. S. B. Mather, M. J. Smith, S. Jowett, K. A. H. Gibson and D. Moyniha (2000), “Application of the
photogrammetric technique to golf club evaluation”, J. Sports Engineering, to appear.

J. S. B. Mather (2000), “Innovative golf clubs designed for the amateur”, in The Engineering of Sport
(Proceedings of the Third International Conference on the Engineering of Sport), Blackwell Science,
Oxford, to appear.



The use of computers to predict the performance of golf clubs 155

J. S. B. Mather and S. Jowett (2000), “Three-dimensional shape of the golf club during the swing”,
in The Engineering of Sport (Proceedings of the Third International Conference on the Engineering of
Sport), Blackwell Science, Oxford, to appear.

R. D. Milne and J. P. Davis (1992), “The role of the golf club shaft in the swing”, J. Biomechs., 25,
975-983.

L. Riccio (1990), “Statistical analysis of the average golfer”, in Science and Golf, A. J. Cochran (editor),
E. & F. N. Spon, Chapman & Hall, London, 153-158.

M. J. Smith, J. S. B. Mather, K. A. H. Gibson and S. Jowett (1998), “Measuring the dynamic response
of a golf club during swing and impact”, Photogrammetric Record., 16 (92), 249-257.

A. J. Smits and D. R. Smith (1994), “A new aerodynamic model of a golf ball in flight”, in Science and
Golf II, A. J. Cochran and M. Farrally (editors), E. & F. N. Spon, Chapman & Hall, London, 340-347.

J. J. Webster (1994), “Response of a golf club during the swing”, unpublished.
D. Williams (1967), “The dynamics of the golf swing”, Quart. J. Mech. Applied Math. XX (2), 247-264.



MODELLING ENDURANCE TIME AT VO3 pax

R. Hugh Morton* Veronique Billat
Institute of Food, Nutrition and Human Health Laboratory in Sport Science
Massey University Université Lille 2
Palmerston North 2 Avenue Richerand
New Zealand Paris 75010, France
Abstract

There has been significant recent interest amongst sport scientists and athletes, in the minimal
running velocity which elicits V Oz max . There also exists a maximal velocity, beyond which the
subject becomes exhausted before VO2max is reached. Between these limits there must be some
velocity which permits maximum endurance at V' Oz max , and this parameter has also been of recent
interest. We model the process based on a two component (aerobic and anaerobic) energy system,
a two component (fast and slow) oxygen uptake system, and a linear control system for maximum
attainable velocity resulting from declining anaerobic reserves as exercise proceeds. The model de-
velopment produces a skewed smooth curve for endurance time at VO2 max with a single maximum.
This curve has been successfully fitted to pooled endurance data collected from ten exercising sub-
jects (R2 = 0.821, p < 0.001). For this group of subjects the maximal endurance time at VO max is
predicted to be 603 seconds at a running pace corresponding to 88% of the minimal running velocity
which elicits VO2 max in an incremental running test. This is a longer time than is usually reported
in the literature, but not as long as can be achieved if running pace is progressively reduced.

1 Introduction

The relationship between power output and endurance time is a fertile area for the study of human
bioenergetics and work performance. For two recent reviews, consult Billat et al. [2] and Morton and
Hodgson [12]. With very few exceptions, this research has focused on endurance at constant powers,
where the critical power (C'P) concept (see Hill [5]) has been by far the most commonly adopted model.
It has been widely studied, and adapted for swimming, running, rowing, cycling, kayaking and wheelchair
exercise. Nevertheless, it is not without its critics (Vandewalle et al. [17]).

For some of these exercise modalities, power output can be measured directly on an ergometer.
However for running, swimming and wheelchair exercise, velocity and distance take the place of power
and work respectively, with corresponding changes to the units of measurement of the parameters of
the model. It would be useful if a single forcing variable could be found, one which is independent of
exercise modality and which could be used in a totally general setting. Oxygen uptake may be one such
candidate.

Oxygen uptake however, is not a simple function of power output or velocity, for it is a function
of time as well. Even steady state oxygen uptake is not a linear function of power output beyond a
certain level. The slow component of oxygen uptake and increasing oxygen cost of exercise at higher
powers complicates the issue (Gaesser and Poole [4]). The slow component has however been successfully
modelled, both theoretically (Morton [9]) and empirically (Barstow and Molé [1]); and the energy cost
of running can safely be assumed constant (or very nearly so) provided the power or velocity range

*The work of the first author has been made possible through the support of the Centre de Medicin du Sport, CCAS,
Paris.
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is narrow. These models are not mathematically simple. Perhaps then these difficulties can be largely
overcome by considering endurance at a fixed value of oxygen uptake, say at its maximum (V Oz max )-

The power range that will bring on exhaustion in a finite time can be divided into three domains.
Power output may be high, that is higher than C'P but insufficient to elicit V Oz max - It may be very
high or maximal, sufficient to drive V O to its maximum before exhaustion. Or it may be extreme, such
that the subject becomes exhausted before sufficient time has elapsed for VO, to reach its maximum.
Indeed, the minimum power or velocity just sufficient to elicit VO pax before exhaustion in a subject,
and endurance time at V' Os pax , are two phenomena of current interest to exercise physiologists, sports
coaches and athletes in training.

The relationship between power output and total endurance has been modeled over the whole power
range above C'P as referred, but modelling endurance at V' O3 ax is restricted to the narrower mid-range.
Given what is already known about the human exercise response, it should be possible to model this
latter relationship, perhaps in a similar way to modelling endurance at constant power. To our knowl-
edge, this has never been accomplished, and it is the purpose of this paper to present the mathematics
of this modelling process.

2 Methods

2.1 Model background

Quite apart from any philosophical arguments concerning the C'P concept itself, there are several
practical ones to consider. Several of these are discussed by Vandewalle et al. [17]. It is of value in
setting the scene for modelling endurance at V' Os pax to recall the more relevant of these.

It has been clearly shown that when subjects have their endurance at CP (as estimated from the
model) tested, they are seldom able to endure for one hour, often much less ([6, 7, 8, 13]). Certainly this
falls well short of the “infinitely” long endurance predicted by the model. As a consequence the work-
time relationship is not linear but curved downwards and the resulting parameter estimates depend on
the selection of powers for the experimental determination of C'P (Bishop et al. [3]).

At the other extreme, the C'P model predicts an infinitely high power as endurance time shrinks
to zero. Clearly this cannot be so, as the concept of maximal anaerobic power is well established
(Vandewalle [16]). Some finite maximal “instantaneous” power must exist, beyond which no work can
be performed and endurance time is zero.

As a consequence one can deduce that some self-preservation control system must be in operation,
and that the assumption of the C'P model that at exhaustion all of the anaerobic capacity is completely
consumed, is erroneous. Indeed Saltin and Karlsson [15] have clearly demonstrated the existence of
significant anaerobic reserves at exhaustion at various power outputs.

All of the above difficulties have already been overcome by the adoption of a linear control system
for power output based on the extent to which the anaerobic capacity has been consumed. The resulting
3-parameter critical power model is fully discussed by Morton [11]. Nevertheless, two further practical
difficulties remain.

Firstly, the adjustment of oxygen delivery to the working muscles as required by the exercise, is
not instantaneous as assumed by the C'P model. In fact it may take two or three minutes to reach
the required level. Wilkie [18] has recognised this problem, though his formulation has other difficulties
in common with the C'P model. Peronnet and Thibault [14] also recognised this problem, as well as
a declining ability to sustain power output at high fractions of V Oz pax. Their model however does
contain several arbitrary components, and is not simple. Secondly, and perhaps most problematic of all,
the anaerobic reserves are not comprised of a single component, but at least two, accessible through
different metabolic pathways. The three component hydraulic model of human bioenergetics proposed
by Morton [9] has addressed both these problems. The former is straightforward to overcome, but
the latter adds significant complexity to the modelling. Nevertheless, this model has been extended to
investigate maximum power and endurance by the introduction of a control system [10].
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The approach taken in this paper is therefore to construct a model, building on the previous work of
several authors, which represents an energy demand and supply system with the following properties:

e It is based on the two component aerobic and anaerobic critical power concept adapted to running.

e It incorporates a linear control system for power output, dependent on the amount of anaerobic
reserve consumed.

e Aerobic energy supply adjusts as a response with single fast exponential kinetics up to the level
of critical power.

e It incorporates the slow component (a second exponential) which drives V'O, beyond the equivalent
of C'P towards VO3 max -

In so doing, endurance time both in total and at V' Os2max can be modelled as a system with six
parameters. They are the anaerobic distance capacity («); critical velocity (CV'); maximal “instanta-
neous” velocity (Vinax); the minimal velocity sufficient to elicit VOamax (Vom); and two kinetic rate
parameters for the fast (r;) and slow (r2) components of oxygen uptake.

2.2 Important assumptions

A number of assumptions are inherent in the preceding discussion and in the basis on which the model
is constructed as described above. Two of these deserve particular mention.

We assume that at the time V O, reaches the equivalent of C'V', the primary exponential component
is just complete, or very nearly complete, at which point the slow component of VOs begins. This
assumption allows VO, above the equivalent of C'V to be treated as a single slow rate exponential process
with delay, thus simplifying the mathematics significantly. For the theoretical model of Morton [9] and
its empirical verification by Barstow and Molé [1], this seems to be fairly reasonable, as the time of
commencement of the slow component occurs part way into the exercise. However, for extremely high
exercise levels VO, may reach the equivalent of C'V quite quickly, say within 30s or less. In such cases
the degree of simplification our model assumes becomes more important, though this is irrelevant if
exhaustion occurs before VO max is reached.

We also assume that once V Os reaches the equivalent of C'V, the contribution of the aerobic power
source to the requirement of exercise stabilises at this level. This derives directly from the usual inter-
pretation of the critical power concept. This is despite the fact that the slow component may drive VO,
significantly beyond the equivalent of C'V. In other words, the contribution which the slow component
of VOy makes does not enter into energy supply/demand considerations. Indeed Barstow and Molé [1]
conjecture whether the slow component “ ... represents some energy consuming function that is ancil-
lary to, or even completely separate from, (muscle) contraction”. We assume that it does. If it does not,
then the critical power concept needs major reinterpretation.

2.3 Model development
For a glossary of all symbols and their definitions, go to the end of the paper.

Linear control system: Morton [10, 11] has conjectured that the maximal velocity that could be

developed by a subject at any instant, is controlled by the anaerobic capacity available at that instant;

although it is recognised that other causes of local fatigue may be involved. Specifically, this maximum,

Vin, declines linearly from Vj,ax, the maximal instantaneous velocity when fully rested and nourished,

to C'V, the critical velocity, as the available anaerobic capacity declines from its replete value a to zero.
That is,

Voo = OV + (V’“"T_CV> AC. (1)
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Figure 1: Energy supply/demand at very high velocity. This figure shows the energy demand at a
constant velocity of 10.6ms™!, for which endurance time is 8.42s. The corresponding rectangular area
represents the total work done, expressed in distance units, being the work required to cover that
distance. This area is comprised of aerobic work indicated by the area below the rising aerobic supply
(VO») line, and anaerobic work above this line. Exhaustion occurs prior to 10s, the time VO, would
have taken to reach the equivalent of a C'V of 3ms~! shown by the dashed line.

Exhaustion is precipitated and therefore endurance time determined when AC' declines to such a value
that V,,, just equals the velocity required, V. Thus we must first determine AC' as a function of time
spent at the velocity V', substitute in equation (1) when V,,, = V', and solve for ¢*, the endurance time
at V.

Total endurance time at very high velocity: Upon commencement of exercise at velocity V,
the aerobic supply, VO, rises mono-exponentially towards the oxygen requirement of V' with a rate
constant ry [1]. That is,

VO, = V(1 —e ™).

It is conceivable that V may be so high that exhaustion occurs prior to V' O; reaching the equivalent

of C'V. That is, for
cv
_Inf1-2Z
“( v >

0<t' <tp=—-"> 2 (2)
r1

where t. is the time required for V' Os to reach the equivalent of C'V.
The energy supply/demand relationship in such a case can be represented by Figure 1.
From this figure we note that AC' at t* is given by

t* v .
a— Vt*—/ Vl—e™dt | =a— —(1—e ).
0 r1

Thus, using the linear control system of equation (1),

V=CV+ (La"a_ CV) (a ~La- e—“t*)> )
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Figure 2: Energy supply/demand at high velocity. This figure shows the energy demand at a constant
velocity of 7ms™!, for which endurance time is 63.7s. The corresponding rectangular area represents the
total work done as in Figure 1. This area is comprised of aerobic work indicated by the area below the
aerobic supply line which rises to reach the level equivalent to C'V at 16.8s, as shown by the dashed line
at 3ms~!, and thereafter remains constant at this level until exhaustion; and anaerobic work represented
by the areas marked 1, 2 and 3.

which can be solved for ¢t* to yield
r1(Vipax — V)
n (1= A\ max = V)
o < V (Vinax — CV)
= -

3)

This of course only applies for 0 < ¢t* < #. given by equation (2), that is, for a range of velocities V,
where

CV (Viax — CV)
ria

Vmax - S V < Vmax-

Total endurance time at high velocity: Suppose the velocity required, V, lies in the range

CV <V < Vinax — CV(V“;‘“";_ CV),
1

which ensures VOs reaches the equivalent of C'V at time t. prior to exhaustion. The energy sup-
ply/demand relationship in this case can be represented by Figure 2.
Area 1, representing a distance in metres, is given by
t
© cv
CV -t.— / V(l—e "Hdt = — —t,(V = CV).
0 r1
More simply, area 2 is given by (V' — CV)t., and we note that areas 1 and 2 sum to a constant, CV/ry,
independent of V.
Area 3 is given by (V — CV)(t* —t.).
From Figure 2 we note that AC at t* is now given by
cv
a———(V-=CV)([#" —t.).

T
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Thus, applying the control system of equation (1),

v:cv+<M> (a_C—V—(V—CV)(t*—tc)>,

[0 r1
and substituting for ¢, from equation (2) and solving, yields

_1n<1_C_V> 0 v
t* =

\% r1 (0]
_ . 4
" YV ooV Vaw—ov (4)

We note that if VO, was regarded as adjusting instantaneously to C'V, then r; — oo as is the case
in the standard critical velocity model, and equation (4) would reduce to

_a a
SV =CV  Vimax = CV’

t*

which is exactly the equivalent of the 3-parameter critical power model of Morton [11].

Endurance time at VO . : Above CV, when the first exponential rise in VO is just complete or
very nearly complete, the second, or slow component of oxygen uptake enters the model as described
by Barstow and Molé [1] and Gaesser and Poole [4]. VO, will rise above the equivalent of CV, but may
not necessarily rise to reach V Oz pax - In either case, its contribution as the aerobic energy supply is
assumed to remain at C'V as conjectured by Barstow and Molé [1]. VO, may not reach VO3 pmayx either
because at high velocity the subject becomes exhausted too soon, or because the VO, equivalent of the
exercise is below V,,. In cases where VOs does reach V Oz pax , the time taken in getting there must
be subtracted from the total endurance time in order to obtain the time at VOs max .

Figure 3 shows the oxygen uptake kinetics, together with energy supply/demand features as were
shown in Figure 2.

0 15 30 45 60 75 90 105 120 135 150

Time : s

Figure 3: Oxygen uptake and energy supply/demand showing time at VO3 max . For a constant velocity
of 5.5ms !, this figure shows oxygen uptake first rising rapidly to the equivalent of a CV of 3ms~! by
23.65s. This is followed by the slow component, driving it further, reaching V' Os nax at an equivalent of
4.5ms ! by 106.1s. Thereafter, oxygen uptake remains constant at V' Os max until exhaustion at 132.1s.
Energy supply/demand features in this illustration are exactly analogous to those of Figure 2.
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We have already seen that the time taken for VO, to reach the equivalent of C'V is given by t.
derived from equation (1). From Figure 3, we note that for the slow component

Vom —CV = (V = CV)(1 — e7m2ltom=te)),

m (1 Yem =CV
, V-CV

which yields

tym = te — . )
- ®)
Hence, since t* =ty + tq, equations (4) and (5) yield
cv va -CV
a—— In{l—-——F—+—
t, = noo %y V-ov (6)
TV -CV Viax —CV ) '

The limits of V' between V,,, and Vijax for which t, = 0 and between which ¢, > 0, can be found by
solving

oGV 1H<I_M>

T1 + V_CV _ «
V-CVv T2 * Vinax — CV’

It will be noted that this admits two solutions, the lower of which is a little greater than V;,,,,, and the
upper somewhat less than V..

Illustration: Suppose @ = 500m, CV = 3ms™", Vinax = 12ms™", Vi, = 4.5ms™", 1, = &= s~ and

30
T2 = g5 8 . These values do not represent elite athletes. Equations (3), (4) and (6) are given by

12-V

t* = —301In <1 —1.852 ( >> , for10.38 <V <12ms™!,

3 410 )
__ _2) L 2 ks < 10.
301n<1 V>+V_3 55.56, for 3 <V < 10.38ms .,

410 1.5

to = 7—5 — 55.56 + 90In (1 - ﬁ) , ford.73<V <74lms™ L.

These curves are depicted in Figure 4.

2.4 Empirical verification

Subjects: Ten physically active male subjects (mean + SD, age 26.4 £+ 4.7 year, weight 79.1 £ 4.5kg,
VO3 max 59.3 +5.0mlkg ! min’l) volunteered for this study. Each subject was familiar with the ex-
perimental procedures prior to the study, and all gave their written informed consent to participate in
accordance with the French National Committee for Clinical Research.

Laboratory Procedures: On five occasions subjects reported to the laboratory when fasted and
hydrated. On the first occasion VOs2pmax and the lowest velocity which first elicited their V Oz max,
denoted vV O3 ax , were measured using an incremental test protocol on a treadmill (Gymrol 1800). At
the start, speed was set at 12km/h (0% slope) and was increased by two km/h every three minutes up
to 80% of their running speed in a 1.5 km race, and by one km/h every three minutes thereafter, until
exhaustion. The criteria used for VOsnax were a plateau in VOs despite increasing running speed, a
respiratory exchange ratio above 1.1, heart rate above 90% of the age-predicted maximum. The four
endurance tests at 90, 100, 120 and 140% of vV O3 max were subsequently performed in random order
for each subject at sessions separated by at least one week. At each, following a five minute warm-up
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Figure 4: Model illustration. This figure shows graphical traces of the total endurance time (dotted

line) and endurance time at V Oz max (solid line) as a function of velocity. The equations and parameter

values are as given in the text, with CV = 3ms™! shown in the figure by the vertical dashed line.

Maximal endurance time at VOyzmax is 27.8s, occurring at V = 5.24ms™ ! with corresponding total

endurance time of 153.33s.

at 60% of their vV O2 max , speed was quickly increased (over less than 20s) up to the required velocity.
Subjects were verbally encouraged to run to exhaustion. The total endurance time and distance covered
together with the endurance time and distance covered at V Oz pnax were recorded at each session for
each subject.

Curve fitting: The equations modeling endurance time both in total and at VO pax were fitted to
the pooled subject data using the least squares procedure incorporated in SigmaPlot software (Jandel
Scientific, San Rafael, CA).

3 Results and discussion

Table 1 lists individual results from all ten subjects.

For six subjects, 90% of their vV O3 max as measured on the incremental test was insufficient to
elicit their individual VO3 pay . For two of these, and one other, 140% of their vV Oz pax brought on
exhaustion before their VOs pnax could be attained. Those three subjects who were able to reach their
VO3 max on all four tests, produced data which appeared skew, with endurance at 90% much longer
than at any other percentage.

Equation (6) for endurance time at VO max contains six parameters, but it can be parametrised
more simply as

fo= —" el (1-—2)_
« Ty _p et v_p) ©

which contains only five independently estimable parameters (the original formulation contains one re-
dundant parameter). However, since there are at most four non-zero data points for any one subject,
this equation cannot be fitted for each subject, and so the data must be pooled over subjects. Fur-
thermore we note that equation (4) for total endurance time contains four parameters (total endurance
time provides no information on Vj,,;, or on the rate constant for the VO, slow component). Thus to
overcome the redundancy and provide for more efficient estimation of the four parameters common to
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VO3 max Absolute Relative Total Time Total Distance
Subject incremental velocity velocity time limit distance limit
# test % vV Oomax | limit | at VOs max limit at VO2 max
(mlkg™' min~") | (ms™") (s) (s) (m) (m)
1. 63 4.00 90 975 0 3900 0
4.44 100 450 240 2000 1067
5.33 120 150 90 480 480
6.22 140 75 30 187 187
2. 55 4.00 90 1200 0 4800 0
4.44 100 405 210 1800 933
5.33 120 118 75 629 400
6.22 140 65 15 404 93
3. 59 4.25 90 800 600 3400 255
4.72 100 388 300 1832 1417
5.19 120 138 75 17 390
6.61 140 89 60 588 397
4. 66 4.44 90 840 0 3733 0
5.00 100 225 100 1125 600
6.00 120 75 25 450 180
7.00 140 45 0 315 0
3. 55 4.25 90 805 525 3421 2231
4.72 100 337 225 1591 1062
5.19 120 142 105 737 545
6.61 140 81 60 535 396
6. 62 4.44 90 495 95 2200 422
5.00 100 210 135 1050 675
6.00 120 90 45 540 270
7.00 140 60 0 420 0
7. 62 4.00 90 770 0 3080 0
4.44 100 360 150 1600 667
5.33 120 135 90 720 480
6.22 140 75 0 466 0
8. 60 4.12 90 1125 870 4640 3588
4.58 100 524 420 2401 1925
5.50 120 110 45 605 247
6.42 140 70 30 449 193
9. 49 4.00 90 420 0 1680 0
4.44 100 270 150 1200 667
5.33 120 135 90 720 480
6.22 140 90 45 560 0
10. 62 4.44 90 885 0 3933 0
5.00 100 480 345 2400 1725
6.00 120 150 105 900 630
7.00 140 90 30 630 210

Table 1: Individual total times and distances run during the all-out runs at 90, 100, 120 and 140% of
vV Os max , and specific times and distances run at V' Os pax -
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Figure 5: Endurance data and jointly fitted curves for ten subjects. This figure shows individual en-
durance times (both total and at V' Os pax ) versus % vV Oz max for all ten subjects; together with fitted
model curves for the whole group. Open symbols and dotted fit are for total endurance times, closed
symbols and solid fit are for endurance times at VO max - Goodness of fit and estimated parameters are
as given in the text.

equations (4) and (6), these two equations are fitted jointly to both sets of endurance data pooled over
subjects.

Since all subjects are of differing abilities, their velocity as % vV Oamax was used as the ordinate,
rather than velocity itself. Doing so alters the units of measurement of several of the parameters, but
they can easily be converted back.

Fitting % vV Osmax against endurance times yields a good fit, R? = 0.821 (p < 0.001), with a
standard error of estimate of 127.6s. The fitted parameters are o = 89.01s corresponding to 416 m,
CV = 81.4 % vV O3 max corresponding to 3.81ms~', r; = 0.05355~" corresponding to a time constant
of 18.7s, Vo = 86.5 % vV Oy max corresponding to 4.05ms™!, r5 = 0.0034 corresponding to a time
constant of 292.7s, and Vipax = 203.7% of vV O3 max corresponding to 9.53 ms~!. These fitted equations
are plotted together with the full data set in Figure 5. The obvious skewness of the curve for endurance
time at V Oy max is immediately apparent. The maximal endurance time at VOspmax is predicted as
603 s for a running velocity of 4.11ms~! being 87.9% of vV O3 max (incremental).

4 Conclusions

We have agreed that there must exist some running velocity in the range of velocities that elicit V' Os max ,
which permits maximal endurance at V Os nax - Indeed, we have shown that whereas total endurance time
plotted against velocity displays a hyperbolic shape, endurance time at V' O3 max plotted against velocity,
displays a maximum. The bioenergetic process which produces such joint data has been modelled,
producing a skewed curve for endurance data, both in total, and at VOsmax where it has a single
maximum. This model has been successfully fitted to endurance data obtained from a group of ten
athletes. We find that the minimal velocity to elicit VOs max (Vom) is some 10-13% below that estimated
from an incremental test (vV Oz max )-
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Glossary

AC Anaerobic capacity, usually expressed in joules, but here expressed as its distance equivalent, in
metres, being the work required to cover that distance, independent of velocity.

a The value of AC when the subject is fully rested and nourished, m.

CP Critical power, W.

CV Critical velocity, ms~!.

e The dimensionless exponential constant.

In The natural logarithm to the base e.

r; The rate constant for the primary component of oxygen uptake kinetics, s~1.

ro The rate constant for the slow component of oxygen uptake kinetics, s~!.

t The general time variable, s.

t, The endurance time at VO3 max, S.

t. The time taken for the primary component of oxygen uptake to reach the equivalent of C'V, s.
t* Total endurance time at constant velocity, s.

tym The time taken for oxygen uptake to reach VO3 max , S-

V' The constant velocity required of any given exercise bout, ms™!.

Vi The maximal velocity that could be attained when the anaerobic capacity is less than o, ms™!.

Vmax The maximal velocity achievable by the subject when fully rested and nourished, ms™!.

1 1

V0O, Oxygen uptake above rest, usually expressed in 1min~! or mlkg~' min~!, but here expressed as

its velocity equivalent, ms~!.

1 1

VO3 max Maximal oxygen uptake, Imin=' or mlkg=! min=—!.

Vum The estimated minimal velocity that would drive VO5 to reach VO3 max , ms™!.

vV O2max The minimal velocity that would drive VO, to reach VOs ax as measured in an incremental

test, ms—!.
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Abstract

This paper investigates home advantage (HA) in Australian netball. Traditional measures of HA for
whole competitions, such as the percentage of games won by home teams and alternative measures,
such as the average margin of victory (in goals) for the home team, are calculated. Individual HAs
for each team are obtained via a linear model, which takes account of teams sharing venues, using
least squares methods. It is shown that HA in netball is small in comparison to other sports.

1 Introduction

Netball is the most popular women’s sport (in a participation sense) in Australia. There is an estimated
total of 1.2 million netball players in Australia currently (including males). Internationally, netball is
played in approximately 50 countries, 45 of which are affiliated with the International Federation of
Netball Associations.

The game is played between teams of seven players plus reserves on a court of fixed dimensions but
varying surface, usually asphalt in lower grades. A match is played for four quarters, each lasting 15
minutes. One is added to the score each time a goal is scored.

The major Australian competition in netball, the Commonwealth Bank Trophy, began in 1997
with 14 rounds between eight clubs, and organised by Netball Australia. Adelaide, Melbourne and
Sydney each have two clubs, and Brisbane and Perth one. Matches are played at venues with an indoor
international standard court, on a double sprung wooden surface.

The competition is of a fairly standard type, with each team playing each other twice, once at home
and once away. Some teams share the same home venue. In 1997, there was a difficulty in obtaining
some venues for scheduled matches, and so some teams played others twice at home. Teams receive
two points for a win and one for a draw. Ladder position is in order of wins with ties decided upon
percentage (100 x total goals for + total goals against). The top four teams at the end of the home and
away draw play off in a final series to determine the ultimate winner.

Winning teams average about 60 goals per game, while losing teams average about 47 goals per
game. In the last three years, there have been only five draws in 168 games. Table 1 gives information
about the mean winning and losing scores for the matches played each year, as well as the mean total
score per game. These are surprisingly consistent for the three years.

*The authors wish to thank NETBALL AUSTRALIA, particularly Greg Dehn, for providing us with the data and
other relevant information.

168
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Year 1997 | 1998 | 1999
No. of matches 56 56 56

No. of draws 2 2 1

Mean winning score per match 59.5 60.5 59.9
Standard error of mean winning score per match | 1.10 0.93 1.05
Mean losing score per match 46.1 47.8 47.5
Standard error of mean losing score per match 0.93 0.91 1.02
Mean total score per match 105.6 | 108.3 | 107.3
Standard error of mean total score per match 1.51 1.42 1.49

Table 1: Basic descriptive statistics for the Commonwealth Bank Trophy, 1997-1999.

Home advantage (HA) is the term used to describe the consistent finding that home teams playing
in a balanced home and away sporting competition win over 50% of the games played. It is believed to
occur because of circumstances such as familiar surroundings, crowd support influencing both players’
behaviour and officials’ decisions and travel factors associated with the opposition.

In this paper we investigate home advantage (HA) for the competition overall and for individual
clubs, as a first step in explaining the differences in terms of the playing characteristics of the clubs.

When the competition first started in 1997, there were problems obtaining home grounds for three
of the matches. These matches were played at the home ground of the “away” team. In addition, home
grounds are changing. The AKAI Melbourne Kestrels and the Cenovis Melbourne Phoenix both played
at the Waverley Netball Centre in 1997 and 1998, but the Cenovis Melbourne Phoenix had the Melbourne
Sports and Aquatic Centre as their home ground for 1999. They both planned to move to a new venue
in the Docklands precinct in 2000, but this venue is unlikely to be ready in time. The Decoré Sydney
Sandpipers and the TAB Sydney Swifts both played at the Anne Clark Netball Centre at Lidcombe in
1997 and moved to the State Sports Centre in 1998. In 2000, the Decoré Sydney Sandpipers plan to
move to the Penrith Sports Stadium.

2 Traditional measures of HA

The phenomenon of HA has been the basis of considerable study since the 1970s. Courneya and Car-
ron [3] give a comprehensive review of this work. In their table surveying the “what” of home advantage,
they list many studies which give the home win percentage on the basis of either points or wins/losses
(with tied games excluded in the latter case). Two of the studies also give the difference between home
and away winning percentages. Other measures of HA, such as winning margins, are not investigated
in these studies.

In the first detailed study of HA by Schwartz and Barsky [5], the percentages of matches won by
the home team were found to be 53% in major league baseball, 55% in professional (American) football
and 59% in college (American) football, 64% in ice hockey and 64% in college basketball. Table 2 gives
the percentage of wins by the home team for each year for the round matches in the Commonwealth
Bank Trophy, omitting those played by teams sharing a common venue. A draw counts as half a win.
These are similar to the percentages for other sports, although the figure in 1998 is surprisingly low.

Table 2 also gives the average margin of victory of the home team. This is quite small in comparison
to the total number of goals scored in a game. Since the percentage of home wins depends on the
variation in the performance level of the teams as well as their HA, it is difficult to compare HAs
between seasons or between different sports. The values of the ratio of the average total goals scored in
a match to the average margin of victory by the home team, r, given in Table 2, allows us to make such
comparisons. Stefani and Clarke [8] determined the values of r for soccer (three European cups) — 3,
hockey (USA) — 10, professional football (USA) — 12, Australian Rules football — 21, and baseball (USA)
— 34. A value of r of 71 can be calculated from the data given in Snyder and Purdy [6] for collegiate
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Average Average
Percentage | margin of | total goals Ratio of
Year | No. of | of wins by | wvictory of | scored in a | GOALS to
games | home team | home team match HGA (r)
(HGA) (GOALS)
1997 50 62 3.78 105.6 27.94
1998 50 50 0.16 108.3 676.88
1999 52 58 2.02 107.3 53.12
All 152 a7 2.01 107.1 53.28

Table 2: Traditional measures of home advantage (HA) in Australian women’s netball (Commonwealth
Bank Trophy).

basketball. The values given for r in Table 2 indicate that netball has a low home advantage compared
to other sports, except for basketball. This is probably due to factors such as having a fixed dimension
indoor playing surface and a limited number of games during the season to lessen travel factors.

3 Linear model

The percentage of wins by the home team depends as much on the closeness of the competition and the
variability of results as on HA. If all teams are of the same strength, then a small HA will result in most
home teams winning. However, if teams are wide apart in strength, than a small HA will have little
influence on the final result. Hence HAs are best investigated by models that incorporate a strength
measure of the individual teams as well as a HA.

There are several linear models that can be used to model results between two teams. Clarke [1]
presents three, and the third is chosen here because it assumes that each team has a different home
advantage and takes account that some matches may be played between two teams who share a home
ground. This model has been used by Stefani and Clarke [7, 8] to investigate individual HAs in Australian
rules, by Harville and Smith [4] to investigate HA in basketball, and by Clarke and Norman [2] to find
individual HAs for all English soccer teams.

Let w;; be the winning margin (in goals) when the home team i plays away team j (in match k). Let
u; be a rating for team 4, which is a measure of team 7 on a neutral ground. This summarises a team’s
ability, form or level of performance. Let h; be the home ground advantage of team ¢, which includes
all that is advantageous for team ¢ playing at home and all that is disadvantageous for any other team
playing at team 4’s home ground. Let ¢;; be a common home ground factor, which takes the value 1 if
team 4 and team j have a common home ground, and 0 otherwise. Let e;; be a random error, usually
assumed to have a mean of zero. Then

Wij = U; — Uj + hz — Cijhj + €ij-

The term c;;h; is necessary as some teams share a common home ground.

Since the ratings u; are relative, we add the constraint that the u; sum to 800. (The number 800 was
chosen so that if all teams were of equal ability, they would each have a rating of 100. Any other number
could have been chosen here.) This model, with the additional constraint on the u;, was fitted to the
individual match results for each of the three years with a standard regression package. The values for
w and h for each of the teams are given in Table 3. In each case the overall model was significant at the
0.0001 level, with R? = 0.65 (1997), 0.72 (1998) and 0.75 (1999). The high values of R? reflect the low
variability in netball. Clarke and Norman [2] obtained a value of R? of 0.19 for English soccer, reflecting
its high variability, and Clarke [1] obtained a value of R? of about 0.40 for Australian Rules football.

The range of the ratings (highest rating — lowest rating) has been increasing. In 1999, when the team
with the highest rating played that with the lowest rating, the model predicts that the highest team
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1997 1998 1999
Team U h U h U h

AAMI Adelaide Thunderbirds 113.36 2.21 | 113.19 | —7.20 | 116.98 0.56
Firestone Queensland Firebirds | 91.26 1.72 | 97.10 | —8.83 | 96.96 | —7.09
Adelaide Wendy’s Ravens 95.21 4.48 | 106.69 | —6.80 | 102.98 3.16
SmokeFree Perth Orioles 91.48 6.74 | 87.27 | —1.17 | 81.39 | 11.41
Sydney TAB Swifts 106.75 | —5.40 | 106.32 8.61 | 111.36 | —7.89
AKAI Melbourne Kestrels 92.06 | —0.59 | 101.72 | —0.58 | 99.42 9.24
Decoré Sydney Sandpipers 102.33 2.13 | 85.49 | 13.64 | 98.86 | —5.89
Cenovis Melbourne Phoenix 107.55 | 11.25 | 102.22 5.33 | 92.06 | 10.07
Maximum HA applicable 11.84 13.64 11.41
Range 22.10 27.70 35.59

Table 3: Individual ratings and HAs for teams in Commonwealth Bank Trophy Women’s Netball Com-
petition 1997-1999.

would be ahead by 36 goals before allowances for HA. For 1997 and 1998, the maximum HA applicable
was about half the range of the ratings, but in 1999, this was down to about a third.

Some teams are shown with a negative HA in some years. Clarke and Norman [2] show that the
apparent HA of any side is affected by the HAs of the others. An end of season ladder for the 1999
Commonwealth Bank Trophy, with the values of u and h included, is given in the appendix. Three of
the teams have a negative HA. Sydney TAB Swifts have won more matches away than at home, and also
have a larger away goal difference than home goal difference, so their negative HA is understandable.
Decoré Sydney Sandpipers have also won more matches away than at home, whereas their home goal
difference is not as bad as their away goal difference. The third team with a negative HA, the Firestone
Queensland Firebirds, have won as many matches at home as away, and their home goal difference is
not as bad as their away goal difference. Certainly the HAs of the other teams have had some effect in
determining the HA of the Sandpipers and the Firebirds.

The data from the three years were combined, and the model above fitted to the data (using the
REG procedure in SAS), assuming the home advantage for each team remained constant over the three
years but allowing the performance of individual teams to vary each year. The p-value for the model was
0.0001, with R? = 0.67. The HA for each club over the three years is given in Table 4. It is not surprising
that the Perth based team has one of the higher HAs, due to travel factors. What is surprising is that
one of the Melbourne based teams, Cenovis Melbourne Phoenix, has the highest HA, and appears to
have been the most consistent in terms of HA over the three years.

Team HA, 1997-1999
Cenovis Melbourne Phoenix 9.57
SmokeFree Perth Orioles 5.61
Decoré Sydney Sandpipers 3.21
AKAI Melbourne Kestrels 2.94
Adelaide Wendy’s Ravens 0.21
AAMI Adelaide Thunderbirds —1.59
Sydney TAB Swifts —-1.73
Firestone Queensland Firebirds —4.88

Table 4: HA of teams, assuming constant from 1997-1999.
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4 Further analysis of individual HAs

Do different teams have different HAs or are the above differences due to random variation? For each of
the three years, and for the combined three years, an F-test was done under the hypothesis Hy : hy =
ho = hs = hy = hs = hg = hy = hg, with p-values given in Table 5.

Year p-value
1997 0.8111
1998 0.1307
1999 0.0904
1997-1999 combined | 0.1145

Table 5: Test results for the h;s being the same.

The results are inconclusive. However, it must be noted that generally for each year the individual
HAs have been calculated from only seven (or fewer) observations.

5 Conclusions

The Commonwealth Bank Trophy has only been in operation for three years. The HA for each of the
teams over each of the three years and for the three years combined has been calculated. It has varied
quite a bit for some teams over the three years. The maximum HA to apply to a game is shown to vary
between one-third and one-half of the difference in the ratings of the highest and lowest teams. There
is a significant HA in netball, but it appears to be lower than for other sports.
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OPTIMISING DOWNWIND SAILING

Elliot Tonkes
School of Information Technology
Bond University
Gold Coast
Queensland 4229, Australia

Abstract

High speed sailing craft are capable of superior downwind performance when they utilise downwind
tacking instead of following a straight line between buoys. Within each of the downwind tacks, this
paper analyses whether a straight line path is superior to an oscillating path.

1 Introduction

In the early days of yacht racing, downwind legs (when the true wind is coming from behind the vessel)
were raced by sailing almost directly between the buoys. With the advent of higher speed boats, it has
been found to be preferable to zig-zag (tack) downwind. The main reason is associated with the stall of
an aerofoil. When sailing dead downwind, the apparent wind is directly from behind and the sail acts as
a bluff body. When sailing at an angle to the wind, the apparent wind shifts forward, reducing the angle
of attack of wind onto the sail. This allows a smooth flow over the sail and enhanced lift (Tritton [10]).
Of course, the compromise is that the force is not directly in line with the motion of the boat and that
the boat must travel further. However, these disadvantages are consistently overcome in racing.

It is not difficult, given the velocity profile of a yacht to determine the best angle for piecewise-linear
downwind tacking. In this paper, we investigate the dynamic problem of determining whether a straight
line is the optimal path.

The assumption of constant wind and no waves is made. Even in this perfect environment, it has
been maintained by some sailors that an oscillatory path is preferred over straight line motion. The
basic idea is that the yacht turns upwind a little, accelerates and the apparent wind shifts forward. This
will then allow the yacht to turn downwind, and while momentum is maintained, the vessel is able to
sail deeper downwind. As the yacht slows, she turns upwind to prevent flow separation and the cycle
continues.

The brachistochrone is a famous problem in the calculus of variations. Put simply, find the best
curve y(x) for a wire, with end points (0,0) and (a, —b) to minimise the travelling time of a bead on the
wire. Although the brachistochrone problem appears similar to the sailing problem (see Figure 1), there
are fundamental differences which make the yachting problem considerably more difficult. The sailing
problem does not reside in the environs of a conservative force field and the forcing function possesses
a nonlinear dependence on the speed and direction of the boat at each (z,y). Analytical integration of
the differential equations appears difficult, so numerical implementation is required.

An analysis of baseball by Harman [4] finds the best path for a runner to sprint from the home
base to the second base subject to the constraint of contacting first base. The sailing problem is more
difficult than this analysis because the endpoint of the motion is not fixed. Furthermore, the yacht’s
velocity must vary in a periodic way. To maintain a sustainable motion, the yacht’s exit velocity must
correspond with its entry velocity. Otherwise, the initial conditions at the beginning of the cycle cannot
be attained and the yacht’s motion will be speeding up (initial speed underestimated) or slowing down

174
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(initial speed overestimated). At equilibrium, the entry and exit speeds correspond, and we assume that
the yacht maintains this periodic motion for the downwind leg.

To date, most work in path optimisation of yachts has been based on steady-state velocities (Philpott
et al. [9]). For long races the steady-state velocity profiles (and meteorological data) are used to plan
courses. The problem in this paper is based on much shorter timescales and hence it is a dynamic
problem that must focus on the underlying forces, rather than the steady-state velocities.

The work by Harris [5] analysed the downwind performance of yachts with the influence of waves.
The interaction of waves with the yacht produces forces on the hull which in turn affect the speed of
the vessel, and consequently influence the relative wind vector. Harris produced a dynamic model which
deals with forces, and produced a more accurate velocity profile of the yacht. This is similar to the aim
of this paper, except in this case the influence is derived from perturbations in steering the yacht, rather
than the effect of waves.

Several articles [2, 3] describe the interaction of relative wind with yacht sails, and the resulting
force and drag.

Figure 1 describes the physical arrangement of the problem and introduces some notation.

y

Figure 1: Diagram of nomenclature. The curve is a segment of a long downwind leg.

2 Instantaneous acceleration model

As a preliminary study, suppose that acceleration is instantaneous. A force diagram is then superfluous,
and the only required diagram relates speed, boat direction and wind strength. A typical polar velocity
diagram is shown in Figure 2.

To optimise performance, one simply needs to maximise the downwind component of velocity, termed
the velocity made good, vy = v(0) sin(f) (see Figure 1). Any other path is clearly inferior. The velocity
profile in Figure 2 for a Tasar establishes the optimal straight-line sailing angle in each particular wind
strength.

3 Assumptions

Let the true wind vector be W = —Wj and the true boat speed vector be v. Suppose the mass of the
crew and boat is M. Let the direction of the relative wind be w = W — v. Let (x,y(z)) describe the
path followed by the vessel. Let s(¢) represent the arc length of the curve parametrised with time.
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Figure 2: Polar velocity profile for a Tasar dinghy [1]. For a given W, the best vy is the lowest point
on the velocity profile.

Assume that the driving force F always acts in the direction that the boat is pointing and that it
depends on the relative wind vector only. The function F will contain a component of drag associated
with air drag. Assume that the water drag force D also acts in the tangential direction with force dv?
for some constant d. Quadratic water drag is verified for kayak hulls at low speed (Lazauskas and
Winters [8]) and over a larger range of speeds, experimental evidence by Havelock [6] supports the
assumption that drag is approximately quadratic with speed. The experimental data by Bethwaite [1]
is used to estimate the drag coefficient in this paper. Assume that no energy is lost when turning the
vessel (that is, neglect rudder drag). From these assumptions, the motion is parametrised by a single
variable, since the path is predetermined by y(x) and velocity v is completely described by y(z) and
5(¢).

Leeway (slipping sideways in the water) is neglected. Since this problem considers downwind motion,
the direction that the boat is pointing closely corresponds with the direction of the instantaneous
velocity.

This study considers a continuous dependence of boat speed upon wind speed, and so the possibility
of planing is not entertained. A small change in driving force produces a small change in the boat speed.

Differentiation with respect to spatial variables (x or s depending on the context) is denoted (') and
differentiating with respect to time is denoted ().

4 Formulation

Since the forces F' and D act in the tangential direction, they may be treated as scalar quantities and
by Newton’s second law,
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The path y(z) is prescribed before the equation of motion is solved. The relationship between y(z) and
s(z) is dictated by the usual arc length differential equation:

ds dy 2
— =4/1 — ] . 1
dz * (dm) )
The relative wind, in the (z,y) coordinate scheme, is given by w = W — v. The velocity of the boat
at (z,y) is given by

v vy’ 5 sy’

v = it - it 1
Vit Vitg? Vitg? Viig®

and, consequently, the relative wind velocity is given by:

5 sy’
W= i+ | W]
1+y/2 /1_|_y/2

Note that we expect ¥’ < 0 on the optimal path. The magnitude of the relative wind speed is

2 2
2 2 5 sy’
w=wl=s|—— | + ([ W+ ——] . (2)
<v1+y’2> ( \/1+y’2>
For the direction of the relative wind, we really want the direction relative to the boat’s bow, not relative
to the fixed (z,y) coordinate scheme. Let 6 represent the angle of direction of the boat below the z-axis.
Let ¢ be the angle of the relative wind above the z-axis. The direction of the relative wind will then be

described by 0 + ¢.
The angle 6 is discerned from tanf = —dy/dz. The angle ¢ can be determined from:
S !

Yy
W+ ——
Vity?  Wyl+y?+ sy
$ - $ )
\/1+y’2

tan ¢ =

For the relative angle 6 + ¢,

_ tanf +tan¢
tan(f + ¢) = 1 —tanftan¢
N W14y 3)
sty (WVT+y7 +3y)

The angle 8 + ¢ lies in the range (0, 7) for a yacht sailing with angle # € (—=/2,7/2). Thus, the motion
is governed by

5= % (F(w,8 + ¢) — ds?) (4)

where w and 6 + ¢ are prescribed by (2) and (3).

The form of F is not easily established. Typically, the velocity polar diagram provides a description
of equilibrium boat speed with a given true wind vector, —WWj.

The force function F(w,0 + ¢) will vary between yacht rigs, but it maintains a common shape
(Couser [3], Hedges et al. [7]). For this paper, an estimate for the function F(-,-) was derived from
the velocity polar diagram (Figure 2) which provides the steady-state straight-line speed at each true
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wind strength. Working backwards from any point on the diagram, the relative wind strength and
direction can be calculated and using the known quadratic drag function, the force F' can be deduced.
The resulting data is fitted to a simple function.

Alternatively, a velocity prediction program (VPP) can be used to derive F. In the preparation of
this paper, a VPP [11] was trialed. This program is available as a Java Applet on the World Wide Web.
From the resulting form of F'(-,-), the velocity polars were calculated and compared with known data.
However, the fit was inaccurate, and we have relied on the former method to estimate the driving force
function.

Suppose the relative wind strength is restricted to a neighbourhood of fifteen knots (7ms=!). There
is an angle © which lies between /4 and 7/2 such that for 0 < 6 +¢ < O, the driving force is increasing
with @ + ¢. Clearly, when a boat sails straight into the wind there can be no forward driving force. As
the yacht turns to leeward, the angle of attack increases and more force is imparted. When sailing with
relative wind angle ©, there is considerable forward component of force and the flow is still attached to
the sail. However, when the relative wind direction exceeds an angle of ©, flow separation sets in, and
there can be a marked decrease in the lift produced by the sail.

Although flow separation, and the transition from laminar to turbulent flow depends in a complex
way on the Reynolds number and the sail shape, if the apparent wind speed does not considerably vary,
then the flow remains in the same regime. Consequently, the critical angle ® does not vary significantly
as the wind speed varies and we may assume that F(w, 8+ ¢) = f(0+ ¢)g(w). The separation of laminar
or turbulent flow from the leeward side of an aerofoil (leading to stall) is further discussed in Tritton [10]
(Chapter 12). As a consequence of Bernoulli’s law for a fixed sail shape, and fixed angle of relative wind,
the lift (and hence forward driving force) is proportional to the square of the relative wind speed. This
assumption is inherent in the VPP [11]. Thus, we suppose that F'(w,8 + ¢) = f(6 + ¢)w?.

The drag coefficient from the data in Bethwaite [1] was estimated as 14kgm 1. A good fit for the
data was:

+0.5)"
F — o .
(W) =12 e T v 05

This force function is plotted in figure 3 and one of its polar velocity profiles is shown. In the wind of
7ms ™!, the velocity polar reveals that maxy varg = 2.55ms~! when 6 ~ /4. We remark that vy is
quite insensitive to # in this neighbourhood.

1000
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Figure 3: (a) Force function F(w,~) at relative wind speeds of 5, 7.5 and 10ms™!. (b) A velocity polar

derived from (a), with true wind at 7 ms™!.
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5 Small perturbations

A simplified version of the equations of motion can be obtained for small perturbations from straight
line motion. Suppose that the path of the motion is described by y(x) = mz + ep(x), where m < 0, |¢| is
small and p(+) is normalised over the period of motion. For sufficiently small €, the arc length s(x) does
not vary significantly from straight line motion. However, the derivative y'(z) will impart significant
differences in the velocity of the motion. In order to preserve periodicity and maintain constant end
points, constraints are imposed on p(-).

Suppose that the motion traverses 0 < z < X, or equivalently, 0 < s < L, where v1+ m2x = s.
Define the perturbation in terms of arc length by introducing p(s) = p(s/v'1 + m?2). Thus, (d/dx)p(z) =
ds/dz = /14 m? p'(s). The periodicity and endpoint conditions imply:

p(0) =p(L) =0 and p'(0) =p'(L). ()

These assumptions mean that F'(w, 8 + ¢) can be written explicitly in terms of s and $. For brevity, we
shall write P(s) = v/1+ m2p'(s). Then we can write F' = f(8 + ¢)w?, where

. ; ’ sm+eP(s)
v <\/1+(m+eP(s))2> " <W+ \/1+(m+eP(s))2> o

and

W/1+ (m + €P(s))?

tan(f + ¢) = :
§+ (m+ €P(s)) (W\/l T (m+ eP(s)) + é(m + eP(s)))

(7)

The tan operator is inverted by taking the branch of tan—! which assumes the range (0, 7). Continuity
is not contravened because 8+¢ will never be in a neighbourhood of zero, the location of the discontinuity.

If the mean speed is $g, then the extra time to traverse the slightly longer path will approximately
be:

ST(e) = + /OL (*ﬂ *(m+ ePls)* 1) ds. ®8)

50 1 +m2)

Linearisation and second order expansion

Make the first order expansion for s(t) in terms of the perturbation parameter e:
s(t) = so(t) + esi (1), (9)

where so(t) is the solution to the equations of motion when € = 0, that is, straight line motion.

The steady-state, straight-line, unperturbed motion is solved by s(t) = $ot = wot, with constant
relative wind speed wo and direction (6 + ¢)g = 7o-

The only appearance of the parameter € is in conjunction with s;(t) or P(s). Consequently, lineari-
sation of the equations of motion in terms of ¢, yields:

M§1 = ASl + Bpl(So).

Since so(t) = vot, the term p’(sg) can be written as a function of time. For this paper, we shall con-
sider sinusoidal perturbations, so p(s) assumes the form sin(2ws/L), giving p'(s) = (2w/L) cos(2ms/L).
Thus p'(sp) can be replaced with (27 /L) cos(2mvot/L) = (27/ L) cos(wt).

The initial conditions from the nonlinear system imply that s (0) = 0. Because the motion is periodic
over s € [0, L], periodic velocity constraints must be enforced: $;(0) = $;(T"). Subsequently,

B (Mw — Asin(wt) — Mw cos(wt))
vo(A% + w?M?) '

S1 (t) =
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The first order expansion of (8) yields,

- ——— 4+ 0(€?) = O(é?).
B Vit T =0
Clearly s1(T") = 0 and no speed difference is discernible from the first order approximation.

For a second order expansion, suppose that s(t) = so(t) +€s1 () + €2s2(t). Collecting the O(e?) terms
from the equation of motion yields the governing equation for s, (¢). After simplification,

M3y = asy + b(51)% + c(310') + e(s19") + f(?')?, (10)

where s1(t) is derived from the first order approximation, p' = (w/vg) cos(wt) and p" = —(w/vp)? sin(wt).
The constants a, b, ¢, e and f depend on M, w, v9, W, k, m, vo and d.

The solution to (10) with initial condition s2(0) = 0 contains constant terms, linear terms, periodic
terms and terms exponential in ¢. The linear terms do not contain the constant of integration and
constitute a growth (or retardation) of so(t) over time as the cycles progress. The exponential terms are
simply correction terms which will disappear with an appropriate selection of initial conditions $2(0).

From (8), the extra time to travel the convoluted path is of O(e2). Thus, the effect of the perturbation
ep(s) on the speed () is of order €2. Unfortunately, the extraction of constants a, b, ¢, e and f from the
expansion of F'(w,~) involves prohibitively messy algebra. Although we have established that a second
order effect exists, we have not deduced whether the perturbation improves or degrades performance.
Instead, our next step involves numerical integration of the differential equations of motion.

6 Large variations

In order to solve the problem for “large” perturbations from straight-line motion, the arc length must be
taken into consideration. A large perturbation implies that s(z) is significantly different from v/1 + m? .
As afirst step, for a given y(z), equation (1) is solved to yield s(x). A one-to-one relation is thus derived
between s and x and the differential equation can be numerically integrated. An iterative scheme is
implemented to ensure periodicity in $. This guarantees that the speed at the beginning of the path is
sustainable (equal to the exit speed).

Numerical method

The numerical method follows the procedure outlined below.

Step 1 Guess a path y(z), 0 < 2 < Xypan = L/v/1+ m2, which satisfies y'(x) < 0o on [0, X,pan] and
y'(0) = ¥’ (Xopan)-

Step 2 Solve for s(z) by numerically integrating (1) over [0, Xspan]-

Step 3 Guess initial velocity v = $(¢t = 0).

Step 4 The differential equation (4) is numerically integrated using Matlab’s ODE45 function:

§=¢,
¢ = 57 (Flw,6+6)—dc?),
s(0) =0, ¢(0) = vp.

The terms w and 6 + ¢ are themselves functions of ¢ and dy/dz. However, Step 2 yields a one-to-one
mapping between s and z. Consequently, dy/dx can be evaluated for any given s.

Step 5 The exit speed §(x = X;pqn) is determined by reading off the numerical solution. This infor-
mation is used to make an improved guess for vy by a bisection method: vy — % (vo + $(x = Xspan))-
This value is inserted into Step 3, and the process repeated. When a tolerance value is achieved,
[vo — $(z — Xgpan)| < tol, then the solution is in a steady state.
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Step 6 The solution yields the time Tspqy, at which £ = Xpe, and vare = y(Xspan)/Tspan is evaluated.

These steps are repeated for a selection of parameters to obtain the best value of vy;g. In our
numerical implementation, Step 1 involves perturbing a straight line path with a sinusoidal oscillation.

7 Computational results

Data for a 14 foot dinghy is used. The drag coefficient d = 14kgm ™!, the wavelength of the perturbation
is chosen to be L = 20m and mass M = 250kg. Figure 4 shows the effects of small, moderate and large
perturbations by plotting the speed as a function of time when € = 0.2,1 and 4.

For small perturbation parameter €, the linearised solution corresponds closely with the true solution.
However, large discrepancies are apparent when the perturbation parameter becomes larger. Figure 4
compares the numerical with the linearised solutions. Linearised solutions are sinusoidal perturbations
of the straight-line speed (3.562ms™1!).

A large portion of the error is attributable to the coarse first order approximation in (8). When € = 4,
the arc length is increased by 24%. This is neglected by (8). Discrepancies between the initial speeds
of the nonlinear and linear solutions are partially attributable to extra path length. For the nonlinear
equations, vg is determined so that v(s = 0) = v(s = L) but the linearised solutions are designed to
satisfy this condition when the arc length is precisely the straight-line arc length. At s = 0, the direction
of the yacht is at its maximum difference from straight line motion. Consequently, the deviation of the
nonlinear force function from its linearisation is at a maximum at the very beginning, middle and end
of the path. As e increases, the discrepancy between initial speeds further increases.

b
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Figure 4: Speed $(t) over time for ¢/L = (a) 0.2/20, (b) 1/20 and (c) 4/20; # = 7/4. Numerical solution
is solid curve, linearised solution is broken curve.

Using the full numerical integration, Figure 5 shows the variation of vjsg as € varies. These plots
reveal the difficulties associated with the linearised equations. For small €, the improvements in vy
are negligible: the first variation in € is zero. Higher order estimates are imperative for discerning the
improvements in downwind speed with e.

The improvements in boat speed are second order effects. To be observed, the perturbations must
significantly depart from zero, as revealed in Figure 5. This means that the full nonlinearities must be
incorporated creating difficulties for analytical investigation. The simulations reveal that improvements
of 3-4% can be made on the downwind leg. Slight improvements to the velocity polar profiles are
achieved by an oscillating course, rather than straight-line motion.

At some 6 close to /4, the graphs in Figure 5 indicate that the philosophy of oscillation becomes
beneficial. Empirical evidence indicates the philosophy of an oscillating heading will only improve vy
for yachts with particular characteristics. Although this study has concentrated upon the characteristics
of a 14 foot dinghy, it is proposed that yachts with “flatter” downwind velocity profiles will exhibit
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and (c) W = 10ms~!. Nonlinear integration for large deviations is used.

improvements when the heading oscillates, but a velocity profile which is pointed near the optimal vy
will benefit from a straight heading.

8 Further directions

This same basic method can be applied to windward sailing. However, the no-leeway slip assumption
becomes invalid. The force diagram relating F' to w is very sensitive at windward angles and may not
provide reliable predictions.

The interaction of the yacht with waves may become important (Harris et al. [5]), and this can
be incorporated into the analysis in the form of an autonomous forcing term. The interaction of two
frequencies (wave frequency and the perturbation frequency) should produce interesting results.

The influence of extra drag, dependent upon the curvature p”(s) should model the rudder drag more
accurately. This effect will become more pronounced for larger ¢ and may negate the small benefits
that we have demonstrated. Finally, more accurate descriptions of the force F' will yield more accurate
results for modelling real yachts.
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Abstract

The present study is an effort to discuss a method of constructing the norms for any test item
based on difficulty ratings. The technique so discussed has been used to develop the norms for the
school boys of Gwalior in two age categories viz. 13-14 years and 15-16 years on the five test items
i.e. sit-ups for abdominal strength, balance, standing broad jump for power, 50 metre performance
for speed and 600 metre performance for endurance. The norms so developed were distinct in both
the age categories on all the test items. The important finding of the study is that in each of the
test items for a given increase in the performance at the lower level a subject is rewarded less but
at the higher level the reward is more. This is because the improvement in the performance at the
top level has a larger difficulty rating in comparison to that at the lower level.

1 Introduction

Many studies have been conducted by Cohb [5], Front [7] and Ismail et al. [8] on developing norms on
various motor components. Most researchers use percentile method of constructing norms. Bolcok [2],
Box [3], Frenzoni [6], Rosmussen [11], Busch [4] and Zuti et al. [12] developed the norms on physical
fitness test items in different age categories. Barrow et al. [1], Mistkawi [9] and Richardson [10] have
developed the norms on the variables other than physical fitness test items. But a score obtained on
percentile scale is not the correct indication of one’s capability on the test items. Often we require to
develop a scale which measures the worth of an individual on the test parameter. The present study is
based on the concept that a slight improvement in the performance at the top level should be rewarded
more.

This study has two purposes. The first purpose is to discuss a statistical method of developing
weighted norms based on difficulty ratings of the performance. The second purpose is to develop the
weighted norms on selected fitness parameters for boys in 13 to 16 years age group.

2 Methods

In all, four hundred and eighty boys in the age group of 13—16 years from the central schools of Gwalior
were selected randomly as the subjects in the study. The subjects were grouped in the age group of
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13-14 years and 15-16 years. When deciding the age group, a boy was classified in the age category
of 13-14 years only if his age was exactly above 13 years and below 15 years on the date of testing.
Similarly, the subject was classified in the age category 15—16 years if he had completed 15 years but
less than 17 years on the date of testing. In each group, two hundred and forty boys were selected.
These subjects were tested on the five test items namely, sit-ups, balance, standing broad jump for
power, 50 metre performance for speed and 600 metre performance for endurance. The stork balance
test was used to test the balance of the subjects. Standard methods were used to measure the test items.
To exploit the full potential of the subjects, they were properly motivated by means of intrinsic and
extrinsic reinforcement. After obtaining the data on the five test items from the subjects in different
age categories, the below mentioned procedure was used to develop the weighted scale.

3 Statistical technique

Here the procedure for developing the weighted scale has been discussed by taking the data on sit-ups
for the age group of 13—-14 years. For simplicity, the performance has been arranged with a spacing of
four counts of sit-ups starting from 8 to 44. However, final results were obtained with the spacing of
two counts of situps.

1 | Performance 44 40 36 32 28 24 20 16 12 8
A B C D E F G H I J
2 | Area covered by
the performance 0.02 0.13 0.12 0.15 0.19 0.09 0.11 0.07 0.06 0.06
P(X2) — P(X1)
3 | Area below the
performance P(X1) 0.98 0.85 0.73 0.58 0.39 0.30 0.19 0.12 0.06 0
4 | Lower limit of
the sit-ups X1 2.05 1.04 0.61 0.20 —-0.28 —-0.52 —-0.88 —1.18 —1.56 —00
5 | Upper limit of
the sit-ups X2 o] 2.05 1.04 0.61 0.20 —-0.28 —-0.52 —-0.88 —1.18 —1.56
6 | Ordinate at the
lower limit O(X1) 0.049 0.232 0.331 0.391 0.384 0.348 0.271 0.199 0.118 0
7 | Ordinate at the
upper limit O(X2) 0 0.049 0.232 0.331 0.391 0.384 0.348 0.271 0.199 0.118
8 | Normative values
0(X1) — 0(X2)
= m 2.45 1.41 0.83 0.40 -0.04 -0.40 -0.70 -1.03 -1.35 -—1.97
9 | Linear transformed
scores W = 10w + 50 74.5 64.1 58.3 54.0 49.6 46 43 39.7 36.5 30.3
10 | Cumulative score 496 421.5 357.4 299.1 245.1 195.5 149.5  106.5 66.8 30.3
11 | Normative values (NV) 100 84.98 72.06 60.30 49.42 39.42 30.14 21.47 13.47 6.11
12 | Normative values
(rounded off) 100 85 72 60 49 39 30 21 13 6

Table 1: Computation of weighted norms for the data on sit-ups for the boys in the age group 13-14
years.

The procedure discussed below is based on the concept of normality. It is assumed that in case of
large sample human traits behave like a normal distribution. The weight of each grade has been decided
by dividing the difference in the ordinates at the boundary points of the grade by the area it covered.
To show the procedure, data obtained on sit-up performance in the age group 13-14 years along with
its frequency are listed as follows:

Sit-ups

44 40 36 32 28 24 20 16 12 8
Frequency

4 32 29 35 45 21 27 17 15 15
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13-14 Years 15-16 Years
Performance Scores | Performance Scores
(in number) (in number)

52 100
48 93
46 87

44 100 44 80

42 92 42 75

40 85 40 70

38 78 38 64

36 72 36 58

34 65 34 53

32 59 32 48

30 53 30 44

28 48 28 39

26 43 26 35

24 38 24 30

22 33 22 26

20 28 20 22

18 23 18 18

16 19 16 15

14 15 14 12

12 11 12 8

10 7 10 5

8 3 8 3

Table 2: Weighted norms for the data on sit-ups for the boys in the age group 13-14 and 15-16 years.

The computation of scale values for the various performances on sit-ups is shown in Table 1.
Computation of entries in different rows:

Row 1: Entries in the first row are the performance given in the problem.

Row 2: Convert the frequency corresponding to each performance into its percentage. These entries are
denoted by the area in the normal curve covered by the performance P(X2) — P(X1).

Row 3: In the third row area below each performance is computed by subtracting the cumulative entries
of second row from 1. For example,

Area below A =1 —0.02 = 0.98,
Area below B =1 — (0.02 + 0.13) = 0.85,
Area below C =1 - (0.2 +0.13+0.12) = 0.73.

Row 4: In the fourth row, the lower limit of all performances is obtained by using a normal curve area
table. Here corresponding to each entry in the third row, the z value is computed.

Row 5: Similarly, in the fifth row, the upper limit of all the performances is obtained by using a normal
curve area table. In this row, the first entry would be infinity (co0) and the other entry would be the
same as that of the entry in row 4 of the preceding column. For example,

Upper limit of B = 2.05 = same as the entry of the fourth row in the column A,
Upper limit of D = 0.61 = same as the entry of the fourth row in the column C.

Row 6: Again using the normal table, the ordinate of each performance level corresponding to the z
entries in the fourth row can be obtained.
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Row 7: Similarly in row 7, the ordinate corresponding to z entries in row 5 can be obtained by the
normal table.

Row 8: In this row, the normative value is obtained by dividing the difference of the sixth and seventh
row entries by the corresponding entry in row 2.

Row 9: Normative values obtained in row 8 are converted into the linear derived form by the formula
W = 10w + 50.
Row 10: Linear normative values are added in a cumulative manner.

Row 11: Each entry of row 10 is divided by the highest cumulative total and multiplied by 100. For
example, for the column A, 496 x 100/496 = 100 and, for the column D, 299.1 x 100/496 = 60.30.

Row 12: Normative values (NV) have been rounded off to the nearest whole number in this row.

4 Results

The weighted norms for the data on sit-ups for the boys in the age categories of 13-14 years and 15-16
years are shown in Table 2. In the 13—14 years age category a boy would get 100 marks if his performance
on the sit-up count is 44 whereas in the age category 15-16 years to get 100 marks one would require to
perform 52 counts of the sit-ups. On the other hand, in both the categories one would get three marks
if their performance is eight counts.

13-14 Years 15-16 Years
Performance Scores | Performance Scores
(in seconds) (in seconds)

245 100
235 95
225 89
215 84

205 100 205 79

195 94 195 74

185 87 185 70

175 81 175 65

165 75 165 60

155 70 155 56

145 64 145 51

135 58 135 47

125 53 125 42

115 47 115 38

105 42 105 34

95 37 95 30

85 32 85 26

75 27 75 22

65 22 65 18

55 18 55 15

45 14 45 11

35 10 35 8

25 6 25 5

15 3 15 2

Table 3: Weighted norms for the data on balance for the boys in the age group 13-14 and 15-16 years.

Another pecularity may be observed in the 15-16 years age category that no score has been shown in
front of 50 counts of sit-ups. This is because of the fact that no subject was found to have performance
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equal to 50. However, it can be interpolated from the listed norms.

Table 3 shows the weighted norms on balance for the boys in both the age categories. In the 13-14
years age category, 100 marks would be given to a boy who performs the balance test for 205 seconds
whereas the same marks may be given in the 15-16 years age category for a performance of 245 seconds.
On the lower side, for a performance of 15 seconds one would get three marks in the 13-14 years age
category and two marks in the 15-16 years age category.

The weighted norms for the data on 600 metre performance in both the age categories are shown
in Table 4. In the 13-14 years of age category, 100 marks are given for a performance of 114 seconds
whereas to get the same marks in the 15-16 years of age category one has to click 94 seconds on the
600 metre event. On comparing the norms at the lower side, ten marks may be given to a performance
of 270 seconds in the 13-14 years of age category whereas only three marks are given for the same
performance in the 15-16 years of age category.

13-14 Years 15-16 Years
Performance Scores | Performance Scores
(in seconds) (in seconds)

94 100
98 94
102 88

114 100 110 82

118 94 118 76

126 87 126 71

134 82 134 66

142 76 142 61

150 71 150 57

158 66 158 52

166 61 166 48

174 57 174 44

182 52 182 39

190 48 190 35

198 44 198 31

206 39 206 28

214 35 214 24

222 31 222 20

230 28 230 17

238 24 238 14

246 20 246 10

254 17 254 8

262 13 262 5

270 10 270 3

278 8

286 5

294 2

Table 4: Weighted norms for the data on 600 metre boys in the age group 13-14 and 15-16 years.

The norms for the boys in different age categories on the 50 metre performance are shown in Table 5.
Anybody in the age group 13-14 years, completing the 50 metre distance in 7.0 seconds would get 100
marks whereas for the same marks one has to click 6.9 seconds in the 15-16 years of age category. On
the lower side, three marks would be given to a 10.8 seconds performance in the age category of 13-14
years whereas one has to obtain 10.2 seconds in the age group 15-16 years to get three marks.

Table 6 reveals the norms on broad jump performance for the boys in both age groups. In the age
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13-14 Years 15-16 Years
Performance Scores | Performance Scores
(in seconds) (in seconds)

6.9 100

7.0 100 7.0 92

7.1 92 7.1 85

7.2 85 7.2 78

7.4 79 7.4 71

7.6 73 7.6 65

7.8 67 7.8 59

8.0 61 8.0 53

8.2 56 8.2 48

8.4 51 8.4 42

8.6 46 8.6 37

8.8 41 8.8 32

9.0 36 9.0 27

9.2 31 9.2 23

9.4 27 9.4 18

9.6 23 9.6 14

9.8 19 9.8 10

10.0 15 10.0 7

10.2 12 10.2 3

10.4 9

10.6 6

10.8 3

Table 5: Weighted norms for the data on 50 metre boys in the age group 13-14 and 15-16 years.

group of 13-14 years, one would get 100 marks if the performance on broad jump is 2.44 metres whereas
to get 100 marks in the 15-16 years age group one has to perform 2.52 metres on the broad jump.

On the other hand in the age group of 13-14 years 2 marks would be given if the performance on the
broad jump is 1.52 metre and for getting 3 score in 15-16 years age group, one has to give 1.60 metre
performance.

5 Conclusion

In each of the norms you can notice that for a given increase in the performance at the lower level a
subject is rewarded less but at the higher level the reward is more. It is because of the fact that the
improvement at the top level is more difficult in comparison to the improvement of the same amount
at the lower level. In other words difficulty rating is high for improving the performance at the top
level in comparison to that of at lower level. The norms were different in both the age groups on all
the parameters i.e. to get the same score on any test item a boy in the higher age group will have to
perform better in comparison to that of a boy in the lower age group. Further it is suggested that once
the norms are developed it should be revised after every year, as the performance of an individual on
the test items is very dynamic in nature.
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Abstract

The theory of extreme values can play a role in sporting data analysis. In sports competitions,
the best performances by athletes are of interest. Thus in extreme-value terms, the tail behaviour
of the distribution of performance is the focus of our attention. Two extreme-value models are
discussed here and a technique based on minimum distance is used to estimate the endpoint of a
distribution whose tail belongs to the domain of attraction of the Weibull distribution. Applications
are illustrated through examples with real sporting data appropriate to the settings of the two
models.

1 Introduction

In sporting events, only the extreme observations leading to records attract people’s attention and
therefore are readily accessible. The records achieved are usually the extreme performances of the
athletes, such as the shortest times, longest distances, highest heights, and so on.

Consider the following problem in sports. A swimming training program is to be evaluated and
the objective of the program is to improve swimmers’ performances. Assume that ten swimmers are
randomly selected for taking part in this program. The usual statistical methods are not applicable
in this situation and the sample means and variances of times are inappropriate quantities in making
statistical inferences. Instead, the best performances of the swimmers should be considered and analysed.
Suppose now the best times before and after the training program by each of the swimmers are recorded.
To evaluate the effectiveness of the training program, the ten records after the program are compared
with those before the program and the limits, or the endpoints, of the two sets of data have to be
estimated. The statistical model in this experiment is one of the extreme-value models, the model of
maxima.

This model and the other extreme-value model are described in Section 2. For each model, we assume
that the tail of the distribution is in the Weibull domain of attraction. The methods of estimation of
the parameters are discussed in Section 3. Section 4 gives some examples.

2 Two models for extreme observations
Let Xy, > --- > X,,,, be the order statistics from a random sample of n independent random variables

from a distribution F'(x). Suppose that F(z) is in the domain of attraction of a distribution H(z); that
is, there are sequences {a, } and {b,} such that

X,
P(lnbian §w> = F™(ap + bpx) — H(xz) asn — oo.

n

192
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It is well known (see, e.g. Galambos (1987)) that, up to a change of location and scale, H(z) must be
one of the following distributions:

(1) Gumbel: A(z) =exp{—exp(—z)}, —oo<z <00,

(2) Frechet: @, (z) =exp{—2z7"}, 0<uz,

(3) Weibull: ¥, (z) = exp{—(—2)"}, =z <0,
where v is some positive constant.

Model of Extremes Let X, > --- > X,,,, be order statistics as above and, for a fixed integer k,
let Zin = (Xin — an) /by for i =1, ..., k. Then, as n — oo, the random vector Zy, = (Zin,. .., Zrn)t
converges in distribution to the limit random vector Uy, = (U, ..., Uk)T. The distribution of U}, can be
determined if the domain of attraction of F(z) is known; e.g. if H(z) = A(z), then the joint distribution
of the Uj; is given by

k
h(uy, ... ug) = exp{—exp{—uk} _Zui}; Uy > > U

i=1

For expectations, covariances of the U; and estimators @, and b, under H(z) = A(z) see Weiss-
man (1978).

Model of Maxima Let X;1,..., X1, X21,.-.,X20,---,Xg1,...,Xgn be asample of size N =
kn with common distribution F'(z). The maxima M}, = max(X;1,...,Xin), for i =1, ..., k, are
observed, though not necessarily the individual X; ;’s. The random variables X;,..., X}, may cor-
respond to data collected from the ith time interval of predetermined length, say, and M}, is the ith
maximum. Let M, > -+ > My, be the order statistics from M7,,..., M}, and Yi, = (M, — an)/bn
fori =1, ..., k. Then, as n — oo, the random vector Yz, = (Yipn,...,Ysn)? converges in distribution
to the limit random vector Vi, = (V1,...,Vi)T. If H(z) = A(z), then the V; have the joint distribution,

e.g.

k k
g(vr,...,v5) = k!exp{— (Zexp{—vi}> - (sz> }, vy > e > g

For expectations, covariances of the V; and estimators a, and b, under H(z) = A(z), see Lieblein
(1962).

For details of these two models, see Wang, Cooke and Li (1996). Under each model, the commonly
used continuous probability distributions with upper tail in some domain of attraction are divided into
three types, namely, the Gumbel, Frechet and Weibull. If we are dealing with random variables limited
in the upper tail, the Weibull type is appropriate and, if we are dealing with unlimited random variables,
Frechet is appropriate.

For physical reasons, the observations in sporting data are limited and so in our statistical model
we should assume that F' has an endpoint upper or lower, as appropriate. In some highly competitive
sporting events, the records could be assumed to be close to their limits.

The most widely applicable extreme value type in many areas of scientific research is arguably the
Weibull. The Weibull type contains three parameters, namely, shape, scale and threshold or endpoint.
In the following section we will discuss methods of estimating the endpoint.

From here on we ignore the approximation of Uy to Zy,, and Vi to Y, by assuming n — oo, and
denote X;, by X; and M;, by M; fori =1, ... k.

For testing for the domains of attraction and selecting the number £ in the model of extremes, see
Hasofer and Wang (1992), Wang (1995) and Wang, Cooke and Li (1996).

3 Estimating the endpoint

Assume that we have k ordered observations T} > --- > T}, satisfying the linear model T' = A6 + Error,
where T = (T4,...,Tx)" and @ = (u,n)T. The matrix A is a k x 2 matrix [1, E(U)] where 1 is the
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k x 1 column vector of 1’s and U = (Uy,...,Ux)? is a known random vector with expected value E(U)
and covariance matrix V. The method of least squares or maximum likelihood could be applied to
estimate 0. Further assume that the T; are functions of an unknown parameter w, and rewrite T; as
T;(w). The estimator of w is the value of w which minimises the quadratic form

QW) =[Uw) - EW)]"V[U() - EU)]

where U;(w) = [Tj(w) — (w)]/i(w), i = 1, ... , k. This method of estimating w was called the minimum
distance method in Hall and Wang (1999).

Suppose that the upper tail of the underlying distribution F'(z) is in the domain of attraction of
U, (z) (Weibull type) and it has a finite upper endpoint wg. The estimation of wy is achieved as follows
for the two models.

Model of Extremes Let T; = —log(wo — X;), ¢ =1, ..., k. Then U; = (T; — ap)/bn, i = 1,
..., k, have the asymptotic density function h(uy,...,ur) given above. Thus wp is estimated by the
minimiser of @(w). In Hall and Wang (1999) the asymptotic properties of the estimator were derived.
It was noticed that minimising )(w) was equivalent to minimising

k—1

" P[T3(w) — Top ()]
Gw) = =L
Ti(w)

k—1

>

=1

5 -

= Ty (w)]

When w = wg, G(wp) is the Greenwood statistic. Thus confidence intervals for the endpoint can be
obtained using G(w).

Model of maxima Let T; = —log(wo — M;), i = 1, ..., k. Then V; = (T3 — ay,)/bn, i = 1,
..., k, have the asymptotic density function g(vi,...,vg) given above. The endpoint wy is estimated
by the minimiser of Q(w). Confidence intervals for the endpoint could be constructed by finding the
distribution of (wp), which could be obtained by Monte Carlo methods. Let ¢ be the upper a-level
point of the distribution of Q(wp). Then an a-level confidence interval for wy is defined as the set of
values of w such that Q(w) < q.

50m Freestyle

(Olympic Games, 25 July 1996) | Prelims
A. Popov, RUS 22.22
G. Hall, USA 22.36
F. Scherer, BRA 22.68
C. Jiang, CHN 22.55
B. Dedekind, RSA 22.60
D. Fox, USA 22.64
F. Sanchez, VEN 22.68
R. Busquets, PUR 22.61

Table 1: Prelims of men’s 50 m freestyle, 1996 Olympic Games. Source: www.swimnews.com

4 Examples

An example for the model of extremes was given in Hall and Wang (1999) where the model was applied
to the men’s 100 metres records (Track and Field) in the 1988 and 1992 Olympic Games. Here we
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consider the men’s 50 metres freestyle swimming records in the 1996 Olympic Games. Table 1 lists some
of the first 40 of the prelims. Since this is a case of minima, we convert it to a case of maxima by taking
negatives of the observations. The function G(w) reaches its minimum at w = —22.18 (Figure 1), which
is taken as the estimate of the upper limit of the negative times. The upper 10% critical point of the
Greenwood statistic for k = 40 is 0.0565 (see Stephens (1981)) which gives the 90% confidence interval
for the lower limit of the times of (21.20,22.22). The 95% confidence interval is (19.75,22.22).

Cup 1 2 3 4 5 6 7 8 9 10
Time | 24.74 25.69 25.88 25.34 25.86 2545 24.78 25.17 2521 25.05

Table 2: FINA World Cups 1-10, women’s 50m freestyle. Source: www.swimnews.com

0.060

0.055 T

0.050 T

0.045

1 1 1 1
—22.0 215 —21.0 —20.5

w

Figure 1: Plot of G(w)

Our next example uses the model of maxima. Table 2 shows the ten best performances from each of
the women’s 50 metres freestyle events in the most recent FINA World Cups 1-10 (from November 1999
to February 2000). Again using negatives, Figure 2 shows that the function @(w) attains its minimum
at w = —23.70 and thus the estimate of the limit for the data is 23.70.
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Abstract

In this study a forward solution of the bowling arm in cricket is made using a rigid body Lagrangian
model, coupled with the projectile equations of motion for the free flight of the ball. The model
includes two segments, the upper arm and the forearm, and the joints of the shoulder and elbow.
The approach is that of an initial value problem. The first step is to determine the initial conditions
of the limb angles and velocities, and to choose as system inputs the joint torques and forces. Then
the system response is found by numerically solving the equations of motion to determine which
combination of ball release speed and arm angle can land a ball at a particular position on the
pitch. Derivation of the equations of motion, numerical solving and data processing were performed
by the symbolic manipulation software package Mathematica, Version 3.0.

An APAS motion analysis system!(60 Hz) measured the 2D kinematic data of an elite bowler
performing two trial types. In the first trial type, the subject was instructed to remain stationary
in a side-on delivery position, and, using the bowling arm only, deliver a ball at maximum speed at
a target in line with the wickets. No motion of the non-bowling arm was allowed. This effectively
isolated the motion of the bowling arm for analysis. In the second trial type, the subject delivered
the ball exactly as before, but with the bowling arm now straightened (or locked) earlier. After
examining the kinematic data, one typical test bowl was chosen for analysis.

By substituting the 2D kinematic data into the Lagrangian equations of motion the set of
time-varying joint torques and forces on the bowling arm during a typical delivery were generated.
Running forward solutions with variations in these system inputs allowed us to simulate several
realistic trajectories of the bowling arm and test for any corresponding effect on ball release speed.
Then the model was validated by comparing the relationship between ball release speed and locking
angle in experiment with that predicted by the model. The main conclusions are that ball release
speed can be increased by (1) decreasing the locking-angle of the bowling arm, and (2) decelerating
the linear motion of the shoulder joint after the bowling arm has rotated above the horizontal.

LCourtesy of the Department of Sport and Exercise Science, The Waikato Polytechnic, Hamilton.
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Abstract

Betting on greyhound races is one of many popular forms of gambling in Australia and has in-
creased in popularity during the past few years. As with all forms of gambling, the main objective
in greyhound racing is to win money. This paper provides a betting strategy, which will significantly
improve the chances of winning. Regression techniques are used in selecting the factors which signif-
icantly influence the winning time of a greyhound race, out of many influential factors such as box
number, best time run at the track, age, etc. Two regression models which best predict the finishing
time of an individual greyhound are obtained, one for dogs with a value for the variable “best time”
and another for dogs without a value for “best time”. Predicted running times obtained from these
two models are merged in three different ways to find the overall ranking of the eight runners in
a race. This provides three different methods of placing suitable bets. The optimal strategy was
obtained and tested by comparing the money won/lost by placing bets according to each method.
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Abstract

One of the first effects that strikes the numerically literate reader of the history of cricket is how
the averages of those who played in the long ago are so much lower than those who played more
recently. Simple explanation: conditions were different then. True, but what is the effect of such
differences on the players’ performances, as typified by averages?

As mathematicians we can quantify these effects, but merely quantifying is not enough. We
should be able to model the way the game has changed, even venturing an estimate of the quanti-
tative effects of various specific changes that have occurred.

This presentation will consider the season by season variation of three global measurements of the
state of the game—overall average, leading batsmen’s average, leading bowlers’ average—and from
these signals endeavour to determine which changes to the rules and playing conditions of Australian
cricket have been the most important in influencing the relative balance between bat and ball. In
doing so, some attention necessarily will be paid to the changing standard of cricket that is the
first-class game in Australia, and a model developed to relate the three signals to more fundamental
measurements: the intrinsic balance (ro), the batting standard, and the bowling standard.

The signals are obviously very noisy. Simple analysis with Haar wavelets found changes in the
intrinsic balance, i.e. discontinuities in 7o, and these jumps were identified with events in the history
of the game at the corresponding time. The global variation of both batting and bowling standards
show improvement with time. The standard of bowling appears to have improved more (perhaps
corresponding to the development of more skills).
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